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Ray propagation and self-focusing in nonlinear absorbing media
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Two previously given theories are unified, facilitating the discussion of ray tricing in nonlinear and
absorbing media. The media may be fairly general: dispersive, absorbing, anisotropic, inhomogeneous, and
time varying. Self-focusing is demonstrated on a simpie example, showing that absorption will slow down the
buildup of high intensities expected from the convergence of the rays.

I. INTRODUCTION II. GENERAL THEORY

The problem of ray propagation in weakly non-
linear systems has been discussed recently' for
a general class of media. The theory has then
been developed in a way that takes into account
the structure of a ray bundle, facilitating the
discussion of self-focusing effects. ' The geomet-
rical. -optics approach towards self-focusing
problems seems to be of great potential, and
there are many'specific problems waiting to be
solved by machine computations.

It must be realized that the present model' is
deficient in that it does not take into account the
effects of absorption. To some extent, these are
invariably present in all media. This is not a
trivial problem since even for linear media the
effect of losses on the ray equations is not yet
fully explored. Recently' a method has been pro-
posed for real ray tracing in absorbing media.
The method facilitates the computation of real
paths of wave packets in linear, dispersive, in-
homogeneous, time-varying, and anisotropic
media. It has been shown~ that the same results
can be derived by postulating a variational prin-
ciple, which is an extension of the well-known
Fermat principle. Since the formalism for ray
tracing in nonlinear media can also be derived
from an extended Fermat principle, ' the two
problems can be combined in a straightforward
fashion.

The equations for rays in real. space-time prop-
agating in nonlinear absorbing media are pre-
sented. A simple example' is considered for the
present case. The analysis shows that absorption
and self-focusing are competitive phenomena.
While power density along the beam is increased
owing to self-focusing, power is also lost owing
to dissipation in the medium. This qualitative
-conclusion could be anticipated, no doubt, from a
simple intuitive discussion. However, with the
present model it is feasible to compute the ray
paths and the amplitudes along them.

Most of the preliminary material pertinent to
the present discussion is given in Censor. "'~
In the interest of space saving, formulas cited
from Refs. 2 and 4 will be indicated by (. . . [a])
and (. . . [bJ), respectively.

We start with Maxwell's equations (1[a])and
assume, instead of (2[a]), a solution of the form

E; = g E„;exp(- [ mj Im8) exp(im Re8), (1)

G„(K,~a; X) =0, r = 1, . . . , 6 (2)

where a =(E, H) is a six-component vector of the
electric and magnetic fields (6[a]). The deter
minant of the system of equations (2) must vanish,
leading to the dispersion equation (10[a]),

E(K, a X) =0, (~)

and (2) and (3) with complex K provides the basis
for deriving the relevant ray equations.

The extended Fermat principle' is now stipu-
lated

0=5
J

K'dX, (4)

where the phase 8 (3[aJ) is now in general complex,
since in absorbing media complex K must be
allowed. Consequently (1) is no more a periodic
solution. However, there is no point in consider-
ing wave packets and their evolution iri space-
time unless the attenuation over a distance of a .

wavelength and a time of a period are very small. .
Otherwise the coricept of a ray path becomes
meaningless. We shall therefore assume that
Im8/Re8&& 1 such that the wave (1) can be con-
sidered, to a good approximation as a series of
harmonics. This leads again to the algebraic
forms (6[a]) and (7[a]) for the fundamental har-
monic. See also Ref. 1. Hence we end up with a
system of homogeneous nonlinear equations.
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with fixed end points in space-time. Since K and
X are dependent through (2) and (3), these con-
straints must be included in the integral by ade-
quately using Lagrange multiplier functions. For
lossless nonlinear media this can be written in
the form (11[aJ). For absorbing media and wave
packets propagating in real space-time, we have
to add the appropriate constraint as in (33[1]).
Hence for the present case of nonlinear absorbing
media the extended Fermat principle is written
in the form

dx0=I J R +I(R+I,R, +A,x)) d, ,

(5)

where A, is the Lagrange multiplier associated
with E= 0 [Eq. (3)], and is taken as a common
multiplier outside the parentheses for conven-
ience, A.A„stand for the six Lagrange multipliers
associated with G„=0, and ~A&, i = 1, .. . , 4 takes
care of the four conditions which constrain X to
be in real space-time. For details see Ref. 4.
The end points of the integral (5) are chosen in
real space-. time, i.e., IX=0, where the symbol
I, as well as ft are defined in (9[bJ).

The Euler equations associated with (5) are
obtained by varying K, a, X:

the above special cases, (7) and (8) constitute the
desired generalization which combines the effects
of nonlinearity and dissipation of the medium.
Continuing as in (36[1])we now have

—= -ME- IE"=0dX
(9)

dxV= —=-Re
dt E„' Im —= 0.E (10)

Similarly to (38[b])and with RA =—0, we now have

IA=(AERR) 'I(ER ERR-ER ERR),

providing the definition of A in (7). In three-di-
mensional notation, with t as the parameter, the
analog of (41[b])becomes (10) and

dk Ex—= —"+zP,dt E„
d(u E&—= ——+iV ~ Pdt E„
p =-Re(V-+V V)-'Im(V" ~

which in three-dimensional notation, with t as the
parameter, becomes

d X ~+ ~G„
dr &R "&K

dK &E ~G„~ +I).„-"+A
dT

8E BG„
+ A,„8a "Ba

Elimination of ~„yields

(6)

To complete the ray equations, the evolution
of a along the ray path must be given. This is
obtained from the fact that G, must be satisfied
along the path, i.e.,

dG, ~G, dK ~G, dX ~G, da„
dT BK dv &X dz Ba„dT '

yielding,

da„OGs OG dK 8Q

dX dK—= -~ER —= ~(ER+A),d7 ' dT (7)

where the operator, defined by the subscript, is
given by

&E E ~G„" ~G„
Bl Oa, Ba, (8)

denoting any component of Eg and Eg standing for
the vectors with the components E&,. and Ex„

~ ~ ~ y
4o

The special case of lossless media is obtained
by setting A =0, then (7) and (8) are essentially
(13[a]), the latter already written in three-di-
mensional form with t as the parameter. On the
other hand, for linear media BE/Sa, =0, since in
linear media the dispersion equation does not
contain amplitudes. Hence (7) and (34[b]) become
identical (note that the definition of & is slightly
different for the iwo formulas). Without imposing

I

In three-dimensional notation, with t as the pa-
rameter, we get

da„8Q ~Gs dk ~G
dr Ba„bk dt ~~ dt

~G, dx ~Q
~x dt (14)

Thus we have the complete information for ray
tracing, by which individual nonintersecting rays
may be described.

For completeness, it must also be shown that
E = 0 [Eq. (3)] is satisfied along the ray path in
the same manner. Thus

dE 8E dK 8E dX 8E da„0 ~ ~ ameemeeee + ~ ~ ~ +
dv' BK Bv' 8X dt 8a„dr

must be compatible with (13). Indeed, if we mul-
tiply (13) by &E/Ba„and use (6) and A ~ (dX/dT) =0,
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we get (15). In the linear case (15) is satisfied
identically, both for lossless and lossy media.
In the linear case we also have E=O=det(&G, /Ba„),
hence (13) is not applicable. This is consistent
with the well-known fact that ray tracing in linear
media cannot yield the amplitude and additional
assumptions are necessary.

The above developed theory deals with tracing
of individual rays. In order to bring out typical
nonlinear effects, such as self-focusing, the
characteristics of a bundle of rays, or otherwise
termed, abeam, are essential. Since the advent
of intensive research of nonlinear el.eetromag-
metic phenomena, ' it is well. known that the
gradients of the fields play a dominant role (even
the title of Askar'yan's paper indicates this).
For the present formalism this means that in-
stead of (12), we have to ensure that G, = 0 is
satisfied throughout the beam. Therefore (15[a )
is stipulated,

&a„BG,& ' 8G, Bk; 8G, s(u BG,
+ +

x, Ba„~ Bk, Sx; 8&v ex,. 8»,

(16)
~ar 8s 8~ ~&g s ~ co ~os
8t 8a„gP& Bt 8 co Bt at

Clearly this is stronger than (14), but contains it.
To evaluate now'(10), (11), and (16), a bundle of
rays must be followed and gradients of fields
within the bundle play a part. This is the reason
for the emergence of the self-focusing effect in
this geometrical-optics analysis.

III. SIMPLE EXAMPLE

Analytic investigation of special examples, using
the above given theory, is hopelessly complicated.
But, as done previously (Ref. 2), we are still able
to consider the simplest ease of a homogeneous,
isotropic, and tine-independent medium. The
nonlinearity will be restricted to the diel. ectric
properties of the medium, and only & ', the first
nonlinear effect will be retained. The losses will
be included by replacing e ' (16[a])by e+io/ur,
where 0' is the conductance, taken here as a con-
stant. It follows (16[a]) that (2) and (3}have now

the form

G=FE=[-k'+aPp. (&+i'/&a+Eel'~)]E=O. (17)

We have to satisfy the boundary condition II"g =0
[Eq. (9)] or Im(E|-, /E„) = 0 [Eq. (10)]. It seems
inconsistent that the first condition (9) constitutes
four scalar equations while the second one (10)
constitutes only three. The reason for that is
that the representation of Il is not unique, in this
context, and has to be taken as fE=O, where f is
resolved by the fourth condition If' = 0. This

d& ~u Bu dx
+ ~ ~

dt et ~x dt '

&k~+—=0,
~x &t

(2o)

and B&u/&t =0, Bk/Bf =0, &u is a constant; the
second line (20) is given by the consistency rela-
tions (4[aJ). The waves have therefore a factor of
exp(qt) describing the attenuation along the ray.

According to (17) and (19), &u„k are related by

ReE=-k'+ (A&20 —q')p(@+Ee~'~}- gga =0, (21)

while ImE=O yields again (19).
Similarly to (20), (11)prescribes

dk; &k) ~k; g~~
dt ~t 8x& dt

(22)

problem does not arise in (10) since in Im(E~/E„)
=0, f is eliminated.
Let us assume a beam of parallel rays entering

the nonlinear absorbing medium perpendicularly
to a plane interface. At the boundary the tangential
components of k are continuous, owing to (4[a]},
i.e., the Sommerfeld-Runge law of refraction
& xk=0. This is identically satisfied here. Also
the time dependence of the fields is conserved at
the boundary, in order that the tangential compo-
nents of the fields. be continuous. What happens
to a wave packet as it enters the absorbing medium
is explained by Censor (Ref. 4), using the Gaussian
pul. se as an example. The wave excites the ab-
sorbing medium at the boundary (42[1]) and prop-
agates into the medium with complex %, &u and a
deformed envelope (46[bJ). This trade-off between
envelope and carrier allows for the appearance
of the complex frequency. Following the envelope
we have to take the carrier at x, t prescribed by
the motion of the wave packet, accordingly the
complex k, e of the carrier describe the attenua-
tion of the wave in the absorbing medium.

In computing Ep/F„we again note (Ref. 2) that
since E and G [Eq. (17)]are proportional this
expression is indeterminate. Taking E= E(k, &u),

G = G(k', &o') and finding the limit as k'- k, &u'-&u

by l'Hospital's rule, we get

Ep &E/&k
(18)E„&E/&e

for this case. Now it is easy to verify that
Im(Ep/E ) =0 and E= 0 are compatible if k is real
an& co = coo+i',

g = - /2a( eE+et"}, (19)

where ~, is the frequency on the boundary and q
is the imaginary part of the frequency in the ab-
sorbing medium. Since from (ll) P =0, E, = 0,
d&u/dt vanishes. In view of



18 RAY PROPAGATION AND SELF-FOCUSING IN NONLINEAR. . . 2617

connecting the changes of k with the field gradi-
ents. The group velocity, according to (10) is
given by

dx]
dt (dog (e+ EE )

(24)

which in lossless media becomes (18[a]). From
(23}we get

&E 2kg &k~

~X QP p 6~2~ ~X~
(25)

which is the analog of (19[a]), but here &u is
complex. It follows that if k is taken real, as
above, then the boundary condition 8E/8xq must
allow for complex E. This point is not further
pursued here.

We are now ready to discuss the self-focusing
effect. In view of (22) and k perpendicular to the
boundary, say, in direction x„we have

8+& dt
(26)

i.e., 8k, /8x, =0, 8k, /8x, =0, and in view of
VX k =0, also 8k, /8x, =0. Therefore the gradient
of E must be in direction x„and from (25}we
have

8E 2k, ~k, 1 &k~~

~X ~ jL6~2~ 8%40 p. &~2~ ~X
(27)

This shows that owing to the nonlinear effects a

but 8k, /8x& = 0 is not implied and must be investi-
gated. Finally (16) prescribes for the present
problem

component k, is created. Since the intensity falls
off from the center of the beam outwards, we
have 8E/8x, & 0, hence for positive ei2~ also
8km/8x, &0. The present result (27) is consistent
with k, being negative and 8k, /8x, being positive,
i.e., the rays converge towards the axis and the
effect is larger near the axis, where the field
intensity is large. This analytical treatment con-
siders only the trend of the rays near the boundary.
A detailed numerical scheme is yet to be found
which will trace the beam inside the medium.

IV. CONCLUSIONS

The unification of two theories, both derived
from a variational principle, i.e., the extended
Fermat principle, facilitates the discussion of
ray tracing in general absorbing and weakly non-
linear media. The separate theories, i.e., ray
tracing in nonlinear media (Refs. 1 and 2) and
ray tracing in absorbing media (Refs. 3 and 4)
follow as limiting cases.

The end products are Eqs. (10) and (11), where
the new operator is defined in (6). The gradients
of the fieMs are incorporated into the formalism
by means of (16}, producing collective effects
such as self-focusing.

A simple example has been analyzed, showing
the existence of self-focusing and the attenuation
caused by the absorbing medium. A deeper in-
sight is necessary, but the complexity of the
problem calls for a numerical computation project.
This will be carried out in the future. However,
the intuitively expected results are obtained. It
is clear that the absorption slows down the buildup
of high intensities produced by self-focusing.
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