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In the Van der Waals theory of liquids, very short-ranged intermolecular repulsions are approximated by
hard-particle exclusions and somewhat longer-ranged intermolecular attractions are subject to a self-
consistent mean-field treatment. This approach, which has recently been applied to pure nematogens, is here
extended to nematogenic solutions. The molecular hard cores are taken to be spherocylindrical or spherical
in shape and their contribution to the free energy'of the system is evaluated using scaled-particie theory. The
general theory, applicable to mixtures of any number of rodlike or effectively spherical molecules is derived
and its applications to various types of nematogenic systems are discussed. Finally, the way in which the
theory could be modified to treat species whose molecular shapes cannot satisfactorily be approximated by
spheres or spherocylinders is indicated.

I. INTRODUCTION

Nematogenic solutions are two-component or
multicomponent homogeneous mixtures which ex-
hibit a thermodynamically stable nematic meso-
phase over some range of temperature and com-
position. One or more of the components must
possess a rodlike molecular shape; in the nematic
phase, the long axes of the rodlike molecules tend
to align parallel to a preferred direction called
the director. Nematic solutions differ from iso-
tropic liquid solutions only by their possession of
this long-range orientational order. In this series
of papers, we shall investigate the molecular fac-
tors which determine the equilibrium thermody-
namic properties of such solutions, using an ex-
tension of the Van der Waals theory of liquids.

The term "Van der Waals theory" has been used
in recent years in two related but not equivalent
ways. On the one hand, it has been used to denote
formally rigorous treatments' of systems with in-
termolecular pair potentials of the form v(r, ~}
= q(r, ~}+w(r, ~), where q(r, &) represents a very
short-ranged repulsion,

~(r„)= y"q(yr;, )

represents a longer-ranged attraction, and v is
the dimensionality of the system. In the limit y
-0, it has been shown'~" that for wide classes of
q's and cp's, the equation of state assumes the
"Van der Waalsian" form P(p, T) = P"'(p, T}+cop',
where P"' is the pressure of a reference system
with y=o everywhere and u= f cp(yr)d(yr). On the
other hand, the Van der Waals "label" hag been
applied to certain approximate theories of liquids
based on three principal assumptions: (i) that the
detailed structure of a liquid far from its critical
point is determined largely by very short-ranged
intermolecular repulsions; (ii) that these short-
range repulsions may satisfactorily be approxi-

mated by hard-core exclusions; and (iii) that the
role of longer -ranged intermolecular attractions
(dispersion forces, etc. ) is —to a first approxima-
tion —merely to provide a negative, spatially uni-
form "mean field" in which the molecules move.
We use the descriptive phrase "Van der Waals" in
the latter sense. From this viewpoint, the proto-
type Van der Waals theory of liquids is that of
Longuet-Higgins and Widom. ' They were able to
predict quite successfully the thermodynamic
properties of argon at its triple point using a model
system of hard spheres in a mean-field potential
gp) = -ap, where a is a positive constant. (The
equation of state of the hard-sphere reference sys-
tem was obtained from the molecular dynamics re-
sults of Alder and Wainwright. ')

A Van der Waals approach was first applied to
nematogenic systems by Alben, ' who considered
a system of hard rods in a mean field described
by the pseudopotential g(p} = -Wp, where W is a
positive constant. More recently, Gelbart and
Baron, ' ' Gelbart and Gelbart, ' and Cotter' "have
utilized Van der Waals theories of nematogens in
which the mean-field potential P acting on a mole-
cule depends upon both the orientation of the mole-
cule and the average orientational order in the
system. When the latter approach is used'e' to
predict the thermodynamic properties of relatively
short and rigid nematogens such as PAA,"excel-
lent qualitative (though not quantitative) agreement
with experiment is obtained; i.e. , the thermody-
namic behavior of model systems with rodlike
molecular hard cores and superimposed intermo-
lecular attractions displays virtually all the quali-
tative features of that of the real nematogens.
More important, the Van der Waals calculations
clearly indicate that the orientation dependence
of the very short-range intermolecular repulsions,
rather than the orientation dependence of the inter-
molecular attractions, plays the major role in de-
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termining the stability and orientational order of
nematic mesophases.

In this paper, Van der Waals theory is extended
to nematogenic solutions containing any number of
components with rodlike or effectively spherical
molecular shapes. For the sake of convenience,
the hard cores of the rodlike molecules are taken
to be spherocylindrical, where a spherocylinder
is a right circular cylinder capped on each end by
a hemisphere of the same radius. In Sec. II, the
model system is described and an equation is de-
rived for its Helmholtz free energy as a functional
of the distribution of molecular orientations. One
term in this equation, the free-energy functional
for the corresponding system of hard spheroeylin-
ders/spheres is evaluated in Sec. III, using scaled
particle theory, and the final equations for the free
energy, entropy, pressure, chemical potentials, ,

and one-particle orientational distribution functions
are presented in Sec. IV. In Sec. V, various pos-
sible applications of the general theory are dis-
cussed and the way in which it could be modified
to treat species with molecular shapes other than
spherocylinders or spheres is indicated.

In Paper II of this series of papers, our theory
is applied to binary solutions with spherical solute
molecules and rodlike solvent molecules. In Paper
IU, it will be applied to solutions with rodl. ike sol-
vent and solute molecules.

by Q,. and 0, " The mole fraction of component
g(o= I, 2, . . ., n) and the number density X/V will
be denoted by y, and p, respectively.

The idealizations inherent in this model system
include the complete neglect of molecular flexibil-
ity, the assumption of cylindrical symmetry for all
rodlike molecules, and the approximation of short-
range intermolecular repulsions by hard-core ex-
clusions. Because of the first of these, one would
not expect our theory to work very well for solu-
tions containing nematogens with relatively long
alkyl or alkoxy end chains attached to their more
rigid central portions. The effects of the other
two major idealizations are much harder to judge.

In the most complicated possible case, where
all n components possess rodlike hard cores, the
configurational partition function of the system is
given by

where P= 1/ke&,

fy=& i&i=2

II. MODEL SYSTEM

Our model system is an &-component mixture of
N cylindrically or spherically symmetric mole-
cules in a volume t/'at temperature T. Each mol-
ecule of component cr has a spherocylindrical or
spherical hard core of radius 8,, a and cylindricalaa
length 8& l(I(!, = 0 corresponds to a spherical mol-
ecule) and the pair potential v„(ij) betw, een mole-
cule i of type cr and molecule j of type 0' is given
by

where

if the hard cores ofi and

j would overlap

0 otherwise,

and v,",' is a somewhat longer-ranged intermolecu-
lar attraction (assumed to represent primarily
London dispersion forces). In the case where
both components 0. and cr' have spherocylindrical
hard cores, both v,*„and v,"„'depend on the vector
r, , connecting the centers of i and j and on the
orientations of the molecular long axes, denoted

We shall derive general expressions for Q„and
certain thermodynamic functions for this most
complicated case. The thermodynamics of solu-
tions containing one or more spherical components
can be obtained from the general equations merely
by setting the A, 's for those components equal to
zero.

The angular integrations in (I) can be approxi-
mated to arbitrary accuracy by dividing the unit
sphere into m arbitrarily small "sections" of solid
angle aO(m = 4m/AQ) and summing over all possible
orientational distributions LN», N», . . .,X„j,
where N, „=the number of molecules of type 0 with
orientation k (i.e. , with 0 in the 0th section cen-
tered about Q~) and Z„K„=X,. This yields
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n

x Q Q !
'

!
l dr"exp(-PV„)

Ell tlat

(2)

I

where the tildes denote the set (N», . . , N. „jcorre-
sponding to the maximum term in (2). We now ap-
ply the mean-field approximation to the intermol-
ecular attractions by replacing V»[d)(r», N„, . . .N„„)
by its average value V»'(N», . . ., N ) in Q»; i.e. ,
by assuming that

~Q» exp(-P V „"'}
(4v)» g QN, „!

a

x dP'» exp[-p V~»(P'», N», . . ., N„„)]. (4)

x dr"exp - V~ r~, N», . . ., N„ We approximate V„"', moreover, by

V»'= ~ V Q Q Q Q N, ),N, ] J drexp[-PV,*,,(r, A~, A,)]V,',,'(r, A]„Qg).
e e' 0 l~'

Substituting V„"' from (5) into (4) and taking natural logarithms, one obtains

rl'(nl)r=l—n( )+lne+g P P, lne —(1 ln(V 'r
J

"drPe[nV P(rr, r„),e. . . , Ã„„)])

+ ~pp g g g g s,~s.e. I drexp[-pv*„, (r, Q~, Q, )]v[;~]r(r, Q~, .Q, )

where s,~ =N ~/N . Finally, 'writing s „=y,f,(Q~)AQ and converting from sums back to integrals yields the

following equation for the configurational Hemholtz free energy per molecule:

N-'E, = -N-'I, T Ivnq„

=k»T InP+P dAf (A) In[4m f,(Q)] -N 'InI V "J' dr»exP(-PV~»[r» f, (Q), . . .f„(Q}]}

,—.,I:p rr . fdod. (n) fdic'y'. „(0')f drexp[-dv"„, (r, 0, p')]v,",!(r,o, n')
0 tyd

=N 'E,*ff,(-A), . ., f„(A.)]+-g y, ' dQf, (Q)!I,(Q). (8)

N 'E,fg,(A)}] is the free energy functional for the
corresponding mixture of hard rods at tempera-
ture T and density p (i.e. , for our system with in-
termolecular attractions "turned off"},and

y.(Q) =p g y, , jtf.,(A') dQ'

x JI dr exp[-Pv,'„(r,A, A'}]

x v"..'(r, Q, A') . (8)

The equilibrium one-particle orientational distri-
bution functions ff,(Q)} (o = 1,2, . . ., n) must of
course be determined by minimizing the functional
N-'E, [(f.(Q)}].

The preceding derivation of (7) and (8) is com-
pletely analogous to the derivation of the free en-
ergy functional for pure nematogens in Refs. 9 or
10. It is clear, moreover, that (8) couM also be
obtained by applying the statistical mechanical ap-
proach outlined in the Appendix of Ref. 5 to a mix-
ture of hard spherocylinders in vrhich each mole-
cule of component o moves'about in a spatially uni-
form mean-field potential g,(Q, p} given by (9).

Before proceeding further, it is necessary to
evaluate the free energy functional N ~E~[p,(Q)}].
Although this cannot be done rigorously, an ap-
proximate expression for N 'E,*[(fgQ)}]is de-
rived in the following section using scaled particle
theory.
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III. SCALED PARTICLE THEORY OF MIXTURES

OF HARD SPHEROCYLINDERS/SPHERES

The second, third, and fourth terms on the right-
hand side of (6), multiplied by NksT give the con-
figurational Helmholtz free energy of a mixture of
N» hard spherocylinders of type 1 (i.e. , with ra-
dius R, a and cylindrical length R, I) with fixed

1 1
orientation Q„N» hard spherocylinders of type 1
with fixed orientation Q„.. ., N„hard spherocylin-
ders of type n with fixed orientation Q„. (Thermo-
dynamically, this is an n x rn component system. )
We shall evaluate this free energy using a straight-
forward generalization of the scaled particle theo-
ry presented in the Appendix to Ref. 8. The re-
quired free energy functional N 'F,*[+,(Q)j] will
then be obtained by adding the term ln(47(/b, Q),
letting s,»=,yf,( Q)»nQ, and converting from sums
to integrals.

The central quantity in the scaled particle theory
of our mixture of hard spherocylinders with fixed
orientations is the work function W„(u, X), defined
as the reversible work of adding a scaled hard
spherocylinder of radius aa, cylindrical length
Xl, and fixed orientation Ak to the system at some
arbitrary point. It is related to 6„ the configura-
tional Gibbs free energy of the mixture, by the
exact equation

= P P s,„[ln(s,»p)+PW»(R, , R, )] .
a=1 k=1

As was done previously, '"we shall approximate
W,( u, A,) for all u ~ 0, X ~ 0 by

+ (sa LP) u X + ( —7ra P) u

and

~k —-kB T ln ~ —p Salal k (13)
a l

—p
a

+ ((a'l(R.,+ u)'(R„+ X)

+ 2ai'(R, + u)R, P
x

( siny(Q„Q»~]

(14)

g „,is the volume excluded to the center of a hard
spherocylinder of type cr with orientation 0, by the
presence of the scaled spherocylinder (with orien-
tation Q,) at some fixed point and y(Q„Q„) is the
angle between directions Q, and Q». '~ [If one as-
sumes" that W„, & Wgs u, & Week, &'WJBX sX, and
O'WJSu' are all continuous at u=0, A. =O, then
Wo may be replaced by W, in (12).] E(equation (ll)
gives the correct result in the two limiting cases
where W„(u, X) can be evaluated exactly; namely,
when u = 0, x = 0 (Ref. 15) (i.e. , when the scaled
particle shrinks to a point) and when u- ~ and
X-~ (in which ease W» is simply the reversible
PV work required to create a macroscopic sphero-
cylindrical cavity in the fluid). Its use for inter-
mediate values of o. and X is the central approxi. -
mation of the theory and is equivalent, in a sense,
to an interpolation between very large and very
small values of n and X.

After evaluating the coefficients CI»(p,s„,.. . ,e„„),
W»(R, „R,,) (o = 1, 2, . . . , n) can be obtained from
(11) and substituted in (10) to give

= P P n„ inn, ~+1n )a=1 k=1 1 —vp
where P is the hydrostatic pressure, and the coef-
ficients C,'.,". ' are obtained from

s ((+g 0
C(»& (i( ()-1 (12)(J ~ s (sgJ where

Bp Cp2 PV
+ — + — 2+I -Vp (I -Vp)' (15)

n R R R R
&a, Ra,

(16)

C=g g pyy, y„vv„- (2+q„) (~'(I-(f +2rI', )+R 1+2
a= 1 a'=1 a»»=l la aa

r, =aPR„R2(,/v, ,

va=ma'/R, ' Rl + ~ ~a'R, , I'„,= g g s„s„,
~

s iny(Q», Q, )
~

.
k= 1 l =1

The pressure P is determined using (15) and the
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Gibbs-Duhem equation

~ ~ ~ ~ ~ ~

BP Gc
p

with the result

P p Bp 2Cp
ksT 1-Vp 2(1-vp)' 3(1-vp)' '

(18)

(19)

The configurational Helmholtz free energy of this
system with fixed orientations is then obtained
from (15), (19), and the thermodynamic relation
N 'F=N '6 -P/p. Finally, adding in(47[/44, Q) to
the resulting expression for N E„substituting
y,f,(Q~)b Q for s„, and taking the limit b,Q-dQ,
we obtain the scaled particle equation for the free
energy functional N 'F,*[{f,(Q))] needed in (8);
namely,

C 2

Ã 4', [[f ( )]Q] =4 r P r, ler + Jr, f dDf (D)le[4rf (Q)] —1+)e(- )+ +
— e=l e= 1

(20)

where 8 and C are given by (16}and (17}, respectively, and

1„,=,0 „0' siny Q, Q' dQdQ'. (21)

[Recall that y(Q, Q') is the angle between directions Q and A'. ]

Substituting (20) in (8) yields

1V. GENERAL EQUATIONS

+ g 1 dDf (D) le[4rf (D)] 1 + )„V + d [[f H+ 1
' [[f ( )]]

1-vp 2(l —vp) 3(l -vp)'

(22)e —Q r, f dQf,(D)4,(Q).
e=1

The one-particle orientational distribution functions f,(Q), f,(Q), . . . ,f„(Q) must be obtained by minimizing
N F,[f,(Q),f,(Q), . . . ,f„(Q)] subject to the normalization constraints

, 0 dQ=1 a=1, 2, . . ., ~ (23}

This produces the following set of coupled nonlinear integral equations, which must be solved numerically:

0 = in [4mf,(Q) ] + 1 -~
Je

2&e&ep Pile, ae~ q~g»=lJ~«k a~~ a~r~ 2+/ ~» V~~iP I I Is ln/ ~ 0
es e ae

n

+de g r,.fdQ'f (Q')r, (Q, Q') (e=(, 2, . . ., e), (24)
e' =l

where n, is a Lagrange multiplier and

l„,(D, D') = f dr exp[-dv,",(r, Q, Q')] v,",,'(r, D, D') .

P P &Kg.(Q}H 2P'CRf.(Q}H
@AT 1-vp 2(1-vp)' 3(l -vp)'

+ &Pp P y, dQ f,(Q)g,(Q)

Equations for all equilibrium thermodynamic quan-
tities can be derived from (22) and (24). For ex-
ample, those for the first derivatives of the free
energy are

&.*Kf.(Q}H
NA'B Nk'B T

'+
J dQf,(Q) in[4m f,(Q)]

B B

y.p „p».H f.(Q)]7
1 —vp (1 -vp)2

, ';[[1'(Q)]].d f f.(Q)4.(Q) dD1-Vp ' (27)
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where P*/ksT represents the first three terms on the right-hand side of (26), F,*/NksT represents
the terms in curly brackets in (22},

R R R 2R R - R'
y,v,p( + 2r, l „)+p y„v,p 1+ " " (2+q,)+2r, " I'„, +(1 —q,) ' +

8; qr'-I'p'( 2+q l(1. ——,'q, r I'„')+—g yy„p' r(2+ q) —" " (I —q ~ 2r I'„.)+ "(I+—'2))

+ v,v„" (2+ q„)(1--.'q, + 2r,r.,)
a

+ —g g y,.y„,p' v,v„&' ( + q., )
""

(
~aa'8 a a"A a

+ v„v„, " (2+q„,) —'(R„R),
Ra R), 1-q.,+ 2r„I'„,)+ " (1+-,'q„)

R~ e

+ v,v„, ' (2+ q,} " (1 —q„,+ 2r,„I'„„,)+ " (1+—,'q„,)
~a Raa"

(29)

In order to determine the density and distribution
of molecular orientations in a given system at a
particular T and P, it is necessary to solve (24)
and (26) simultaneously. Finally, as was noted
in Sec. II, in order to treat a mixture in which one
or more components have spherical molecular hard
cores, it is necessary only to set R, = 0 for all
such components.

V. POSSiBLE APPLICATIONS AND EXTENSIONS

There are clearly a large number of nematogenic
systems to which our theory can, in principle, be
applied. Many of these fit into one of the three
categories discussed briefly below.

a. Solutions of effectively spherical solutes in
nematogenic solvents: The most interesting as-
pects of such solutions concern the solute-induced
nematic- isotropic phase transition and how it de-
pends on the size of the solute molecules and on
solute-solvent attractions. As was noted in the
Introduction, binary solutions of this type are con-
sidered in detail in PaperII of this series of pa-
pers, where it is shown that the calculated tem-
perature-mole fraction phase diagrams are in

rather good agreement with experimental data.
b. Mixtures of nematogens: Although the ne-

matic=isotropic phase equilibrium in mixtures
of similar homologues (e.g. , MBBA-EBBA) is not
very interesting, "it should be of interest to study
mixtures of rodlike molecu1. es with markedly dif-
ferent effective diameters/length-to-breadth ra-
tios.

c. Solutions of long rodlike macromolecules

(e.g. , tobacco mosaic virus, PBI G, "Kevlar, "
nylons, biopolymers) in suitable solvents.
Although the formation of lyotropic nematic (or
cholesteric"') mesophases in such systems has
been studied theoretically by a number of auth-
ors,"beginning with Onsager" in 1949, none of
these treatments took into account the polydis-
persivity of the polymers used in experimental
studies. Our theory, on the other hand, clearly
can treat polydisperse polymer solutions and

could, in fact, 'be used to study the effects of the
distribution of molecular lengths on the properties
of the ordered phase and on the nematic-isotropic
phase separation.

At present, our theory applies only to mixtures
of cylindrically or spherically symmetric molecules
because the scaled particle derivation of Sec. III
is based on hard spherocylinders. ' It should be
possible, however, to use the scaled particle ap-
proach to evaluate the free energy functional
f)t 'E,*[(f,(Q)}] for mixtures of hard particles with

a variety of other simple molecular shapes, and

thus extend the Van der %aals theory to other
kinds of systems. The required modifications in

the scaled particle derivation would be (i) choos-
ing an appropriate set of scaling parameters to
replace o( and X; (ii} replacing (14) by the correct
equation for W', for the molecular shapes of inter-
est. This would require deriving a general ex-
pression (valid for all o) for v„„the pair excluded
volume for a scaled particle with orientation Q,
and a molecule of component o with orientation Q, .
(iii) replacing (11) by an appropriate expansion of
8'„ in terms of the chosen scaling parameters. The
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first term in the expansion would be -ksT ln(1
—Vp}, where v is the average molecular volume;
the last term(s) would be Pv„, where v„ is the
volume of the scaled particle; the coefficients of
intermediate terms would be obtained from (12).
(iv) replacing W,(R,„R&,) by the appropriate sym-
bol for the work function for a "full-grown" mole-
cule of component v with orientation 0,.

The derivation of N 'E,*[(f,(Q)]] would then pro-
ceed as in Sec. III. The remainder of the theory;
i.e. , (8) and its derivation, is applicable to any n,

component mixture of rodlike molecules with one
minor modification: if the molecular hard cores

are not cylindrically symmetric, 0 represents
a set of three Euler angles and 4g must be re-
placed by 8m' in (l}-(8). It might be particularly
interesting to modify the theory in order to con-
sider (i) solutions of relatively flat, disklike sol-
ute molecules in nematogenic solvents and (ii) the
effects of deviations from cylindrical molecular
symmetry on the properties of nematogenic sys-
tems.
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