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The Van der Waals theory of nematogenic solutions derived in Paper I of this series is here applied to
binary mixtures with effectively spherical solute molecules and rodlike solvent molecules. Predicted
temperature —mole-fraction phase diagrams are shown to be in rather good agreement with experimental data
for the systems CC14-p, p'-dihexyloxyazoxybenzene (DHAB), (CH3)4Sn-methoxybenzylidene n-butylaniline
(MBBA), (C2H5)4Sn-MBB+, (C3H7)4Sn-MBBA, and (C4H9)4Sn-MBBA, On the basis of these calculations, it

„is argued that when a more or less spherical solute is added to a nematic mesophase, the onset of the
nematic~isotropic phase transition is controlled primarily by excluded-volume effects and the overall
strength of the intermolecular attractions in the system.

I. INTRODUCTION AND THEORY

In Paper I' of this series of papers —hereafter
referred to simply. as I—we presented a Van der
Waals theory of nematogenic solutions, applic-
able to mixtures of any number of components with
rodlike or effectively spherical molecular shapes.
In this paper, Paper II of the series, we apply the
general theory to binary solutions with effectively
spherical solute molecules and rodlike solvent
molecules. We have chosen to study these solu-
tions first because they are the simplest systems
to which the theory can be applied and the nema-
togenic solutions for which the most experimental
data are available. Moreover, an understanding
of the effects of adding more or less spherical
solutes to nematic mesophases is of considerable
practical importance, since small amounts of
such materials are frequently added to the nema-
togenic mixtures used in liquid-crystal displays
(in order to adjust the viscosity-electrical con-
ductivity).

Our model system, then, is a binary mixture
of yN spherical solute molecules and (1 -y)N

rodlike solvent molecules in a volume V at tem-
perature T. Each solvent molecule has a sphero-
cylindrical hard core of radius a and cylindrical
length l, while each solute molecule has a spheri-
cal hard core of radius R,a. The solvent-solvent,
solvent-solute, and solute-solute pair potentials
are given by

voo(r, ~, Q„Qq) = v,*,(r„., Q„Q~)

+ vooIr( j y Qf y Qf) y

v„(r») = v,*,(r,„)+v,",'(r„),
and

. v„(r») = v,*,(r„,)+ v",,'(r„,),

respectively, where 0, and QJ denote the orienta-
tions of rodlike molecules i and j, the v*'s are
hard-core repulsions, and the v"'s are some-
what longer-ranged attractions (which we shall
specify later). For this system, E(ls. (22), (26),
and (27) of I—which give the configurational Helm-
holtz free energy, the pressure, and the config-
urational chemical potentials, respectively, re-
duce to

',—=(1 —y) ln(1 -y)+y lny+ (1 -y) dQfo(Q) in[4''f (Q)] —1+ ln +
.8 1 —Vp 2(1 —Vp

2C

+y ( p, yap(((-y) &of (o)p(po)+y4 (p)), ,

p p2B 2p'C
+ ),+ () ), + pp (1 —y) do—', f,(pip, (op)+yp, (p)), ,
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dQfo» ln4mf, Q +ln +
(1-y)p 6(l -y)v, p(1+ ,'v—I")+ [R (1+R,)(2+q) -R„(1-q)]yv„p
j. -vp 1-vp
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v',p'(2(1 -y)'(2+ q)(l ——,'q+rl')+ y(l -y) [(4v,/v@, )(l --,'q+ rI')+ —,'R,'(2+ q)']+ —'R„(2+ q)(v, /v„)y']
(1-vp)'

y p 6yv, p+ [R,(1+R,)(2+ q) -R,'(1 —q)](1 -y)v, p
i —vp

' 1 -vp
r

(2+ q)y{1 -y), ,p'+ [{2 „,/R, ){1——,q+ I')+ —„'R„'{2 q)']{1—y)'p' P„*,
(1-vp)'

where p is the number density N/V;P = 1/k~T; the
subscripts 0 and s refer to the solvent and solute,
respectively;

vp 7TQ l + g&Q ~ s 3~+a~

v = (1 —y)v()+ yvy y

q =,ma'/ „vr = al'/v, ,

C = v,'p'[2(l —y)'(1 ——,'q+ xI')+ y(1 —y)R,'(2+ q)

+ &y'v, /v ][(1-y)(2+ q)v p+ 3yv, p/R, ],

I'=«
~

»nr ~))

f,(Q)f,(»')
~

»nr(Q, Q')
~

««',

II = 2v', p'{3(l —y) (1+—3rl )

+y(I -y) [R,(l+R, )(2+ q) -R,'(1 -q)]
+ 3y'v, /v.

, ),

)=
((

— ) f,( ') ' '*I-":. "". ')1"l ", , ') + j *]-:,)]l ())
= p[(1 —y)I()()(Q)+ yI„],

y,te)=V(() —y) dpe px[- v(t, (r)]v [(r) ry fdrexp[-((v„(r)]v~ (r)) (6)

P "/kjyT represents the first three terms on the
right-hand side of (2); and r(Q, .Q') is the angle
between directions 4 and Q'. e, and e, are clearly
the solvent and solute molecular volumes and )C)0

and T)), are the pseudopotentials describing the in-
teraction of a solvent or solu'te molecule, respec-
tively, with the mean field resulting from attrac-
tions between it and its neighbors. f,(Q), the
equilibrium single -particle orientational distx ibu-
tion function for the solvent, can be obtained by
solving the integral equation

0= (u+ in[4)if~(Q)]+P(1 -y)pI (Q)

er(( -y)v, v (yr e)() -y)v, vr eyyr v,
v)

1 —'Up 3(l —Vp)

x j',(Q')
~

sinr(Q, Q')
~

dQ'

0 0 dQ=1. {6)

. Before proceeding to use (1)-(8), we introduce
three simplifying assumptions or approximations.

(i) We let voo, vo, and v all be of the form

(a) '
/ 6

Vea' ~ec'

where x is the distance between the centers of the

pair of molecules and the c's are positive con-
stants. This should be a realistic assumption for
e,",' and a satisfactory approximation for e,",'—
given that. one integrates over the orientation of
r (relative to Q) in evaluating I„. On the other
hand, taking the attractions between rodlike sol-
vent molecules to be orientation-independent is

derived by minimizing the functional N 'F, [fo(Q)].
The constant a) appearing in (V) can be evaluated us-
ing the normalization constraint
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clearly not very realistic. In the Van der %aals
approach, however, 'pop contributes to the thermo-
dynamic behavior of the system only through the
integral IOO and recerit calculations of this quan-
tity by Gelbart and Gelbart' strongly suggest that
the orientation dependence of I00 is determined in
very large part by the leading term in v,",', which
is independent of molecular orientations.

(ii) We approximate I«by

exp[I~nZ (cos 8)]fo= fdQ exp [Iiqg, (cos 8)]
'

where

(14)

5mr(( -y)v, P (2+q)(( -y)v„p+sy((-. 'v.
p)8(l —v p)

+
3(1 vp)

N-'E, [fo(Q)] minimized subject to the constraint
(8), the resulting equation for f,(Q), replacing
(7), is

Ioo(Q) = %(oo Oooog 2(cos 8) ~ (10)

where 8 is the angle between the long axis of a
solvent molecule and the nematic director (i.e. ,
the "preferred" direction for molecular long
axes) and

f,(Q)P,(cos 8) dQ

f,(Q)[-,
' cos'8--,']dQ.

I„(Q)dQ,
(12)

(10) is obtained by expanding the inner integral
in I [see Eq. (5)] in even-order Legendre poly-
nomials P„[cosy(Q, Q')], integrating over Q' term
by term, and truncating the resulting series for
I» after the term proportional to P,(cos8). Our
justification for doing this can be found in the
previously cited work of Gelbart and Gelbart, '
who showed that for molecules having spherocyl-
indrical hard cores with length-to-width ratios
between 1 and 4.2 and v"' ~ x ', Iop is approximat-
ed quite satisfactorily by (10), where, using-our
notation,

+(I-y)p '"'
(15)

and the solvent order parameter q, is calculated
(iteratively) using the consistency condition

f,(Q)P,(cos 8) dQ

'U] ——-I
Os Os d r exp [-(8v,*,(r) ]v,", (r)

(17)

'0„,-=—I„=— dr exp[ Pv,*,(x-)]v,",'(r)

Our equations for the pseudopotentials Po and T(,
then become

o(p, Q) = -p{(l -y) [u&oo+ 'U, ooqoP, (cos 8)]+&~to,j
(18)

and

f; (' exp[Ay+, (c os 8)]P,(cos8) sin8d8
X

f,'~ ' exp [I'qg, (cos 8)]sin 8d 8

(18)
(

Finally, to be consistent with (10), we introduce
the following change in notation

I„Q,cos8 dA. P,(p) = -p[(1 -y)0(..+ y'U;..l, (19)

(iii) We approximate the quantity 1" or «
~

siny~))
by

I'=«
~

»nr(Q, Q') ~)) = l~(I .nl)—
which is equivalent to expanding ~sin&(Q, Q')~ in
Legendre polynomials P „(cosy), averaging term
by term, and then truncating the resulting series
after its second nonvanishing term. This approxi-
mation enormously simplifies subsequent numeri-
cal computations by allowing us to derive a closed-
form expression for f,(Q). It has been tested' for
one -component systems of hard spherocylinders;
in such cases, its introduction lowers the pre-
dicted values of the order parameter g by roughly
0.10 to 0.15 but has very little effect, on any other
thermodynamic quantity. One would certainly not
expect the use of (13) to change the phase diagrams
of our model solutions to any significant extent.

When (10) and (13) are substitued in (1) and

+ 2y(I -y)U;..+y'"~„,]. (20)

'The &ntegrals «, and „, are easily evaluated,
with the results

4m'~, sin'8d 8

4n'g„
30

sin8d8
R3 (21)

~„,= —,((e„/(R.a)',
where

I = tan~[2a(1+8, )/I],
and

(22)

while the configurational internal energy per par-
ticle is given by

& 'E.= 'p[(I -y)'(0;..+-u...n'. )
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l.00 TABLE I. Limiting slopes, P„" and P";, of the nematic
and isotropic phase boundaries for several solutions of
hard spheres and hard spherocylinders. xp is the length-
to-width ratio of the solvent spherocylinders and R, is
the ratio of the solute to the solvent radius.

0.98

0.96

Xp

2,93
2,93
2.93
3.99
3.99
3.99

1.0
1.5
2.0
1.0
1.5
2,0

0.784
1.674
3.195
0.648
1.279
2.290

0.623
1.080
1.558
0.529
0.887
1.278

0.94

0.02 0,04 0.06 0.08 O. I

xo= (l/2a)+ 1 of either 2.93 or 3.99, and in each
case solute spheres with R, =1, 1.5, and 2 mere
used. One of the calculated phase diagrams, that

for xp 3 99 and R 1 is shown in Fig. 1. As can
be seen, the nematic and isotropic phase bound-

aries are nearly linear, particularly for smaller
values of y. The limiting slopes, p"„and p,", o
these phase boundary lines as y- 0 are given in

Table I for all six systems. They were obtained

using the thermodynamic relations

FIG. 1. Calculated phase diagram for a binary mix-
ture of hard spherocylinders and spheres. The solvent
length-to-width ratio xp is 3.99 and R, =1. T* is the
reduced temperature T/T z I, where T z I is the nema-

. tic —isotropic transition temperature for the pure
solvent, and y is the solute mole fraction. The points
were obtained by solving {16)and {23).

p.(T, p.. .n.)= (pp1„., o),

p, (~,p.. .n.) = l,(~, p„., o),
I'(~, p..., n.) =~,
s'(r, p„., o) =a.

(23)

II. CALCULATIONS AND RESULTS

In order to study the role of excluded volume
effects in mixtures of spherical and rodlike mol-
ecules, we have considered six binary systems
of hard spheres and hard spherocylinders, The
solvent spherocylinders had length-to-width ratios

(8 = (l/2a) cos 8+ [(I+A, )' —(I/2a)' sin'e]'~'.

We are now ready to use {1)-(4)and (12)-{22)
to determine the thermodynamic behavior of
various model nematogenic mixtures. In order to
calculate the density pand solvent order parameter qp
at a given T and P, it is necessary to solve (2) and
(16) simultaneously. To determine the composi-
tions and densities of coexisting nematic and iso-
tropic phases at a particular temperature T and
pressure P, one must solve the set of five simul-
taneous equations consisting of (16) and

(24a)

(24b),

lny
~& ~s.m~re solute

I,r (25)

[The limiting slopes could have been determined
graphically, but (24) yields more precise results. ]
As can be seen from the table, the magnitude of
P"„ increases rapidly with increasing R„reflecting
the increasing ability of larger solute spheres to
disrupt the nematic ordering of the solvent spher-
ocylinders. For a given R„moreover, the slopes
are less negative when x,= 3.99 than when x, = 2.93,
indicating that longer solvent rods can accommo-
date a higher concentration of solute spheres be-
fore the nematic order is destroyed. Although
these values of P"„and P", are significantly more
negative than those observed for real systems
with similar solute and solvent sizes (see below),
the qualitative trends in the slopes are correct. '

We have also applied our theory to five nema-
togenic systems studied by Martire et a/. 4; name-
ly, solutions of CCl, in DHAB (p, p'-dihexyloxy-
azoxybenzene) and solutions of (CH, ),Sn, (C,H, ),Sn,
(C,H, ),Sn, and (n-C,H, ),Sn in MBBA (methoxybenz-
ylidene n-butylaniline). In each case, it was nec-

P" = [1 (r". /r", ,)]/(m'„, /XI, ),
P"; = [(r"„ /r"„„)—1]/(~'„ /&& )

where QS'„ I is the entropy change at the nematic
—isotropic transition of the pure solvent and y", „
y", „the infinite dilution solute activity coefficients
in the nematic and isotropic phases, respectively,
were evaluated using (4) and
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TABLE II. Values of the ratios Ra& ssi 00 ps/ 00 ass/'Uipo~ and Ugps~'Uipo

the calculations.

System R
~ss

~oo

~os

~00

'Uws

'Uioo

'Upas

'Uf oo

CC14 —DHA B
(CH3)4Sn- MBBA
(CpH5)4Sn —MBBA
(C3HY)4Sn —MBBA
(C4H9) 4Sn- MBBA

1,07
1.25
1.42
1.57
1.69

0.035
0.136
0.399
0.821
1.30

0.187
0.369
0.632
0.906
1.14

0.100
0.215
0.430
0.655
0.830

0.351
0.490
0.680
0.820
0.905

essary to choose a solvent hard-core radius a, a
solvent length-to-width ratio xp, a solute hard-
core radius R,a, and values of the constants happ,

e „, and E„, from which the mean-field energy
parameters U'pp U pp Qgp and Q&„may be ob-
tained. For both solvents, we assumed that a
= 2.5 A, while the values of xp used were 3.0 for
MBBA and 4.2 for DHAB. The values of R„E„/

system are given in Table II. The solute and so-
lvent hard core dimensions are —with very minor
deviations-the estimates of Martire et al. ,

' based
on tabulated Van der Waals volumes. ' 'The pro-
cedure used to evaluate the ratios of &'s and 0,. 's
was as follows. First, a value of '0, „/u, oo was
selected using the rough approximation

Vg Bs ™vRD~ s p8 (26)
«oo ~-„o/po

/

together with literature values for heats of vapor-
ization and densities for the solvent and solute.
(For the former, the heats of vaporization had to
be estimated. ) e„/zoo was then obtained from (22)
and the relations

3 when x

derived from the results of Qelbart and Gelbart. '
Finally, p„was set equal to the geometric mean

of coo and c„(for lack of a better idea) and '0;„/
~,.oo calculated using (21). Two different proce-
dures were used to obtain 6 p U)pp and%, pp. In

the first, 'U„o/U, oo was set equal to the value cal-
culated by Gelbart and Gelbart using (12); namely,
0.25 when xo = 3.0 (MBBA) and 0.20 when xo = 4.2
(DHAB); in the alternative procedure, considerably
smaller values of '0„o/'0, oo. 0.080 for MBBA and

0 085 for DHAB, were used. In either case, , o,.pp

was then chosen to give roughly the correct N-I
transition temperature for the pure solvent' and

coo was determined from (27). Both sets of para-
meters 'U,.pp, , pp and &pp are given in Table III,
together with the values of T» z, d6'„z, &p/p„
and rlo(p„) for the pure solvent which result from
their use. 'The second procedure was designed to
compensate, in part, for one of the major defects
of the Van der Waals approach, its substantial
overestimate of the quantitiy X~E, „(p,T)

N'E, „,(p-, T). This difficulty, presumably
caused in large part by the failure to take into
account short-range orientational correlations
when evaluating the mean-field potential g„re-
sults in unrealistically large values of the nematic
order parameter and the discontinuities in density,
entropy, and enthalpy at the N-I transition. As is
clear from the table, much better (though still
far from quantitatively satisfactory) results for
q„d8„z,&p„ I/p„, etc. are obtained using
smaller values of 'U, oo/~, .oo. (~„o/~, oo= 0.080 and
0.085 were chosen, rather than stil. l smaller ra-
tios, because ratios slightly less than 0.10 are
believed to explain the density dependence of the
order parameter g best. ') We utilized the second
procedure in most of our computations. In order
to determine the effects of changes in "3,»/~, .oo,

TABLE III. Thetwo sets of solvent Parameters (&00, & pp & op) used in the calculations, to-
gether with the resulting values of the temperature T~ I, order parameter qo ~, entropy
change 4' I, and relative density discontinuity hpN. ~/p„, at the nematic isotropic tran-
sition of the pure solvent.

Solvent

MBBA
MBBA
DHAB
DHAB

0.080
0.25
0.085
0.20

Uipp

vpkg

2.00 x 104
1.26 x 104

2.20 x 104
1.70 x 104

aek~

2.0 x 106

1.2 x ].06

3.6 x 10'
2.8 x 10&

328
328
405
405

~ tram
0

0.542
0.642
0.621
0.694

0.887
1.75
1e32
2.15

~pN- I
pnem

0.041
0.143
0.090
0.195
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t.OO= ).00

0.98 0.98

0.96 0.96

0.94 0.94

0.92 0.02 0.04 0.06 0.08 O. l

0.92
0 0.02 0.04 0.06 Oae O. i

FIG. 2. Predicted and observed phase diagrams for
the system (CH3)4Sn-MBBA. The points were obtained
by solving (16) and (23), usinga=2. 5 A, xp=.3.0 R,
= 1.25, and the set of energy parameters based on'U~ 00
= 0.080'0;00. . The dashed lines were constructed from
the data of Martire et al. (Ref. 4). 7.'~ and y are defined
in Fig. 1.

FIG. 3. Predicted and observed phase diagrams for
the'system (C3H~)Sn-MBBA. The points were obtained
by solving (16) and (23), using a=2.5 A, xp=3.0, R,
=1.57, and the set of energy parameters based on'U, oo
= 0.08'U;00. The dashed lines were. constructed from. the
data of Martire et al. (Ref. 4). T* and y are defined in
Fig, 1~

however, the limiting slopes, P"„and P", , of the
nematic and isotropic phase boundary lines were
also calculated using the first procedure.

Reduced temperature (T*=T/TP~ I) versus solute
mole fraction phase diagrams were calculated for
all six binary systems. 'Two of them, correspond-
ing to the systems (CH, ),SN-.MBBA and (C,H, ),Sn-
MBBA are presented in Figs. 2 and 3, respective-
ly. For comparison, phase boundaries construct-

ed from the data of Martire et al. ' are also shown
(dashed lines). As can be seen, the predicted and
observed nematic phase boundaries are in quite
satisfactory agreement. However, the predicted
two phase regions are wider than the observed
ones and the discrepancy increases with increas-
ing solute size. Similar conclusions can be drawn
from Table IV, where experimental and theoreti-
cal values of the limiting slopes P„and P,

" are

TABLE IV. Theoretical and experimental values of the limithg slopes, P„" and P";, of the
nematic and isotropic phase boundaries as y 0.

System

Experimental
slopes

Theoretical
slopes

CC14 —DHAB
(CH3)4Sn- MBBA
{C,H, )4sn- MBBA
(C,H, }4Sn-MBBA
(CSH9)4Sn- MBBA

-0,276
-0.64
-0.93
-1.23
-1.53

-0,255
-0.46
-0.84
-0.99
-1.25

-0.226
-0.647
-0.808
-1.129
-1,593

-0.174
-0,411
-0.471
-0.564
-0.660
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TABLE V. Calculated limiting slopes, P„" and P";, of
the nematic and isotropic phase boundaries obtained us-
i g Ufoo= .26x10 K and 'Uapp= ~ 'Ucpp f r MBBA a d
'U~pp = 1 70 x 10 K and U p()

= 0 20'Ug()p for DHAB

System

CC14 —DHAB

(CH3) 4Sn —MBBA
(C2H)) 4Sn —MBBA
(CSH))4Sn —MBBA
(C4HS) 4Sn —MBBA

-0.267
-0.701
-0.830
-1.164
-1.719

-0.170
-0.315
-0.339
-0.384
-'0.429

compared for all the systems studied. 'The large
predicted values of y„, -y„clearly have the
same origin as the large values of g„M„ I, and

&p/p„seen in Table III. As noted above, one
important factor contributing to these large dis-
continuities is the neglect of short-range orien-
tational correlations other than hard rod exclu-
sions. Such correlations are present in both the
nematic and isotropic phases of real nematogens;
as a result, the thermodynamic properties of a
nematic mesophase are considerably more sim-
ilar to those of the corresponding isotropic liquid
at the same T and P than is predicted by the theo-
ry.

The calculations on which Figs. 2 and 3 and Tab-
le 1V are based were all performed using g,«
= 0.080'U

happ
for MQBA and 'U

pp 0 085 U pp for
DHAB. The limiting slopes obtained using 'U, «
=0.25 'U„, for MBBA and g,«=0.20 g«p for DHAB

are presented in Table V. Although the values of
P,
" are considerably worse than the theoretical

values in Table IV, it is gratifying to note that
the two sets of P"„'s are quite similar. Hence, it
appears that very reasonable values of P"„are
obtained no matter what ratios '0,«/'0, » are used.

III. CONCLUSIONS

Although our Van der Waals theory suffers
from the usual defects of calculations which ne-
glect short range orientational order, we are able
to predict quite satisfactorily the nematic phase
boundary lines for all the binary solutions stud-
ied, using very reasonable a priori estimates of
the effective solvent and solute hard-core dimen-
sions and of the relative strengths of solvent-sol-
vent and solute-solute attractions. This agree-
ment strongly suggests that in the real nemato-
genic systems considered, as well as in the model
systems, the limit of stability of the nematic or-
der and the onset of phase separation are contr'oi-
led primarily by excluded volume effects and the
overall strength of the intermolecular attractions,
while the orientation-dependence of the solvent-
solvent attractions plays a relatively minor role
at best.
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