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It has been pointed out that heat flow in the slowly modulated dissipative steady state in some circuits far
from equilibrium obeys a relationship dQ-dQO ——T„dS dQ0 is the heat flow calculated in a macroscopic
way by multiplying the ensemble averages of currents and voltages for the dissipative elements. T„ is the
temperature characterizing the fluctuations in the degree of freedom under consideration. S is the entropy
defined in the usual statistical-mechanical fashion. This relationship is illustrated through a particularly
simple example: The divergent heat flow into a circuit as a second-order transition is approached from the
high-symmetry side. The general case is more complex and discussed subsequently, with special attention to
the complications caused by asymmetric distribution furictions, and the fact that the dissipation in slowly
shifted steady state differs from that in the exact steady state. The relationship, expressed in a form which
involves entropy changes, is valid only if the distribution functions in the dissipative case mimic equilibrium
distribution functions very closely. Other forms have a much broader applicability.

INTRODUCTION

The statistical mechanics of the dissipative
steady state far from equilibrium has received
considerable attention in recent years and we can
cite only a few of many important recent contribu-
tions. ' ' This author's work, starting' in 1961,
has emphasized questions concerning the relative
stability of ".. .structures which are in a steady
(time-invariant) state, but in a dissipative one,
while holding on to information, " (italics added).
A recent paper' distinguishes between relative
stability questions in small and large systems.

Much of the recent work~~ emphasizes the fre-
quent, though by no means universal, analogies
between open dissipative systems and systems
closer to equilibrium. Thus, first- and second-or- .

der phase transitions, with all their concomitant
symptoms such as hysteresis, nucleation, soft
modes, critical fluctuations, etc. , can occur in
the open system. In this paper, we discuss heat
flow in the slowly modulated open system and ex-
hibit further analogies which, so far at least, have
been discussed only by this author.

When we take a system very slowly through a
sequence of states, each approximating equilibri-
um, then the relation =& dS tell us that the heat
flow into the system, from the thermal reservoir,
is related to the changes in the system's spread in
phase space, as measured by A. At first sight,
one would hardly expect to invoke dQ =& dS, with
an equality s&~, if the set of states represent
steady states far from equilibrium. It has been
pointed out, however, that with very simple gen-
eralizations of the definitions of 1' and dQ,
dQ =T dS can in fact remain valid far from equi-
librium. ' ' Qur discussions of the range of valid-
ity for the generalized version of dQ =T dS, and of

the degree of approximation involved, are complex.
We shall first discuss a simple example which will
avoid most of the complexities of the later more
general case.

I. SIMPLE EXAMPLE: APPROACH TO BIFURCATION

Consider the tunnel-diode circuit shown in Fig.
1(a), involving two negative-resistance devices
and two capacitors, which will be taken to be linear.
Instead of a tunnel diode, any purely resistive two-
terminal device having the same sort of negative-
resistance characteristic as is shown in the solid
curve in Fig. 1(b), can be used. As the applied
voltage is increased beyond that shown in Fig. 1(b)
a second-order transition takes us from the mono-
stable region of Fig. 1(b) to a bistable regime il-
lustrated in Fig. 1(c). (For some shapes of the
characteristic more complex behavior is possi-
ble. ) As the transition is approached from
the monostable regime, the distribution func-
tion for the capacitive charge becomes broad.
We shall show that this broadening gives
rise to a contribution to the heat flow into the cir-
cuit, from the thermal reservoir.

Consider an ensemble of independently fluctuating
circuits, in which && is increa:. .d slowly toward
the bifurcation threshold &&. For ..ach member of
the ensemble Egs =QVi, where the sum extends
over all circuit elements and ~&&~ represents
power flow out of the battery. After ensemble
averaging we find

where the subscripts ~ and C denote the resistive
and capacitive elements, respectively. Conserva-
tion of power, however, also applies to the en-
semble averages which enter into the macroscopic-
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dU, =pe(V&(dq) is not, in general, a perfect dif-
ferential. If, however, the capacitors are linear,
then (V) =C(q) and Uo is just the capacitive energy
associated with the average charge. Thus, below
the bifurcation threshold, where the charge distri-
bution fluctuates about a symmetrical voltage dis-
tribution, Uo is & CE~. The average energy U is
higher because the charge distribution fluctuates.
If g is the total charge which has come into the
midpoint junction between the two capacitors from
the tunnel diodes, elementary capacitive-energy
considerations yield

U U, =(q2)/4C. (1.5)
~ 1l
I

~ B )C

=v
Ee

FIG. l. (a) Tunnel-diode circuit. (b) Characteristics
for monostable regime. Solid line gives current through
lower diode as a function of voltage V at point between
the two diodes. Dashed line gives current through upper
diode as a function of the same midpoint voltage. (c)
Bistable regime under larger voltages, A and C are
stable states, B is unstable.

circuit equations:

(1.2)

If Eq. (1.2) is not considered obvious, it can be de-
rived by a few lines of algebra contained in Ref. 9
and repeated in Sec. II. Since E~ does not fluctuate,
the left-hand side (lhs) of Eqs. (1.1) and (1.2) are
identical. .Subtracting the two equations and rear-
ranging terms leaves

Q is subject to stochastic fluctuations about its
zero average value. As has been discussed else-
where" the fluctuations in & can be described by

j =pv(q) —D
Bp

(1.6)

where p is the flux of probability, & is the velocity
p toward q =0 given by the circuit equations, and
the final rhs diffusion term represents noise. This
term permits ensemble members initially at the
same value of Q to separate later. The diffusion
coefficient D can be expressed in terms of the shot
noise in the tunnel diode. " The only important
point for our present purposes is that D is a
smoothly varying function of diode voltage, and
does nothing dramatic near the peak of the tunnel-
diode characteristic, i.e., at the threshold voltage
E~. As discussed in Refs. 11 and 12, the replace-
ment of a master equation which treats discrete
electronic jumps by the continuous approximation
of Eq. (1.6) is justified near the points of local
stability (where p changes least rapidly) if the sys-
tem is not so small that even one electronic charge
changes p appreciably. Even in that case, however,
it is only the exact form of our subsequent equa-
tions that changes, and not their qualitative or
physical content. In the steady state, j in Eq. (1.6)
vanishes and upon integration this leads to

The right-hand side (rhs) of Eq. (1.3), after multi-
plication by a time element dt can be written as

A is the ensemble-average heat flow
from the reservoir into the circuit, whereas dQ,
represents that heat flow calculated from the
macroscopic-circuit equations. —A, is, there-
fore, the interesting heat flow, above and beyond
the obvious dissipation associated with the sequence
of states being traversed. The lhs of Eq. (1.3),
after multiplication by dt, is analogous to the term
dU-P «(& is volume) in the analysis of a compres-
sible gas, and will be written as &U-&Uo. Thus,
Eq. (1.3) becomes

p =A. exp

Here v =-q/r, where r is the circuit relaxation
time for restoration to the macroscopic solution
q=o. &=~C, with & the differential diode resis-
tance, which goes to infinity as the threshold volt-
age && is approached and as the point of intersec-
tion of the two characteristics in Fig. 1(b}ap-
proaches the peak current. If, 5 =E~ -E~ then
R =2 5&(d'I d/V) ', where d'I/dV' is the curvature
at the peak of the tunnel-diode characteristic„
Thus, v-5 ' and we shall simply write &=o.'/5.
Substituting v =-q/v and r = o./6 in Eq. (1.'I} yields

dU —dUO =dQ —dQ 0. (1.4) p =A exp( q26/2cLD) . - (1.8)
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Thus, the distribution becomes broad as 5-0. As
in other critical phenomena, as 5 becomes very
small, the relation & =-q/v should be supplemented
by higher-order terms in Q. This, in turn, will
limit the broadening of the distribution function.

The distribution function of Eq. (1.8) substituted
in Eq. (1.5) yields

U- U, =o.D/45C.

Eq. (1.S) substituted in Eq. (1.4) gives

dQ —d'Q, =-(nD/452C) d&.

(1.9)

(1.10)

6@ =6@0+dQ„. (1.12)

dQois the irreversible heat flow calculated from
the ensemble averages. dQ„ is a reversible heat
flow associated with the dispersion in the ensemble,
and equals, dU- dUO. Eq. (1.12) is much more
broadly applicable than Eq. (1.11).

This example has been selected partly because
of its general physical interest, but also, as al-
ready stated, because it avoids many ef the com-
plexities of the more general case. A second point:
Our results are based on the distribution function
of Eq. (1.8), associated with a temperature T„,
which can be very different from the ambient tem-
perature. Within the "local equilibrium" approxi-
mation typical in the physical-chemistry litera-
ture" it would not have been possible to derive
our result.

One of the key differences between chemical sys-
tems and electrical systems: A circuit descrip-

Note that dQO has no anomalies, as the threshold
is approached. Thus, Eq. (1.10) gives a divergent
heat flow into the circuit as the transition is ap-
proached, reflecting the broadening of the distri-
bution function in Eq. (1.8). Note that dQ —dQ o is
a reversible heat flow. If d& is reversed, so is
the heat f lorn.

The distribution function in Eq. (1.8) is of the
form exp(-U/&&N}, if we take T„ to be 2nD/4Ck&.
T„is the equilibrium temperature which would
give the same capacitative fluctuations as are ob-
served in the dissipative circuit. We can also use
Eq. (1.8) to define an entropy, S = &fplnp-d4'. It is
then easily shown that the heat flow given in Eq.
(1.10) obeys

dQ —dQ 0
=TN Cf$ .

Equation (1.11) is based on the fact that the distri-
bution function in the active circuit has exactly the
same form as an equilibrium distribution function.
This will break down, for example, if we go beyond
the relationship & =-q/&, and include higher-order
terms. Thus, Eq. (1.11), as an exact relationship,
is of limited validity. Eq. (1.10}, however, can be
written in the form

II. ENERGY-FLOW EQUATION

Consider an ensemble of circuits subject to in-
dependent fluctuations through their contact with
the thermal reservoir. Assume that at some time
in the distant past these ensemble members were
all in the same state, but have become separated
through their differing history of fluctuations. (Any
other method of defining an ensemble corresponding
to our intuitive notion of a set of circuits following
the same noiseless macroscopic equations of mo-
tion is likely to be equally satisfactory. ) We shall
assume that the voltage and current sources are
fixed, and not subject to fluctuations. Let us fur-
thermore, for notational simplicity, restrict our-
selves to two-terminal devices. That, however, is
only a pedagogic device. As long as the multiport
devices do not mix circuit types, they do not repre"
sent a real complication.

Denote the current from node & of the circuit, to
node j by i&&, the potential at & by V&, and V; —V& by
V&&. If i and j are not connected nodes, &&& will be
taken as zero. Note that i,&

and V&~ are both odd
under exchange of i and j. We will show that

t2

g j t~
(2.1}

tion makes it easy to focus on a few essential de-
grees of freedom that are intimately related to
the ongoing dynamic process. Thus, charge fluc-
tuations in a capacitor are obviously determined
by the noise generated in the circuit and have, at
best, a very indirect connection to the ambient
temperature. By contrast, in discussing chemical
kinetics we are likely to mask the entropy contribu-
tion of the fluctuations related to the progress of
the reaction with the entropy of the huge number
of unimportant degrees of freedom. This leads to
a "local equilibrium" assumption.

Finally, we ask whether there are systems in
which our divergent heat flow can actually be mea-
sured. We are concerned with the entropy changes
in only a single degree of freedom, and a heat flow
whose divergence cannot follow Eq. (1.10) all the
way as &-0. Furthermore the system must be
modulated slowly compared to its relaxation time,
and that relaxation time itself becomes long as
5- 0. Then, the divergent heat flow must be mea-
sured'against the continuing background of the un-
interesting term dQD. If, instead of a single sys-
tem, we invoke a great many similar small sys-

'

tems, then we must take care to look at these sys-
tems together as far as their modulation parameter
is concerned, but not as far as their fluctuations
are concerned. All this means that actual measure-
ment may prove to be very difficult. We now pro-
ceed to the more general case.
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for any time interval (t„t, ). From the conserva-
tion of current, we have, for any node i,

i]~ — i,.g -0. (2.2}

Multiplying Eq. (2.2}by an arbitrary parameter Q;,
which is a function only of the node involved, and
then summing over the index i, yields Q;,z (t)ti, &

--0.
Similarly, Q, „.&t)&i;; =0. Hence,

I
((t) —Q~}z,q =0.

eS
(2.3)

To derive Eq. (2.1), first we take Q; =V, in Eq.
(2.3) and then take an ensemble average. Subse-
quently, we take &t), =&V, ) in Eq. (2.3) and again en-
semble average. Subtracting the two equations
yields Eq. (2.1). Note that nonfluctuating sources
of voltage and current sources contribute equally
to &V(~i(~& and to &V~&&i„) and therefore can be
dropped from the expression (2.1).

To illustrate the significance of Eq. (2.1), we
consider the simple circuit shown in Fig. 2. Eq.
(2.1) can be written

U (t, t ) =Q (t, t ), (2.5)

where U~ denotes the stored-energy terms on the
lhs of Eq. (2.4), and Q~ denotes terms related to
heat flow from the thermal reservoir into the re-
sistor. The subscript + reminds us that we are
dealing with fluctuating ensembles; if there is no
statistical spread in the current and voltage dis-
tributions then Uz -Qz =0. In the steady state,
power flow into the -capacitor must vanish and
&V,i c& =&Vc&&i,& =0. Thus, only in the presence of
a time dependence and fluctuations can Eq. (2.5)
tell us anything interesting.

R)
'AM,

Vi -V i dt
t

t
=- g j *(v„&„4-&&v) &4))dt, (2.4)

)=1~2 tI

where the subscripts identify the capacitor and the
two resistances, respectively. The lhs of (2.4) is
the difference between the ensemble average of the
energy put into the capacitor and this energy as
calculated from ensemble averages.

Let us rewrite Eq, (2,4) in the form

We can identify te~ms of the type found on the lhs
of Eq. (2.4) as changes in total stored energy only
if we assume that the energy input to the energy-
storage devices comes exclusively from electrical
terminals. We must rule out external modulation
of capacitors, e;g. , by a mechanical force applied
to the capacitor plates. [Note. that this is only a
condition for the interpretation of Eq. (2.4), not
for its validity. ] Changing battery voltages, re-
sistor temperatures, and resistor values can,
however, all be left as sources of time dependence
for the circuit.

In the further discussion of the example of Fig.
2, in this section, let us restrict our attention to
the case of linear resistors, generating Johnson
noise, and to linear capacitors. In this case, the
effects of the fluctuating emf generated in the re-
sistors is simply added linearly to the macro-
scopic-circuit solution resulting from Es(t). Thus,
the capacitive charge fluctuations can be calculated
independently of Es(t). For the capacitor icdt =d4',
where q =CV& is the charge on the capacitor. Thus,

U (' )=4)„(&V «& -(Vt;&&44&)44
tI

2C t 2C t 2C

(2.5)

U~ is the energy change associated with the de-
partures from &Q&, and due entirely to the fluctua-
tions. If we assume that both resistors in Fig. 2
are at the same temperature &, and that this tem-
perature is changed very slowly, then &((I -&(f&}&/
2C must be the energy of the fluctuations of a ca-
pacitor, in equilibrium, at the temperature T.
Changes in that energy must then equal fTdf,
where the entropy S of the capacitor is given by
the usual expression

S=-~ pq ]npq dq

in terms of the distribution function p. Thus, Eq.
(2.5) becomes

TdS=dQ (2.7)

Eq. (2.7) shows that entropy changes associated
with the capacitive fluctuations can be calculated
in the usual way from the heat energy taken up by
the resistor, after subtracting out the uninteresting
macroscopic-circuit dissipation terms

Eg C g J '&4)&v) « .

FIG. 3. Battery with two resistors and one capacitor.
Note that, in Eq. (2.6}, we utilized the linearity

of the capacitor, through the relation &Vc& =&(I&/C.
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In the more general case, we cannot express
(Vc)(Oq) as a differential of a function of (q). In
fact, the exPression (Vcdq) -(Vc) (Oq) is comPletely
analogous to OU-p OT (where 7 is volume) in the
analysis of a compressible gas, as pointed out in
Sec. I. Thus, (Vc)(Oq) will not, in general, be a
perfect differential. Note that Eq. (2.1}can be
written in the form of Eq. (2.5}, not just for the
simple case of Fig. 2, but with complete generality.
Eq. (2.1) can always be separated into terms deal-
ing with the circuit elements which store energy,
written ori the lhs of Eq. (2.5), and terms dealing
with dissipative elements, written on the rhs of
Eq. (2.5). While Eq. (2.5) is a result of energy
conservation, it includes elements that are remi-
niscent of &OS =O'Q. The rhs as has been pointed
out, represents the heat flow from the reservoir
into the resistive elements, to the extent that it
exceeds the amount predicted from the ensemble
averages in the usual macroscopic way. Thus it is
an obvious generalization of the usual OQ term in
& OS =O'Q. The lhs relates to a dispersion in the
energy-storage terms; if all ensemble members
behaved alike it would vanish. It is therefore a
measure of the fluctuations in the energetic be-
havior, and at least in that way, representative of
& OS. Note that the derivation of Eq. (2.1) did not
require any assumptions about Gaussian distribu-
tion functions, detailed balance, slowly modulated
systems, proximity to a steady state, etc.
of these restrictions will be introduced at later
stages in this paper.

III. MACROSCOPIC HEAT FLOW FOR A TIME-DEPENDENT

CIRCUIT

This section will be devoted to. an, analysis of

(V,, ) (i)~) Ot (3.1)
g p ~t~

summed over the reactive circuit elements. (For
the reader who is more acquainted with chemical
reactions than electrical circuits, we note that
"reactive" circuit elements are energy-storing
elements, i.e., capacitors and inductors, in con-
trast to resistors )In this se. ction, we will assume
that we are dealing with a slowly modulated sys-
tem, which is always close to a steady state. In
other words some parameter, e.g., a battery volt-
age, changes slowly compared to the speed of re-
laxation of the circuit. The actual voltages and
currents [e(t}, i (i)] in the time-dependent circuit
will then be very close to those which would have
existed if the current value of e changing param-
eter (e.g. , battery voltage) had existed for a long
time. Let &»(&) and iss(&), respectively, be the
voltages and currents corresponding to the steady

e(t) =ess +&e, i (t) =iss+5i,

and for the heat dissipation

e = sgess+'lss~q +essi51,

(3.2)

(3.3}

to first order in I/&. Let the additional heat flow
due to the perturbations, iss~ +ess&i, be denoted
by ~L. ("L" as reminder that we are calculating
heat flow from a state which /ags behind the "cur-
rent" value of the steady state. ) Note that 5e and
5i arise from the capacitive (and inductive) changes
in time and thus reverse sign if the time depen-
dence of &ss(i} and iss(&) is reversed. Hence, &L is
reversible and $ OLdt vanishes if the circuit is
varied bach and forth along the same set of inter-
mediate states. It can easily be shown, however,
that in more general situations $ 5LO& does not

FIG. 3. Battery across resistance and inductance in
series.

state for the parameter value prevailing at the
time ~. In the steady state, the capacitive currents
and the inductive voltages will vanish. In the slowly
modulated, circuit, capacitive currents, for. ex-
ample, cannot vanish exactly. If the charge q(t)
on a capacitor has a slow time dependence then
ic =dq/Ot must be of order 1/T, where & is the
time scale over which an appreciable modulation
takes place. Similarly for the inductive voltages.

If we replace our network by one in which all
capacitors are removed, and all inductances short
circuited, then we achieve the steady state instan-
taneously. Our actual state, in the modulated sys-
tem, can be found by inserting small current
sources, &a=dq/dt, in place of the capacitors, and
voltage sources, e =-OQ/O&, in the short-circuited
inductive links. These sources will produce small
perturbations away from the exact steady state.
Note that the distinction between Oq/O& and dqas/dt
will be second order in I/&, and we will, there-
fore, neglect this distinction. Thus, the current
and voltage sources which perturb the circuit away
from the exact steady-state solution can be calcu-
lated from the steady-state solutions ess(~) and
iss(t). To avoid any possible lingering confusion
ess(t) and iss(~) are time dependent because iss and
ess are functions of the modulation parameters, and
these, in turn, are time dependent. Letting the
perturbations away from the steady state be de-
noted by (&e, &i) we have
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eR

the steady state, therefore, the actual expectation
of the heat dissipation and that calculated from en-
semble averages are identical.

In Sec. III we treated slowly modulated systems
and pointed out that for these

~o =~ss+5L ) (4.3)
FIG. 4. Ez in Fig. 2 is a function of time. ez, the

voltage across the resistor, lags the battery voltage.

vanish; &I is a0~ a perfect differential of a state
function.

Finally we must emphasize that, while &L -1/T
and becomes very small with slow modulation,
j„5Ldt between two fixed states A and 8 extends
over a time & and is thus independent of the modu-
lation rate. The integral is only a function of the
exact path taken between A and &.

To make the preceding discussion of 61- more
meaningful, consider the circuit of Fig. 3 and as-
sume that the battery voltage is modulated with
time. Figure 4 exhibits both the time dependence
of the battery voltage and of the voltage across the
resistor. The latter lags the former by the relaxa-
tion time of the circuit I /R. Thus, the dissipation
during the initial voltage rise is less than would be
calculated from the steady state, and 6I &0. The
opposite holds during the later voltage reduction,
where the actual resistive current exceeds the
"steady state" value of current (=Es/It).

Note that if Prigogine's minimal entropy produc-
tion theorem'4 were appljcable to Fig. 4, &I. would
have to be a second order in 1/&, and positive.

IV. REVERSIBLE AND IRREVERSIBLE HEAT FLOW

Eq. (2.1) can be written in the form

Q(Vi) dt (V) (i) d-t =- Q(Vi) dt
U R

+ g(V) (i) dt, (4.1)

where the subscripts U and & denote summation,
respectively, over energy-storing components and

over resistive devices. Let us denote, in accor-
dance with Eq, (2.5), the lhs of Eq. (4.1) by dU~,
The term -Zs(Vi) di will be denoted by ; it is
the expectation value of the heat flow from the heat
bath into the circuit. The final right-hand term of
Eq. (4.1) will be denoted by -dQO, the subscript
denoting that it is calculated from the ensemble
averages. Thus

de -dQ -dQ, . (4.2)

We immediately see that in a steady state, not sub-
ject to modulation, de =0 and hence dQ =dQO. For

where ass represents the. dissipation calculated
from ensemble averages in the steady state. Com-
bining Eqs, (4,2) and (4.3) yields

dQ = de +ass +5L . (4.4)

In a slowly modulated system, dU~ is reversible
in the same sense as was pointed out for DL in Sec.
III. Energy flowing into the components when tra-
versing a sequence of states must flow out again
when traversing them in the opposite direction.
(As pointed out, however, de is not a perfect dif-
ferential. ) Thus in the rhs of Eq. (4.4) only the
term ass, representing the steady-state dissipa-
tion, represents irreversible heat flow. In the
slowly modulated system it is. supplemented by two
reversible terms. One of these, de, relates to
fluctuations, i.e., to differences within the ensem-
ble. The other, &I, is related to the macroscopic
equations.

8 =-~ plnp (5.1)

for the two distribution functions must also be iden-
tical. The fluctuations on the capacitor in equilib-
rium are characteristic of the resistor tempera-
ture. We can, therefore, associate the distribution
function with that temperature, and use it as an
"effective" temperature for the nonequilibrium cir-

V. CONNECTION BETWEEN d U~ AND T dS

We have already alluded to the fact that dU~ is
related to ensemble dispersion. Can we relate it
more specifically to entropy changes~ We shall
try to do this first through a very simple general
argument, and later in a more detailed way. The
general argument is that of Secs. I and II and starts
by observing that the distribution function for some
reactive circuit component, say the charge on a
capacitor, in a circuit far from equilibrium, can
mimic the distribution function found for some
equilibrium condition. Thus, the voltage on an
equilibrium capacitor can be controlled by a battery
applied across it. The extent of the fluctuations in
the capacitive charge and voltage cari be controlled
by the temperature of a resistor in series with the
battery and capacitor. If.the two distribution func-
tions (that for the capacitor in the equilibrium cir-
cuit and that for the capacitor in the dissipative
circuit) are identical then the entropy
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cuit. An observer of the capacitive fluctuations,
unaware of the remaining circuit, would assign
that temperature to the capacitor. This tempera-
ture has little relation to the ambient temperature,
i.e., the physical temperature of the capacitor
plates, and is instead determined by the noise in
the electrical circuit.

Let us now assume, as we modulate a nonequj. lib-
rium circuit, that the distribution function for a
given reactance mimics a series of successive
equilibrium distribution functions. For the equi-
librium sequence we have

dU- (V) (i) dt = T d$, (5.2)

dU- dU =TdS. (5.3}

Since, however, the distribution functions for the
sequence of equilibrium states are assumed to
mimic those for the nonequilibrium sequence, Eq.
(5.3) holds also for the nonequilibrium sequence.
The lhs of Eq. (5.3) is, however, the quantity dUs
which appears in Eqs. (4.2) and (4.4), with the mo-
dification that Eqs. (5.2} and (5.3), so far, have
focused on one reactive circuit component, where-
as Eqs. (4.2) and (4.4) sum over all energy-storing
components. Let us now, in this section, limit
ourselves to circuits with one degree of freedom.
Then Eqs. (4.2) and (5.3) yield

T dS =dQ —dQ, . (5.4)

Eq. (5.4} is our generalization of the familiar
T dS=dQ.

UI. FOKKER-PLANCK APPROXIMATION

The kinetic processes of interest in this paper
are usually Markovian processes described by a
master equation. In many eases, this can be ap-
proximated by a deterministic equation of motion,
supplemented by fluctuations which cause small
deviations from the deterministic path. In one
dimension, we would typ&cally have a probability
flux p, generated by a distribution function p over
some degree of freedom q, given by Eq. (1.6) and
repeated here for convenience:

j=p(q)v(q) —D —.Bp

Bq
' (6.1)

Sometimes Eq. (6.1) is written with the diffusion
coefficient D(q) under the differentiation sign. The
relationship between these two forms has been dis-
cussed by the author "Eq, (6..1), or, more prop-

Hqre, dU is the energy change of the reactance,
(Vi) dt Tca.n itself be changing as the modulation
proceeds. Let us denote (V)(i) dt by dU„ in analogy
to our earlier definition of dQO. Thus Eq. (5.2) be-
coIQe s

p = C exp[-(q -qss)'/2D&~ ~ (6.3)

Thi.s, however, is of the same form as an equi-
librium distribution biased at gas. The Boltzmann
distribution is of the form e . If we apply a
force which displaees the equilibrium system to
gss., then the energy variation about +s will be
quadratic and of the form

U(q) =sU" (qss)(q —qss)' i (6.4}

and therefore the equilibrium distribution will be

erly, the equation derived from it by invoking sp/
&&+sf/&q =0 is called the Fokker-Planck equation.
In a series of definitive papers, af which vie will
here cite only two recent items, van Kampen" "
has pointed out that the replacement of the master
equatiori by a Fokker-Planck equation is likely to
be unwarranted. There is no question about the
validity and relevance of most of van Kampen's
discussioris and criticisms, and we have cited and
invoked van Kampen's viewpoint on a number of oc-
casions in the past. Nevertheless, we hesitate to
accept some of van Kampen's stronger statements,
such as': "The nonlinear Foyer-Plgnck equation,
which is so often used for describing nonlinear

'

random processes in physics. .. is an inconsistent
approximation, unfit to describe anything beyond
the linear noise approximation. " Actually van
Kampen admits that there are cases in which the
"norilinear" Fokker-Planck equation is valid.
["Nonlinear, " here has a rather special meaning:
The "linear" case is one in which v(q) in Eq. (6.1)
is a linear function of Q, and D is independent of
q.] In a recent paper, '~ van Kampen applies the
Fokker-Planck equation to the case in which a non-
linear mechanical pendulum is subjected to noise
by a viscous medium whose stochastic behavior is
that characteristic of its equilibrium state and in-
dependent of the nonlinear mechanism of the pen-
dulum. The parametric oscillator" is a very sim-
ilar system. In the Appendix we discuss the valid-
ity of the Fokker-Planck in further detail. For the
moment, we shall simply assume that it is justi-

fiedd,

Let us now assume that we are once again dealing
with a slowly shifting steady state. Near such a
state, the restoration to this state is

(6.2)

where 9» represents the steady state. Let us as-
sume that the fluctuations are small enough (i.e.,
the system large enough) so that we are within the
range of validity of Eq. (6.2) and also can take D
as constant over the range of interest. Then the
steady-state version of Eq. (6.1), j =0, integrates
readily to give, as in Sec. I.
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p =C' exp[-U" (q —qss}'/2kT] . (6.5) Putting together Eqs. (6.10) and (6.12) leads us to

&(q —&q&}'&/2C = 'kT- (6.6)

is independent of the state of cha, rge (q&. The typi-
cal magnitude of the charge fluctuations increases,
however, as the capacitor is charged, and as the
differential capacitance C is increased. Thus, as
the capacitor is charged, dS &0 and dQ&0. There-
fore,

(6.7)

From Eq. (6.5), however, we can easily deduce
that

Eqs. (6.3) and (6.5) specify the same distribution
if we set T =U"D&/k. Thus, Eq. (6.3) determines
an effective temperature and also, of course, an
associated entropy.

As the system becomes larger, and the relative
deviation due to fluctuations smaller, the approxi-
mation involved in neglecting terms in the expo-
nents of Eqs. (6.3) and (6.5) beyond the quadratic
terms improves. This is likely to be obvious, but
in case it is not, a detailed discussion cari be found
in Sec. 5 of Ref. 8.

We might, at this point, be tempted to invoke the
equivalence between Eqs. (6.3) and (6.5) as being
adequate for the mimicking of equilibr ium distribu-
tions by nonequilibrium distr ibutions, as invoked in
Sec. V. 'This is, however, too poor an approximation,
and we shall go to some trouble at this point, with
an equilibrium example, to make this clear. Con-
sider a nonlinear capacitor in which the differential
capacitance C =dq/dV increases with increasing
charge q. If we take such a capacitor and charge
it, but keep it at a constant temperature &, the
energy of small fluctuations

&V&&dq& =V(qss) dqss =dU(qss). (6.13)

Then, using (6.9) and (6.13) in the lhs of (6.7}yields

&dU& -&V&&dq& =0. (6.14}

(e.ie)

As just pointed out, however,

This, however, is in contradiction to the earlier
conclusion, in Eq. (6.7), that dQ&0. Thus, we

see that the approximation of Eq. (6.5} is inadequate
to account for the ordinary entropy changes found

in a nonlinear capacitor when it is charged slowly
and traversing a series of thermal-equilibrium
states.

Now consider, instead, . an asymmetrical distri-
bution, going beyond Eq. (6.5). We then allow for
the fact that for a system, as described, where
(PU/dqs =1/C rises with q, the distribution
stretches further toward q &qss than toward q&qss.
Thus, &q» qss, in contradiction to Eq. (6.10). Con-
sider now, for clarity, a somewhat special case.
Assume that near q =0 the capacitance is constant
over a range ~q~ &q, . Then assume that C increases
in the range q, &q&q, . Finally, for q, &q, assume
that C is constant again, at its higher value. Thus,
as the capacitor is-charged, the entropy increase
takes place between q, and q, . Now in this range
&q» qss, whereas from Eq. (6.12) &V& =V(qss).
Thus, &V& is lower than V(&q&), and in computing

&V& &dq& we get a smaller contribution from each
range &dq& than stated in Eq. (6.13). On the other
hand, Eq. (6.8) still holds in the ranges in which

the capacitance is constant. Thus, for a value of
q'&q„we have

&U& =U(qss) +skT . (6.8) &V&&dq& & V(q) dq (6,16)

As the capacitor is charged at constant tempera-
ture, Eq. (6.8) yields

d&U& =dU(qs, ). (e.s}

&q& =qss, d&q& =dqss . (6.10)

Furthermore for any thermal equilibrium distribu-
tion with a single point of maximum probability at
q» it is easy to show, uithout approximation, that

or equivalently, for capacitive voltages

&V& = V(q..). (e.i2)

Now if we limit ourselves to Eq. (6.5), without
higher-order terms, then the symmetry of the dis-
tribution assures us that

as long as &dq& and dq represent the same change
along the q axis. Thus

qt qt

d —V dq & d —Vq. =0,
0 0

(e.i7)

and this is consistent with our conclusion that
dQ & 0

Let us extend these considerations slightly by
considering the variation of various terms with the
system size, following the kind of consideration
already supplied in Sec. 5 of Ref. 8. Let us replace
a given circuit by replacing all of its original ele-
ments by n identical elements in parallel. The
new circuit will then have nonlinearities which ap-
pear on the same scale of fields and voltages as in

the old circuit, but charges and currents are mul-
tiplied by &. (This is, of course, not the only way
of going to a larger circuit, and reducing fluctua-
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VII. ASYMMETRY IN THE DISTRIBUTION FUNCTION

We have seen, in Sec. VI, that the lowest-order
terms, giving a deviation from a symmetric dis-
tribution function, are needed for a sensible dis-
cussion of entropy changes. It is clear, on the
other hand, that if we keep many higher-order mo-
ments in our distribution functions there will be no
reason for the steady-state solution of Eq. (6.1),

V
p=C exp (V.l)

to resemble exp(-U/kT„). After all, &/D reflects
the details of the behavior of the dissipative circuit
elements, whereas U represents the physics of a
nonlinear reactance, say, a capacitor. We can
choose &N to match the behavior in the quadratic

tions. ) Then, as pointed out in Ref. 8, the capaci-
tive-charge fluctuations will vary as Wn and the
voltage fluctuations as 1/0 n. [This also follows
from ~C(6V')-~&T and (Q}'/2C- ,'kT-, and then
allowing for the fact that C varies linearly with n.]
Now consider the entropy changes caused by taking
an uncharged capacitor to some fixed voltage level.

. While the size of the charge fluctuations varies as
~n, the ratio of this fluctuation range, for the two
charge states under consideration, is independent
of &. It is this ratio which determines the entropy
change, and 4S, therefore, is independent of &.
This is in contrast to the capacitive energy which
varies as +.

If the voltage fluctuations vary as I/Mn, then
the difference between fluctuations to the right and
to the left will arise from the asymmetries and
will vary as (1/~n)~ or 1/n. It is this sort of
asymmetry which determines the difference be-
tween (V} and other voltages related to the distri-
bution function, such as V((q}). These voltage

. differences, as can be seen in Eq. (6,17), deter-
mine the entropy changes as the capacitor is
charged. The voltage differences, of order I/n,
are multiplied by charge changes (not charge fluc-
tuations) of order n, and thus give a contribution
independent of &, which is consistent with the be-
havior for &S discussed above. Therefore, we can
see that by going far enough beyond the quadratic
approximation of Eq. (6.5) to take into account
asymmetry in the distribution function, we do ac-
count for the expected entropy changes. Thus, the
cubic term in the exponent of the distribution func-
tion (i.e., cubic in the deviation from the point of
maximum probability) is needed to talk sensibly
about entropy changes. Higher-order terms, how-
ever, such as (q —q~~)'will go to zero still faster
with increasing +, and for large enough n can be
neglected.

terms in the exponents, but that will not help for
the higher-order terms. Let us, in this section,
concentrate on the case where only. the lowest-or-
der terms in asymmetry, discussed in Sec. VI,
have to be invoked. We continue to focus on a cir-
cuit with only one reactance. This present section
is, essentially, a slight rewording of Sec. 6 of Ref.
8. (The discussion in Ref. 8 is basically correct,
but the explanation is poor in the later parts of that
section. )

I.et us first introduce an auxiliary quantity 4, as
follows

U(q} =U(q, )+U'(q, )(q -q, ) ~b. . (7.2)

Thus, & represents the variation in energy, in-
cluding quadratic and higher terms, about a point
9, which we will take to be the point of maximum
probability for the distribution function. Eq. (4.2)
can be written in the form, using Q~ of Eq. (2.5),

d&&~ =d& —d&&, dU» =&dg=—
(d )&dd& .

With the use of Eq. (7.2}, this becomes

(7.3)

(7.4)

Now let us invoke a distribution function, for the
nonequilibrium circuit, of the form

p=Cexp(-4/kT„)exp[- P(& &/T„)'~'] . (7.5)

T„dS =AT„J) 5pinpdq, (7.6)

where &p represents the change between two dif-
ferent distributions of the form (V.5). Using (V.5)
in (V.6}gives

Replacing 4 in Eq. (V.V) through the use of Eq. (V.2)
yields

Without the final right-hand exponential factor, this
would just be a thermal equilibrium distribution,
in the presence of a force (voltage, in the case of
a capacitor) biasing the reactive device at q =q,.
The final factor, involving the coefficient P, per-
mits the asymmetry of the distribution function in
Eq. (7,1) to be different i'rom that of thermal equi-

. librium. Instead of (&/&T„)' ' we could have used
(q —qo)'. We shall, hereafter, only account for
effects which are first order in P, and in the other
asymmetry parameters, e.g., the third derivative
of & with respect to q. Thus, cross effects be-
tween p and dP will be ignored.

We will want to compare Eq. '(7.4) to
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T„ds = (&U) —U'(q, }(dq)

+pkT» J(»pg ) 'k (7.8)

a rigid displacement of the existing distribution
function. A displacement of the distribution by dq,
gives

In thermal equilibrium P =0, and the final rhs
terms of both Eqs. (V.4) and (7.8) vanish, and
&„dS =dQz. We want to recognize, however, that
in the dissipative steady state, as the system be-
comes large, P becomes small, butis nonvanishing.

Consider first the (~/dq) term in Eq. (7.4):

&p =-dq —=dq e
Bp g ~~q da

Osq OAT„g dq

If this is substituted into (V.13), we find

=p»„g '2I'(k ) dq

(7.14)

(7.15)
J(dA/dq)e»/k // exp k'»/» ~' dq . (7.9)

dq J e-»/kr//exp-8(»/krkt)» dq

To zeroth order in P, we can take the normaliza-
tion integral in the rhs denominator simply as
8 =fe + //dq. In the rhs numerator of Eq. (V.9},
we take

(7.10)

Only the P term from (V.10) contributes to the in-
tegral in the numerator of Eq. (7.9), leaving

dA dh 4 ~2
pygmy

~/p

e "x'~'dx. (7.11)

The definite integral in Eq. (V.11)is a gammafunc-
tion, and therefore the final rhs term of Eq. (7.4)
becomes

A) = (P» /&)21 ( ) ' 5pq dq . (7.12)

Consider now the other term involved in our com-
parison, the last rhs term of Eq. (7.8},

(7.13)

Since this expression already contains a factor
P, we can neglect any further asymmetry in 5p and
in &. We can thus assume that &p, as used in

(7.13), represents a change from one equilibrium
distribution function to another. Such a change has
two possible sources. One is a displacement of
the point q, to which the distribution function is
biased. The other is a change in temperature. A
change in temperature gives a change in the spread
of the distribution function. &p as a function of
q —q, will then be an even, or quadratic, function,
to lowest order in q —qo. This will be multiplied
by dP which, neglecting asymmetry, is propor-
tional to (q —qo)', and odd about q,. Thus, we are
left with a vanishing contribution to the integral in
(7.13). Consider now the alternative source for
&p, the displacement of qo. To the lo&est order in
the asymmetry, this will be indistinguishable from

which is equivalent to Eq. (7.12).
Thus, for distributions which are narrow enough

to warrant the approximations of this section, we
still find T„dS =dQk, despite the fact that we al-
lowed, through the use of P, a disparity between
the thermal-equilibrium distribution functions and
those of the nonequilibrium circuit.

dU~ ——d Q~, (8.1)

by Z&q de. In this expression each reactance is
presumed to exhibit narrow fluctuations defining a
separate temperature for that reactance.

Let us assume that a circuit contains a set of
reactances exhibiting narrow fluctuations. As the
circuit is subject to slow changes, each reactance
will be taken through a series of distribution func-
tions, each mimicking an equilibrium distribution
function. Now the total value of d&~ can be sepa-
rated into a series of contributions, one per reac-
tance:

dUg -Q dU~ .
t

(8.2)

Furthermore, for each reactance we must have

VIII. SEVERAL DEGREES OF FREEDOM

An earlier paper' examined the circuit with sev-
eral reactances in some. detail, and we will not
duplicate that discussion here. That analysis dis-
cussed the conditions under which such a circuit
leads to detailed balance. Detailed balance was
invoked since it is obeyed in equilibrium, and if
we are going to simulate equilibrium, then we can
expect detailed balance. That, however, is really
too restrictiv'e a demand. To find a relationship
between dU~ and &d~ we only need to mimic equi-
librium distribution functions, and not necessarily
the kinetics leading to them. Thus, the earlier
analysis' while correct, is too demanding, and
thus too pessimistic in its conclusions. Even this
earlier analysis, however, made it clear that there
are some circuits far from equilibrium, with more
than one degree of freedom, which permit us to
replace de in Eq. (4.4}, or alternatively in the
differential version of Eq. (2.5),
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dU~ =T] dS]

and thus

(8.3)

dU~=Q T,dSg. (8.4}

Note that QS, need not be the entropy of either
the equilibrium or the nonequilibrium system.
That would require that the fluctuations in the dif-
ferent degrees of freedom be uncorrelated.

OVERVIEW: SECTIONS 2-8

APPENDIX

Consider a system in which p(q) varies slowly
compared to the geometrical scale of the basic
stochastically independent physic al-displacement
event in q space. For particles moving along a
real physical q axis, this elementary displacement
event would be a mean free path. Figure 5 shows
two distributions which are tangent at q =q, and
close to each other over a range q, &q &q,. Let us
assume, as indicated, that Iq, —q, ~

is large com-
pared to the elementary displacement event. Then

We have pointed out that there is a generalization
of T dS =dQ, applicable to some open dissipative
systems which are very far from equilibrium.
While the relationship, in this exact form, is sub-
ject to a number of limitations discussed in detail
in the preceding sections, we want to stress that
Eq. (4.4)

dQ =de +dQss +BL

is much more general. As pointed out in Sec. IV,
the steady-state heat dissipation dQss is the only
unrecoverable form of heat exchange in this ex-
pression. dU~ and &~ change sign if we reverse
the modulation of the system. We also once again
stress that the generalization of T dS = dQ does in-
voke the fact that S is the actual entropy in the
presence of the ongoing process, defined via
S= uj'pinpdq.

s=gaq, , (Al }

with & large enough that the probability distribution
for S is determined by the central-limit theorem,
but with & small enough that S is small compared
to the geometrical scale of the problem and all the
~, =I} we are essentially alike. The probability
distribution Q(S}for S must then be of the form

Il(S) =exp[-a(S -S,)']. (A2)

The net displacement So must clearly arise from
the lack of symmetry in the jump probability ,
and thus

s&& (Bq)Bq dBq, (AS)

1/a is a measure of the mean-square deviation in
displacement, and would clearly be the same if
s&&(Bq) were shifted in Bq space to make the integral
in Eq. (A3) vanish. In that case, however,

the probability flux at q =q must be the same for
the two distribution functions shown in Fig. 5. If
it were otherwise, it would mean that the behavior
near q =q depends on the earlier history, reflect-
ing the behavior outside the range qy &q &q, . But
that would not be a Markovian process. If the two
distributions give the same the flux at q =q, that
flux must be independent of the higher derivatives
B'p/Bq', B'p/Bq', etc. This, in turn, means that
the flux is a linear function of p and Bp/Bq, as as-
sumed in Eq. (6.1).

We can restate the above point in a more formal
way. Again, we shall focus on the case where the
jumps in q space occur over small distances com-
pared to those over which p(q) varies appreciably.
One example would be a spatially nonuniform tran-
sistor structure with a mean free path small com-
pared to th scale of the structure. An alternative
example w uld be chemical diffusion of an intersti-
tial defect in a macroscopically inhomogeneous
crystal. Let the size of successive jumps made in
q space be denoted by Bq„and let us, for clarity,
restrict this discussion to a one-dimensional space.
'Zhe values of &q,. will be specified by a probability
distribution , (Bq, ). Consider the sum of & succes-
sive displacements

(A4)

I I I

qm qZ

FIG. 5. Two different distribution functions tangent
at q=q

since (Bq,Bq&) vanishes if s +g. Thus the mean-
square deviation in S is proportional to N, and 0.
in Eq. (A2) must be proportional to 1/N. Both (S)
and ((S -SD) ) are then proportional to &. It is then
easy to show from the distribution for Q(S}given
by Eq. (A2) that the higher moments (S") for + & 2
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must then. go to zero faster than &.
Up to this point we have considered & successive

"jumps" without asking whether this corresponds
to a fixed time interval or not. Let us, therefore,
define our "jump" more carefully by requiring
~(&C) to represent the displacement that occurs in
a given short time interval, which need not neces-
sarily be the time in which the system —on the

average —has made a jump. (~0) may thus con-
tain a substantial & function representing the prob-
ability that the particle has not moved. Then the
& jumps do represent a fixed elapsed time. The
condition, however, that the higher-order moments
((S"), for + ~ 2) go to zero faster than the elapsed
time is the usual condition for the applicability of
the Fokker-Planck equation. "
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