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The phenomenon of nonlinear conical refraction in a noncentrosymmetric biaxial crystal is investigated
experimentally. Both free and forced second-harmonic cones are observed, depending on whether the incident
laser pulse has wave normals encompassing the optic axis at the second-harmonic or the fundamental
frequency, respectively. The photographically recorded second-harmonic intensity patterns at the wavelengths
of 0.53 and 0.42 um are in good agreement with theoretical predictions.

I. INTRODUCTION

This is the third and final paper in a series of
laser investigations of intensity patterns in coni-
cal refraction. Quantitative intensity distributions
for conical refraction were obtained with Gaussian
TEM,, mode of a helium-neon beam in aragonite!
and a-iodic acid.? The latter crystal is noncentro-
symmetric, and if an intense laser input beam is
used, second-harmonic radiation is readily observ-
able also in non-phase-matched conditions.

It was predicted nearly a decade ago,*? that the
second-harmonic intensity can also show a coni-
cal pattern, if the wave normals of the fundamental
beam are in the immediate vicinity of an optic axis
at the fundamental and/ or second-harmonic fre-
quency. A short communication by the present
authors of the first experimental demonstration of
nonlinear conical refraction was recently pub-
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FIG. 1. Geometry of the experiment. %, , Z are the
crystallographic axes of the orthorhombic crystal,
a—HIO;. The optic axis ¢ is normal to the entry face.
The incident fundamental is polarized in the # direction,
the second-harmonic polarization is along the § axis.
The wave normal § of all waves makes a small polar
angle @ with the optic axis; its azimuthal angle ¢ is mea-
sured from the # axis.
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lished.? It is the purpose of this paper to describe
more fully the experimental method and results,
and also to make a detailed comparison with the
theory. The notation and coordinate reference sys-
tem used will be the same as that adopted in I and
O. The optic axis is in the ¥ direction, normal to
the crystal face which contains the § axis, asso-
ciated with the intermediate principal value €, =n2
of the dielectric constant. The fundamental laser
beam is near normal incidence. The interest is

in wave normals § nearly parallel to the optic axis.
The polar angle between § and ¥ is 6, the azimuth-
al angle ¢ is measured from the # axis, as indi-
cated in Fig. 1. The incident laser beam is polar-
ized parallel to the # axis. It will be shown in Sec.
II that the second-harmonic polarization induced in
the crystal is then parallel to¥. To satisfy the
boundary conditions in the crystal face® at the sec-
ond-harmonic frequency, there will be a free sec-
ond-harmonic plane wave also polarized in the y
direction, in addition to the forced polarization
wave. The latter is confined to those regions of
the crystal in which there is fundamental field in-
tensity. If the wave normals of the incident wave
contain the direction of the optic axis at the funda-
mental frequency, this intensity will be distributed
in a conical pattern; i.e., there will be a forced
second-harmonic cone. If the dispersion in the
direction of the optic axes is sufficiently large, the
free harmonic-wave vectors will not contain the
direction of the second-harmonic optic axis. Thus
the energy associated with the free-wave mode will
be refracted in a single spot. This situation is
shown in Fig. 2.

If the incident laser beam has a bundle of wave
normals that contains the second-harmonic optic
axis, the free-wave solution gives rise to a free
second-harmonic conical intensity pattern. The
fundamental intensity is now confined to a single
ray, as the fundamental optic axis is not contained
in the wave-normal bundle. Consequently, the
forced second-harmonic wave gives rise to a
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FIG. 2. Forced second-harmonic conical fraction. The
fundamental wave vector is parallel to the fundamental
optic axis. The free second wave leads to a separate
ray direction.

forced ray spot, as shown in Fig. 3.
The apex angle of the cone is given by

tanp =¢,[(€;' - &)(e5! — €51 ]V 2, 1)

where €, <€, <€, and where the principal values of
€ at the fundamental frequency have to be used for
the forced cone, and those at the second-harmonic
frequency for the free cone.

The condition that indeed a conical pattern with
a dark center is observed requires the following
condition on the waist w, of the incident Gaussian
spot and the thickness of the crystal,’

w?(L) =wi[1 + (\L/mwlel/2)?] < (Lp/2). (2)

The additional complications that arise from the
presence of natural optical activity, which is al-
ways present in biaxial noncentrosymmetric crys-
tals, have been investigated in detail in II. If
most of the intensity is associated with polar an-
gles @ satisfying the condition,

ip>6> 10(§.f‘)e,,/p (3)

X-TAL

FIG. 3. Free second-harmonic conical refraction.
The fundamental wave vector is parallel to the second-
harmonic optic axis. The forced second-harmonic wave
leads to a ray spot, coinciding with the fundamental ray.
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FIG. 4. Schematic intensity distributions at the funda-
mental and second-harmonic frequency, as a function of
the direction of the wave normal of incident fundamental
mode, polarized in the # direction.

the effects of the rotary power
t=mel/ 43 D)/x 4)
may be ignored. 2

The experimental conditions described in Sec.
II are so chosen as to satisfy the geometry in Fig.
1 and the conditions of Eqs. (2) and (3). Photo-
graphs of the fundamental and second-harmonic
intensity patterns for a range of angles in the vi-
cinity of the optic axes are presented in Sec. II.

A more detailed theoretical discussion is given
in Sec. III. It is shown that the general case of
second-harmonic generation in biaxial crystals is
considerably more complex than the special geo-
metry discussed in this Introduction. Quantitative
theoretical considerations, applied to the experi-
mental geometry, confirm the rather qualitative
and intuitive arguments given in this Introduction.
These are summarized in Fig. 4.

II. EXPERIMENTAL METHOD AND RESULTS

A. Properties of a-iodic acid

a-iodic acid was suggested in the first publica-
tion on nonlinear conical refraction.? It has a
rather large cone angle 2p and can be grown in
crystals of good optical quality with linear dimen-
sions of several cm. Thus the condition of Eq. (2)
is readily satisfied. Furthermore, a-iodic acid
has a rather large nonlinear susceptibility, and
second-harmonic generation is readily observable
even in non-phasematched conditions. T The crys-
tal has orthorhombic symmetry D,, so that the
principal axes of the dielectric tensor coincide
with the crystallographic axes. This greatly facil-
itates the alignment procedures. The crystal is
soft, and optical polishing of the faces is rather
difficult. Some waviness of the surface remained,
but it is of no consequence for the experiments in
this paper. The crystal used in these experiments
had faces perpendicular (within a few degrees) to
the optic axis and had a thickness L =2.4 cm.
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TABLE I. Measured values of dy, in @-HIO; relative to other nonlinear coefficients.

LiNbO, KDP LilO, a-8i0,
7\( wum) (dsy) (dsg) (ds3) (dyq) Reference
1.06 cee 13.1+1 1.08+0.1 16,1+ 0.5 Crane (Ref. 10)
1.065 1.5+0.5 b e 20 £5 Kurtz (Ref. T)
1.15 ce 10 e . Bjorkholm (Ref. 9a)

Further details about sample preparation may be
found in IIL

The index of refraction data, measured by Kurtz
et al.,” are listed in Table I. From these one
computes the angle between the optic axis and the
2z axis.

n=arc tan[(¢" - &)/ = €")]'/*. )

The variation of 1 with frequency is related to the
dispersion of the indices by

An:l(”r‘"v)llz( Ang | Bny o
2\ny,—-n, Ny =Ny Nyg=TNy

(n, = n,)Dn, )
e =n)n,-n,)/ "

(6)

If the index of refraction measurements are good
to 0.0001, then

an<0.1°

This does not account for the large scatter in the
calculated values (shown as dots in Fig. 5). In the
originally proposed experiment which relied on the
calculated dispersion, the 1.06-um optic axis was
expected to be 0,008 rad from the second-harmonic
optic axis. This separation was found to be less
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FIG. 5. Dispersion of the optic axis in @-HIO;, which
makes an angle n with the crystallographic Z axis.
Solid squares are our experimental data; solid circles
are calculated from indices of refraction.

than 0.002 rad. Since the dispersion of the optic
axes is very important in the interpretation of the
nonlinear conical refraction results, it was decid-
ed to measure the dispersion of the optic axis di-
rectly by a conoscopic method. This procedure
also serves to align the crystal accurately.

Since each principal dielectric axis coincides
with the same crystallographic axis throughout the
range 2w to w, the optic axes of this frequency
range lie in the same crystallographic plane, the
optical x-z plane. The alignment was performed
by using colinear beams of an argon-ion laser at
454.5 nm and a helium-neon laser at 632.8 nm, as
shown in Fig. 6. A lens with focal length of 100
cm was used to focus the light beams on the face
of the crystal. The crystal was mounted on the
u state of a Leitz four-axis universal stage, and
adjusted with the inner degrees of freedom of tilt
and rotation so that the outermost axis was par-
allel to the y axis. This could be verified by ob-
serving conical patterns at the red and blue wave-
length, respectively, by turning the crystal 1. 3°
about the y axis. After the crystal has been so
oriented, the dispersion of the optic axes was mea-
sured at a number of other laser frequencies giv-
ing rise to the square points in Fig. 5.

ARGON-ION
LASER

M = MIRROR
BS = BEAMSPLITTER

A M IMAGE PLANE

He-Ne LASER

L2

CRYSTAL MOUNTED
ON U-STAGE

FIG. 6. Experimental arrangement to align the bi-
axial orthorhombic crystal.
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FIG. 7. Apex cone angle in a-iodic acid as a function
of wavelength, computed from index of refraction data.

The cone angle, given by Eq. (1), is about 3.5°
at 500 nm and decreases to 3° in the near infrared.
The data computed from the index of refraction are
shown in Fig. 7. ) ‘

The nonlinear susceptibility elements x®?areonly
nonvanishing if all three Cartesian indices are dif-
ferent; in the orthorhombic D, symmetry which
has three orthogonal two fold axes (2,2,2). For
second-harmonic generation in a-iodic acid, one
has three independent coefficients.

dM =x:w:(_2w9 w, w) =X:uy(_2wy w, 0)),
o5 = Xyxe(= 2w, W, W) =Yy (-2, W, W),
d36 ':Xn:y("zwy w, w) =Xxyx("'2w7 w, (.O).

The difference between these three coefficients;

due to nonlinear dispersion, is rather small and
may be ignored for our purposes. This leads to
the Kleinman symmetry condition® dy, =dp; =dg.

This nonlinear coefficient has been measured by
various authors?-!! relative to quartz, KDP and
LiIO;, as shown in Table I. The absolute value

which results is

dy,(@ - HIO;) =4 X 1078 cm/statvolt.

For an input field linearly polarized along the
# axis as described in Fig. 1, the fundamental field
components inside the crystal are

E, =%E0 exp(ikyy — iwt) sinn+c.c.,
E,=%E,exp(iky —iwt) cosn+c.c..

The second-harmonic polarization is in the y di-
rection

P,(20) = 2dyE.,(0)E (). ' (0
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FIG. 8. Second-harmonic coherence length, at vari-
ous wavelengths, for small variations in direction near
the optic axis in @-HIO;. € is the angle with respect to
the crystal’s z axis. The solid circles mark the values
at the SH optic axis.

Since the wave normals are required to lie in the
vicinity of the optic axis, it would be fortuitous, if
a phase-matching condition were satisfied. The
coherence length is given by

Logn = g mmerme o L ®)

as the index of refraction for light propagating
near the optic axis is the same for the # and y di-
rection. The coherence length is indeed short,
less than 5 um, and is plotted for different funda-
mental wavelengths in Fig. 8. The variation with
angular orientation is negligible in the range of
interest.

The second-harmonic power in the separated free
and forced second-harmonic beams is

1287°w?(2d,;)*¢*(w) sin’n cos®y
cwi(Ak)n (wn*(2w) ’

0 (2w) = 9)

where the power in the fundamental Gaussian beam
of waist w, is

o(w) = (c/87) |E,| win,,. (10)

As will be discussed more fully in Sec. III, the
free and forced waves, with wave vectors normal
to the crystal, do not give rise to Maker interfer-
ence fringes,'? because the Poynting vectors in the
geometry of interest are sufficiently different so
that no overlap between the free and forced inten-
sity is present at the exit surface.
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B. Experimental method

The second-harmonic power generation was first
observed with the input pulse of a Nd-glass laser.
Sufficient green light was readily detectable in the
unfocused beam. In practice the laser beam was
focused to a waist size wy=50-60 um on the en-
trance face. In this case both Egs. (2) and (3) are
satisfied. Thus the effect of natural activity may
be ignored, as the modes are nearly linearly po-
larized.

The far-field diffraction angle for this spot size
is about 0.2°, This is small compared to the cone
angle of 3.5° but large enough so that the intensity
pattern did not become unduly sensitive to crystal
orientation, which was reproducible to 0.1°. The
finer details of conical refraction in a crystal with
optical activity were investigated in II, but the
effects of rotary power are not of interest in es-
tablishing the main characteristics of nonlinear
conical refraction. For a spot size of 60 pum,
most of the intensity is associated with angles 0,
satisfying the inequality of Eq. (3). The eigen-
modes may the be considered to have constant
linear polarization.

The Nd-glass laser was of a conventional type,
passively @-switched.!®* The beam profile was
measured with a photo diode array. Diffraction
limited operation was obtained for a TEM,, mode
with a waist of 600 um, in 0.03-J pulses for 120
X 107 sec duration. The repetition rate was 3
pulses per minute. The beam was focused with a
20-cm focal length on the crystal, giving a spot
size of 60 pum on the crystal. As the data in Fig.
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FIG. 9. Experimental arrangement to observe second-
harmonic conical refraction at 0.41 ym.
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5 show, the optic axes at 1.06 and 0.53 um make
an angle of less than 0.1°. This unfortunate cir-
cumstance implies that, contrary to earlier esti-
mates, the conditions of Figs. 2 and 3 for distin-
guishable free and forced second-harmonic cones
could not be met at this wavelength.

Most of the final data were therefore taken with
a fundamental wavelength at 0.82 um. The second
harmonic at 0.41 pm is just below the ultraviolet
absorption edge of the crystal. Advantage is taken
of the large ultraviolet dispersion, and the angle
between the optic axes at the fundamental and sec-
ond-harmonic frequency is now 1. 8°.

The fundamental pulse is derived from a ruby
pumped dye laser, described by Kramer.'* Fig-
ure 9 shows the diagram of the experimental ap-
paratus. A dielectric mirror with a reflectivity
>90% between 0.81 and 0.84 um was used as a
rear reflector. The dye used was 1,1/,3,3,3,3'-
hexamethyl-indotricarbocyanine iodide!’ (Eastman
Kodak No. 14086) in reagent grade dimethyl sulf-
oxide. Because the dye laser was 6 m from the
crystal mount, a telescope reduced the beam dia-
meter by a factor of 4. Large focal length lenses,
20 and 5.0 cm, were used to avoid large aberra-
tions. A Schott RG-780 filter absorbed extraneous
light from the laser. The dashed line shows the
path of the He-Ne alignment laser and the dye la-
ser beams when the prism P1 was removed to
check their colinearity. The dye laser beam’s
divergence after lens L5 was 0.7 mrad. The ra-
dius of the dye laser beam at lens L1 was 1 mm;
the full angular width of the focused beam in the
crystal was 0.4°. The estimated radius of the fo-
cal spot was 60 um. The laser bandwidth had to
be narrow enough so that the fundamental and sec-
ond-harmonic conical refraction patterns were
blurred over an angular range much smaller than
the angular spread of the focused beam in the crys-
tal. As seen in Fig. 5, the 90-A bandwidth causes
an optic axis spread of about 0. 1° which is negligible.

The exit plane of the crystal was imaged by the
lens L2 onto a photographic plate, with a magnifi-
cation of 8. The fundamental intensity patterns
were recorded on hypersensitized Eastman Kodak
Type (I-Z) spectroscopic plates. Immediate de-
velopment after exposure reduced background fog.
A single shot produced sufficient exposure.

The second-harmonic intensity is roughly 108
times smaller. The second-harmonic photographs
were taken on Eastman Kodak Royal-X 4X 5 in.
sheet film and tray developed in HC-110 (dilution
A) for 7 min, which gave an effective ASA of 4000.
In such exposures the fundamental light was filter-
ed out with a Schott BG-18 filter.

It so happens, however, that Royal-X, an ortho-
chromatic film, has such a low sensitivity at 1. 06
um as to provide a natural compensation for the
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large difference between fundamental and second-
harmonic intensity. Thus the second-harmonic
and fundamental patterns could be simultaneously
photographed without filters. When the same tech-
nique of superposition of fundamental and second-
harmonic patterns was used at 0.82 and 0.41 pm
respectively, the 0.82 fundamental pattern was
overexposed. However, it did not obscure the
second-harmonic pattern, and the overexposure
could be corrected by an appropriate filter. The
Royal-X exposures of the 0.53 yum were made with
200-1000 laser shots; the 0.41-um exposures were
made with 800-3000 laser shots. Polaroid high-
speed recording film Type 410 was also used in
some of the exposures.

C. Experimental intensity patterns

Figure 10 shows the observed intensity patterns
at w and 2w for the 0.82-um fundamental as the
angle between the laser wave vector and the 0. 82-
um optic axis is varied. The photographs in the
top row are the fundamental patterns; in the middle
row, the superposition of the fundamental and
second-harmonic (SH) patterns; and in the third
row, the patterns of the SH alone.

When the laser beam coincides with neither optic
axis, nonlinear birefringence is observed. Be-
cause the laser beam was not completely polar-
ized perpendicular to the y axis, there is an ex-
tra spot seen in the middle row of the 1.5° col-
umn. This is the other birefringent beam of the
fundamental which is sufficiently weak so that it
only appears in a time exposure.

When the laser beam coincides with the SH op-
tic axis, the free wave is conically refracted as
is shown in the last columns of Fig. 10. The dia-

082um 041xm
Y optic axis optic axis
A 0° . 1.8°
082um
0.82 and
0.41zm
0.41um

FIG. 10. Observed intensity patterns at the exit sur-
face of a 2.4-cm thick crystal of a-iodic acid (magnifi-
cation 8X). The angle between the light wave vectors
and the optical axis at the fundamental wavelength (0.82
p#m) is varied as indicated. The total power at the
second harmonic is about one millionth of the funda-
mental power.

meter of the conical refraction circle appears
larger at 0.41 um than at 0.82 um; this is in qual~
itative agreement with Fig. 7. The observed SH
pattern is complicated by the effects of natural
optical activity. The laser beam has components
polarized parallel and perpendicular to the y axis,
due to the optical rotation in the crystal, but the
SH source polarization is still given by Eq. (7)
because the two fundamental beams are spatially
separated at the exit surface of the crystal and be-
cause a purely ¥y polarized beam cannot generate
SH-source polarization in @-HIO;. Therefore,
only one forced SH spot should be observed even
for unpolarized laser light. The SH intensity pat-

‘tern has two spots, one of which corresponds to
the fundamental y axis. The other spot is anomal-

ous and does not appear in the superposition photo-
graph. It is probably caused by a spurious change
in orientation of the crystal between exposures.

When the laser beam coincides with the funda-
mental optic axis, conical refraction of the forced
wave is observed, as is shown in the first and sec-
ond columns of Fig. 10. The forced ring and the
free spot were predicted in the Introduction (com-
pare Fig. 2).

For orientations containing neither optic axis, a
forced and a free second-harmonic ray spot are
seen. Thus the patterns are at least in qualitative
agreement with the expectations of the Introduc-
tion, shown in Fig. 4.

The intensity patterns produced by the 1.06-um
fundamental are shown in Fig. 11 as a function of
the angle of the laser beam with respect to the
fundamental optic axis. The optic axes at 1. 06
and 0.53 um are very nearly colinear, and a su-
perposition of forced and free ring patterns, which
was predicted by Shih and Bloembergen,?* is ob-

0.4°

1.06um

1.06andf
053 §
um &

053
wm p

—lcme

FIG. 11. Intensity patterns at 1.06 and 0.53 uym as a
function of the angle between the wave normal and the
fundamental optic axis. The SH optic axis is in nearly
the same direction.
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served when the laser beam is directed along the
coincident optic axes. The good mode quality of
the Nd-glass laser produces a well-collimated free
SH wave which is diffracted in the same manner as
the incident y-polarized beam shown in Fig. 5(b) .
of II. Parts of the forced ring are present, but
the total intensity is much less than that of the free
wave. This is because the fundamental beam with
an intensity 1(0) at the entrance surface of the crys-
tal has at the exit surface of the crystal an inten-
sity I(L) which is roughly

I(L) = 6I(0)/4A =1(0)/10.
The intensity of free SH wave is
I%ee(L) o= 6(1(0))*/44
while the intensity of forced SH wave is -
1eoreed(r) o [61(0)/4A T2
Therefore,
Jiorced (L)/Ifree(L) o 1/1 0.

The relative intensities of the forced and the free
waves are accentuated by the high-contrast Royal-
X film,

Figures 10 and 11 show all of the essential pre-
dicted features of nonlinear conical refraction.
The experimental intensity patterns are not nearly
as precise as those obtained for linear conical re-
fraction (described in II), due to imperfections in
the crystal, uncalibrated photography, and, in the
case of the 0.82-pm fundamental, poor mode qual-
ity of the laser beam. Further comparison with
theory will be postponed to Sec. III, where more
detailed theoretical considerations will be pre-
sented.

III. THEORETICAL DISCUSSION OF NONLINEAR
CONICAL REFRACTION

A. Forced and free harmonic waves in a biaxial crystal

When an unpolarized light beam is incident at an
arbitrary angle and polarization, birefringence
leads, in general, to two diffracted wave vectors
in the crystal, kyp =(w/cps p and kop =
(w/cMmyr8qr, each with a well-defined linear pol-
arization. The induced second-harmonic polari-
zation will, in general, consist of three compo-
nents with three different wave vectors, shown in
Fig. 12, If the incident and transmitted laser
beams have finite cross sections, the harmonic-
source polarization is confined to the regions
where beam intensities are present. The polari-
zation P'!(2w) with wave vector 2K, is confined to

A "
k(e Sip +n2eSae)

2knge S

2kng 8¢

FIG. 12. Three wave vectors of second-harmonic
polarization.

the region of ray 1. Similarly, the polarization
P2(2w) is confined to the region of ray 2. The
cross polarization P!2(2w) is confined to the region
of overlap between the two rays, as indicated in
Fig. 13. The wave-vector directions have tangen-
tial components equal to, or twice, the tangential
component of the incident wave vector. If the in-
cident wave vector is normal, all wave vectors are
normal to the entrance surface, but the Poynting
vectors will still have different degrees of walk-
off, as shown in Fig. 13. ‘

Second-harmonic polarization in each of the
three wave-vector modes has its own direction and
magnitude, ’

PP"(2w) = xih(-20, w, W)ET(w)E], (11)

where m,n =1, 2 and #jk2 denote Cartesian coordin-
ates.

Select one of the three harmonic polarization
sources and drop the indices 1, 2. '

X-TAL

FIG. 13. Spatial distribution of the second-harmonic
polarization with different wave vectors produced by
a single incident fundamental ray.



PVI8(2w) = Pyp expli(2w/c)ng (8. T)]. (12)

The SH electric field created by this source term
obeys the wave equation

VX (VX E) - £(20)(2w/c)’E = 41(2w/c)? DS
(13)

The solution of this inhomogeneous equation in an
anisotropic crystal was discussed by Kleinman®
and Pershan. '® A particular solution, the forced
second-harmonic wave, is given by

E'™ — (A8, +A,8, +A,8,) expli(2w/c)ng(5-F)].
(14)

Here &, and &, are the directions of the electric
field of the two modes at 2w with wave-vector di-
rections S. They are related by the dielectric ten-
sor to the unit directions of the displacement vec-
tor d, and d,, which are normal to §. Note that
é,and d, (v=1,2) are defined by §. Kleinman and
Pershan have shown that
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A 4P, expli(@w/cnp(§-T)]
v (ni‘ - nlzz,s)(dll. év)

x (d‘,-ﬁ— (-‘i—m”'g'g)(’;ﬁ). (15)

Here n,,s (v=1, 2) are the two effective refractive
indices at 2w associated with the wave normal §.
The third component of the electric field, ortho-
gonal to &; and &,, is approximately

Ay=—41P(p. 2,/ . (16)

In general, two solutions of the homogeneous wave
equation with amplitudes A; and A, and polariza-
tion directions ¢, and &,, must be added to the
inhomogeneous forced wave solution to satisfy the
boundary conditions. If we ignore the small re-
flected harmonic amplitudes, the boundary condi-
tion is simply that the tangential components of
E(2w) must vanish. The total second-harmonic
field is consequently, if &; is normal to the bound-
ary,

E(2w) =A,&,{expli(2w/cnp(§- F)] - expli(2w/cn,3(5- F)]}

+A,8,{expli(2w/cnp@- F)] - expli(2w/c)nys(d- F)]} +Aze; expli(2w/cng(-F)]. 1)

For each of the three source polarization wave
vectors a solution given by Eqs. (15)—(17) exists.
Considerable simplification can be obtained by a
judicious choice of the incident polarization. In
the experiments described in this paper, one has

ﬁ"{i =1, ﬁ-§=5‘é3=0, ﬁ'jz=0,

where dy is in the § direction. Thus the SH elec-
tric field becomes simply

E@2w)=% ;:’%Po{exp[i(zw/c)np(g- )]

- exp[i(Zw/c)ny(2w)(§‘ ﬂ]};
(18)

where the forced and free plane waves overlap,
they give rise to the well known interference
fringes. Second-harmonic conical refraction is,
of course, essentially connected with the walk off
of the Poynting vectors for beams of finite dia-
meter. 1”18 If the difference in optic axes is ap-
preciable, the experimental conditions are such
that the rays associated with the free and forced
solutions do not overlap at the exit surface of the
crystal. Equation (18) shows that the total power

associated with the separated forced wave is the
same as that associated with the free wave.

The detailed solution for a (Gaussian) beam of
finite diameter can be gbtained from the homogen-
eous plane-wave solution, by a two-dimensional
Fourier decomposition of the incident field, cor-
responding to a distribution of direction or trans-
verse wave-vector components. This procedure
was developed by Kleinman et al.'"!® to discuss
harmonic generation by Gaussian beams in aniso-
tropic crystals, and it was used by Shih and Blo-
embergen® to calculate SH conical refraction.
They assumed that the fundamental beam is well
collimated, and everywhere parallel to the funda-
mental optic axis. This assumption requires that
the crystal length satisfies the inequality

L <ngmwd/x. (19)

This requirement means that the fundamental and
SH wave vectors to first order in 6 will give the
phase at the exit surface of the crystal to a small
fraction of 7. When the fundamental beam is di-
rected along the SH optic axis and polarized per-
pendicular to the y axis, the SH electric field at
the exit surface is given by
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- 2 > -
E(u,y,L)= c_rfi,— fde.L P(K,) exp(iK,- T,)
w

» <é1 cosz ¢p(exp(iK,L) — expli[k, = AK,(- cos¢ +1)]L})
Ak +AK, (- cosgp +1)

+ez sing ¢ (exp(iK,L) - exp{i[k, — AK, (- cos¢ — 1)]L}) )
Ak +AK, (- cosp - 1)

where K, is twice the component of the fundamental
wave vector directed along the optic axis, and

vk2=(2w/c)n2,‘, , (21a) .
(K,)y=Fy0cosd, (21Db)
(K,)y=Fky0sing, (21c)
&, =- sing ¢u +cosz ¢9, - - (214)
¢, =cos3 ¢i +sing ¢y. , (21e)

Pk, ky) is the Fourier transform of the transverse

|

)_ 4'rrw

E(,y,L)= P(u y,L)y

Idel Zal L) exp(iﬁl'FJ.)
nZw

(20)

spatial distribution of second-harmonic polariza-
tion,

PR) =5 exp(-ik,L) [ PE) expiRy E) .. (22)

Equation (20) may be simplified if
AE>>AK, or if I, <<mwy/p.

This inequality is amply satisfied for a-HIO;, with
the data given in Sec. II. Equation (20) thus re-
duces to

X (¢, coss ¢ expfi[k, — AK,(~cos¢ +1)]L} +e, sin} ¢ exp{i[k, - AK,(~cos¢ — 1)]L}). (23)

With K, and &, constant, Egs. (22) and (23) des-
cribe the SH electric fields only if the near-field
condition [Eq. (19)] holds. The validity of Eq. (22)
may be extended to the far field if one allows for a
dependence of the longitudinal phase factors on the
transverse direction, and writes

K,=K,(K,) and ky=Fk,(K,).

The integral may be evaluated by the method of
stationary phase, which does not require the phase
to be accurately known in order to yield useful in-
formation, or by numerical integration, provided
the wave vectors are calculated exactly rather than
to only first order. These procedures have been
discussed? in detail for linear conical refraction
patterns in I and II. The amplitude part of the
integrand is zero order in 6, but this is sufficient-
ly accurate.

Equation (23) shows explicitly that the forced
SH electric fields are spatially confined to the re-
gions of SH-source polarization regardless of the
stationary points of the phase of the forced wave.

This is true in the near as well as the far field.
Equation (23) may be considered as a Fourier in-
tegral superposition of Eq. (18).

The free or homogeneous wave-normal bundles
in Eqs. (18) and (23) have the same Poynting vec-
tors as the free solutions discussed in II, When
the free wave-vector bundle is directed along the
SH optic axis, the corresponding Poynting vectors
lie on a cone. The inte_llsity distribution in the ring
pattern will depend on PN, When the free wave-
vector bundle does not contain the optic axis at
the second-harmonic frequency, the Poynting vec-
tors will define two rays for arbitrary polariza-
tion.

Application of Eq. (23) for the specific geometry
used in our experiments yields the following re-
sults. Since the fundamental field has a wave-vec~
tor and electric field direction in the %% or iiv plane
(¢ =7 or 0), the fundamental field has only one po-
larization mode.

Far from the optic axes, the fundamental field
will have single ray direction, and so does the
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second-harmonic forced polarization wave. Since
the harmonic polarization is in the § direction,

the free second-harmonic wave will also be po-
larized in this direction, and there is consequently
only one free mode. The situation depicted in the
middle column of Fig. 4 thus results, with two SH
ray spots of equal intensity.

When the fundamental wave vector is near the
SH, but not near the fundamental optic axis, the
situation of Fig. 3 or the last column of Fig. 4
prevails. The free wave intensity pattern is iden-
tical to that which would have been obtained in lin-
ear conical refraction, if a low intensity light
beam at 2w, polarized in the ¥ direction, had been
incident on the crystal. The details of this coni-
cal refraction pattern have been discussed in II.
They are more readily observed and verified in
linear experiments described there. The dominant
feature is that the “free” part of the SH intensity
is distributed in a cone. The “forced” part is still
a single ray, coinciding with the one fundamental
ray direction.

When the fundamental wave-vector bundle con-
tains the direction of the fundamental optic axis,
the field distribution at the fundamental frequency
can again be calculated in detail by the methods
of II. The polarization associated with wave-vec-
tor components in the immediate vicinity of the
optic axis will be rotated by natural optical ac-
tivity. A very small fraction of fundamental in-
tensity is so affected, as rotary power ¢ at infra-
red frequencies is small.? Most of the fundament-
al intensity is associated with wave-vector direc-
tions satisfying Eq. (3). The polarization for
these components remains linearly polarized, and
their intensity is spread into a conical pattern.
They produce a second-harmonic polarization in
the y direction, confined to the same conical mant-
le as the fundamental intensity. The free second-
harmonic wave is also polarized in the 3 direction

and gives rise to a single second-harmonic free
spot. Thus Eq. (23) reproduces the situation
sketched in Fig. 2 and the first column of Fig. 4
in this geometry.

The theory of second-harmonic conical refrac-
tion is in essential agreement with the experiment-
al observations, shown in Fig. 10. The experi-
mental patterns are not nearly as precise as those
obtained for linear conical refraction described in
I and II. It is not possible to obtain intensity dis-
tribution with the same precision due to uncali-
brated photography, crystal imperfections, and
poorer mode quality of the incident high- power la-
ser pulses, especially at the 0.82-pm fundamental
wavelength. In principle, Eq. (23) could be eval-
uated with the same precision as in the linear
case. Because the data is only semiquantitative,
a satisfactory semiquantitative comparison with
the theory requires the calculation of the expected
two-dimensional SH intensity pattern. This re-
quires the detailed calculation of the two-dimen-
sional fundamental field pattern, and thus the
square of the computing time required for the one-
dimensional intensity profiles shown in II. The
same degree of quantitative agreement is simply
not obtainable in the nonlinear case. The experi-
mental demonstration of the essential features of
the theory must suffice.

Although the discussion has been limited to sec-
ond-harmonic generation, it is clear that similar
arguments would apply to other nonlinear process-
es of parametric generation.
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FIG. 10. Observed intensity patterns at the exit sur-
face of a 2.4-cm thick crystal of a-iodic acid (magnifi-
cation 8%). The angle between the light wave vectors
and the optical axis at the fundamental wavelength (0.82
um) is varied as indicated. The total power at the
second harmonic is about one millionth of the funda-

mental power.
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FIG. 11. Intensity patterns at 1,06 and 0.53 pym as a
function of the angle between the wave normal and the
fundamental optic axis. The SH optic axis is in nearly
the same direction.



