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An excited state of an atom which can autoionize can also undergo radiative decay. We consider the
interaction between the final states resulting from these two modes of decay, and its eAects on such
quantities as the fluorescence yield of the excited state, excitation profile of the excited state, and the
spectra of the emitted photons and electrons. It is shown that the fraction of decays of the excited state
resulting in a photon (fiuorescence yield) is particularly sensitive to the details of the final-state interaction.
In lowest order in the final-state interaction, the fluorescence yield is increased by a factor (1+1/q ') from
the traditional value, where q is the Fano q parameter relating to the excited state and the final atomic
state.

I. INTRODUCTION

An excited state of an atom which can autoionize
can also decay to a lower-lying state of the atom
via spontaneous emission of a photon. For neu-
tral atoms, the lifetimes of these excited states
due to allowed autoionization (typically 10"'s-10 's

sec) are shorter by many orders of magnitude than
the lifetimes due to allowed El transitions (typic-
ally 10 sec). In these cases one is quite justi-
fied in neglecting the emission process in theo-
retical' and experimental analysis of these states.
However, if the excited state is forbidden to auto-
ionize in the IS coupling scheme the rates of
these two processes can become comparable-
or the spontaneous emission rate may even be-
come dominant. In addition, the two rates may
become comparable in excited states of highly
stripped ions. This occurs because autoionizing
rates are roughly Z independent (Z is the effective
nuclear charge), while dipole rates vary roughly
as Z . For the same reason, in heavy atoms, the
emission rate may dominate the ionization rate for
excited states involving one or more inner-shell
excitations4; this is reflected in a fluorescence
yield of the order of & or greater. Recently de-
veloped techniques for carrying out Stark studies
of autoionizing states also hold promise of allow-
ing studies in regimes where autoionizing and
spontaneous decay rates are comparable, since
both rates can be "tuned" through application of
electric fields. 5

Traditional theoretical analyses of the autoion-
ization process either do not consider the possi-
bility of spontaneous emission of the excited state, '

or assume that the two processes are additive. 6

However, as we shall show below these processes
should not, in many eases, be treated as simply
additive. Rather, there is competitive interfer-
ence between the two processes which greatly

complicates the problem and may cause significant
corrections to the usual expressions for the frac-
tion of atoms decaying either via autoionization or
via spontaneous emission.

In the following we will use the word "a.tom" to
indicate either an atom or an ion and the word
"ion" to indicate the next stage of ionization.

In Sec. II, we consider the problem of an atom
in an excited state ~a) which can decay either via
autoionization to an ionic state ~i) or via spontan-
eous emission to an atomic state

~
f). In Sec. III,

we will approximate the rather complicated re-
sults of Sec. II in order to indicate the magnitude
of the effects which can be expected. In Sec. IV,
we consider several experiments which could be
carried out on a system such as discussed in Sec.
II. In Sec. V, we extend the results of Secs. II
and III to the more general (and realistic) case in
which the state ~a).can decay via spontaneous emis-
sion to a set of states

~ f&); in Sec. VI, we consid-
er the case in which the state

~
a) can decay via

autoionization to a set of states ~ij}. Finally, in
Sec. VII, we present our conclusions.

II. THEORY: TWO-LEVEL ATOM

Let us consider the case of an excited state ~a)
of an atom which can decay either via autoioniza-
tion to the state ~i) of the ion, emitting an electron
of energy e, or via spontaneous emission of a pho-
ton having a definite angular momentum and ener-
gy oi ()I=1}leaving the atom in the state

~
f). We

denote the former state of ion plus electron by
ie), and the latter state of atom plus photon by
f&o). For later use, we shall specify that ~ie)

and
~ f) are all given in terms of time-independent

position state wave functions; ~&o) is, as usual, a
state in the occupation number representation.
We shall further assume that ~ie) can also decay
to

~
f&u) through action of the atom-field Hamilton-
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ian H„F. We shall generalize to the case in which
many final states

j f(d) of the atom exist, or in
which many possible states of the ion plus electron
exist, in following sections.

The Hamiltonian for this system can be written
in the form

H =Hg+Hp+HJ F, {1)

where HA is the atomic term; II~ the field term;
and H„~ the atom-field interaction. The states
ja), j f&t)), and jie) will be assumed to satisfy

(a jH ja) =E.,
{f(djH j

f(d') = 5((d —(d')(Eg + (o) =-E„5((o—(d'),

(ie jH jie') = 5(e —e')(Eq +e) =E,5(e —e'),

(ajHjf(d)=(ajH„, jf& )=H,„, -
(a jH joe) =(a jH„joe) -=H.„
(fe jH j f(d) =(fe jH„jf(d) = H,„. -

We will take both jie) and
j f(d) to have 5-function

normalization

(f(d j f(d ) = 5((d —(0 ),

(ie jie') = 5(e —e').

Let us first consider the case in which the atom
is in the state ja) at f =0. At t & 0 the wave func-
tion can be expanded as

Id) .(t)la)+=f.den. (t)I(e)e fd» (t)lfn).

and satisfies

We Fourier transform Eqs. (6) according to'
+oo+f 6

n, (t) =- — —. G, (z)e '"ds
2Wf oeyjg

obtaining the algebraic equations

(z —E,)G, = f deB„G, + fdnB, G„+1,

(z —E,)G, =H„G, + 1 d&o H,„G„, (8)

(z - E )G llG=+f, d,eBG,
Unfortunately, these equations are not easily solv-
ed due to the coupling between the two continua. ~'
It is therefore more convenient to start not with
jie) and

j f&o) but with two sets of new states j LE)
and j 2E}which are already diagonal with respect
to H„F. The decay of ja) into these states can
then easily be evaluated, using the technique of
Fourier transformation just described, as there
will be no coupling between these two new continua.

One of the most straightforward techniques for
"diagonalizing" continua involves the use of the
so-called "reaction" or E matrix. 8'9 A detailed
discussion of this approach can be found in Refs.
8 and 9. Briefly, we are searching for a, wave
function jE) satisfying:

H jE)=E jE), (9)

where jE) is composed of states from the continua

j f&0) and ie). Ln particular, it can be shown that
Eq. (9) is satisfied by

E)=p(I)E)+pa )IdE
'E E' ,'*,:"- E,(E)

(10)

H j(I)) =~ j(1))~

8
(5)

Note that both jie) and
j f(d) belong to continua of

states with, in the former case, the energy of the
emitted electron belonging to a continuum, and, in
the latter, the energy of the photon belonging to a
continuum. This fact, plus the fact that (ie jH„F
j f(d) E-'0, greatly complicates the solution of this
problem. To see this we substitute (4) into (5}
and manipulate further to obtain [using (1}]

id. (t) —E.a.(t) = f den. (t)ll.,

+ d(d n„ t H,„+i5t,

ia(t) —E,a, (t)=a,(t)E„+,fdna (t)B

in (t) —E n (t) a.(t)ll .+f de a„(t)B , .=.

where jlE) is either the state jf&o) of energy E
=E, or the state jie) of energy E, =E, & indicates
principal value integration, and the K-matrix ele-
ment K»,, &~ satisfies the integral equation

Z„;„={fE'jH„,jfE)

„E.(fE'jH .jIE")&. ". („)+ g g, g/I, ~

Equation (9) is satisfied for any value of the con-
stants B,(E); we shall choose them such that the
wave functions jEj have the desired asymptotic
form.

Physically, it is clear that, at large distances
from the atom, one of the solutions (10) should
correspond to an ion in the state ji) plus an out-
going electron of energy e, and the other solution
should correspond to the atom in the state

j f) plus
a photon of energy ~. Mathematically, this means
that as we let the coordinates of one electron, the
nth, for example, in an n-electron atom, go to
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infinity, we will get in the former case an asympt-
otic dependence of the type

IIE) „=Ii;r„r„.. . , r„,)(Cgr„) sin(kr„+6, )
(12)

and, in the latter case,

I
2E)„„=If ';r), r2, . . . , r„()Cge """, (13)

where in (12) k is the momentum of the outgoing
electron (in the continuum) and 6~ is the total
phaseshift associated with this electron.

If ';r„. . . , r„,} is the wave function for the atom
with its nth electron removed; the wave function
of this electron has an asymptotic dependence
e """, where tc is real a.nd positive.

Inserting these asymptotic values into Eq (10.}
and carrying out the principal-value integrals, one
finds that the solution of (9) which has the asymp-
totic form of an ion plus electron is

(E) ~{[I-t&K (E)]its) +t&K .(E) lf~))

(14)

One can now calculate the decay of the state Ia)
into the two continua IIE) and I2E). With the sys-
tem being at state Ia) at t =0, its wave function at
t& 0 will be given by

l&4=~ ~&~l~~+ j« ~ ~ ~&~I&&)

+ dE2 Q2@2 t 2g . (21)

+ j/ dE2 H, 2z2G2s2 + 1,

(z —E&)G,z H, z, ,G—„
(z —E2)G2z ~H2z, G,. (22)

Solving the last two of equations (22) for G~z, and
substituting in the first, one obtains

[z —(o,(z) + iy, (z)/2]G, (z) =1 (23)

Proceeding as before one obtains the Green's func-
tion equations:

(z —E,)G, = jI dEiH, , i,Gi

and the solution which has the asymptotic form of
an atom plus photon is

I
2E)=&(E) '([I —trK„(E)] I f(d) +i wK,„(E)I te))

,.— If~) (15)

with
a

u&, (z) =E, +6' dE, ~" ' +6' dE
Z f + 8

y, (z) = 2m[ IH, „I,', + IH, „I, ,]. (24)

In Eqs. (14}and (15) K,~(E) is an "on the energy
shell" element of the E matrix~

(16)

Ite) = Ite}+6' i

de' ts )K@z s
g g~

Kab(E) —Kaz, bz

lie) and
I f&u) are the states lie) and If&a), respec-

tively, modified by admixtures of other continuum
states: W, =v, (z =E,),

I'.=y.( zE.),

and (23) becomes

(25)

We shall make the usual assumptionv' that the
matrix elements in (24) are varying with energy
E slowly enough that one can replace z by E, in
both &o,(z} and y, (z). We shall comment on the
validity of this assumption below. With this ap-
proximation we replace &o,(z} and y, (z} by

+ 6 0(d
f(u')K„,s, ,z

E —E'

I
fe) =

I f )+6'. de'

(17)
(z —W, +ti"/2)G, (z) =1. (26)

(27)

Inserting the value of G, (z} obtained from (26} into
the Fourier transform (7) we find the probability

.of being in the state
I
a) as a function of time:

p(t) = l~.(t) I'=e-"".

and

g g
g E' (18)

6(E) =det
I
1 —t1rK(E) I,

--[1—t.K..«)][1—t«..(E)]+"IK..(E) I'

(19}

(20)

The states I1E) and I2E) satisfy the orthonormal-
ity condition (see Appendix)

ltE
I
qE') = 6(z, q) 6(E -E').

H fQg& g

(z —E,)[z —(o,(z) + ty, (z)/2]
' (26)

We need only find the components of a,&, which
survive as t- ~, since these correspond to what

We can further calculate what fraction of the de-
cay produces an electron [la) I1E)] and what
fraction produces a photon [Ia)- I2E)]. Using
Eqs. (22) and (23) one finds

Ggz, = [His, ,e/(z —Ei)]G.
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will be measured. Using the method of residues one obtains

~ z (f oa) ——— ' — e-181y Q iS t
E1 —(u, (E1) +iya(E1} 2

The total probability of finding an emitted electron as t —~ is then

(29)

~.=Jl«, I ...(f--)I'
dz, — IH1z, a

' (E, —&u, (E,) + iy, (E,)/2)(E, —&u, (E,) —iy (E,)+2)

2v IH1z1, a lg, a 1v, I~12

(30}

where the "on energy shell" elements of the E ma-
trix are evaluated at E =E,.

In a like manner, we find that the fluorescence
yield, or relative probability of decaying into the
states

I
2E].—emitting a photon —is just

22 IH„,,.I,, . ~I

F, F,
which becomes, using Eq. (15),

I'. ~,= l~(E) I
'»/(1+v'IK, .I') (a Hlf~&l'

+ v'IK- I'l(alH lie) I'

+ 2v Im[(I - ivKaa)K,"„
x (ie IH a)(a IH Iy(o&]].

(32)

(33)

where &o,(E,) and y, (E,) can be obtained from (24).
In obtaining the last part of Eq. (30), we have again
supposed that the quantities &o,(E,), y, (E,), and

Hf gg are not strong functions of the energy E„
and that they can be treated as constants equal to
W„ I", and H&z&„le, 1v, , respectively, in the inte-
gration over E,. Finally, using Eq. (14) one finds

rp, = l&(E}l '2vf(I+v'IK I')l(alHlie&l'

+"IK..I'I(a IH lf~&l'

+ 2m im[(I —ivK~„)K+a

x p&luH I
}a(a IH li )e]),

(31)

introducing this in Eqs. (31) and (32) we obtain the
compac t expressions

2ml (a IH lie)1'I' 5 ——
lh(E) I'

1 l(a IHI fco) I'
1 + vKgygy

I ( I I & p (35)

I' Pe - -- — —1+ vK —— . (36)
2 lv(a I H I flu) I

Ib.(E) I' "
qg

pow, since we. have simply "diagonalxzed an
energy matrix" in going from the continua

I
f&u) and

lie) to the new continua
I
IE] and I2E], the trans-

formation between the two sets must be unitary.
Thus we must also have that

I', =I,"-=2v[ l(a IH I@co) I,',, + l(alH lie) I,'...],
(37)

i. e. , the total probability of decay of la} should be
invariant under a basis set transformation. Any
lack of equality between F, and F, is an indication
that the approximations used in resolving Eqs. (22)
are in error. That is, that one cannot treat y, (z)
and e,(z) as constants.

Even though the total decay probability should be
equal for the two "representations" this is not nec-
essarily true for the relative probabilities in (30)
and (32}. Thus 8', and S~ can differ from the tra;
ditional fractions going into each of the decay chan-
nels

At this point we introduce a parameter q& by ex-
tending Fano's analogous definition: F.=2v I(a IH lie) lz2.=,./r.' (38)

(34)

(34')

(a I H I f&o)

v(a IHlie)K, „z z
Examining the definition of the matrix elements
(2) and of the K matrix (11) we note that K„,K„„,
and q& are real quantities. Now using the defini-
tion (34), we write

«. =(I/q~)(a IH I you)/(a IH Iie&'

Z, =2.1(alH y~) I, , /I.o. (39)

In Sec. III, we shall consider this point in
more detail. (We shall henceforth leave off the
subscripts which indicate the energy at which the
matrix elements are to be evaluated, since it is
always at the energy conserving value. )
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HI. APPROXIMATE BRANCHING RATIOS

In order to investigate the differences between
the usual branching ratios F, and E~, and the more
complicated ratios &, and F~ derived in Sec. II,
we shall consider an approximation to the
K matrix defined by Eq. (11). In particular
we will keep only the lowest-order term in an ex-
pansion of K in powers o HAF

K z,z, = (f(o, E
I H„v I

ie, E '), (40a)

E(gg td zQt +8@ g jQz 0y (40b)

and from Eq. (19)

I
~(E}I' =(1+vr' IH,„I')' (41)

In this limit, the definition of q~ [Eq. (34)] becomes
identical to that of Pano. '

Since, from Eqs. (25), (30), (32), and (37)

g, +pp —1,

F, can be obtained in this approximation by adding
together the resulting (35) and (36).

r, =r.(p, +~,)

&I' ( IH If &
'] (42}

Since this is not obviously equal to I"„ it is not
clear that unitarity is preserved at this level of
approximation. However, it will be approximately
preserved if v IH, „I «I, i. e. , if the final-state
interaction is small.

If we now further approximate (a IH Iie) and

(a IH I
far) by their first terms (omit principal value

integrals), we find

the correction to the radiative fraction (fluores-
cence yield) can be quite large independent of E~/
E,. If E~/E, is larger than 1, then the correction
to E, can also be large. However, as noted above,
if (1/qy)(E&/E, ) is large, unitarity may be strongly
violated and Eqs. (44) and (45) may be seriously in
error. It is nevertheless interesting to note that
in the very strong final-state interaction limit,
(I/q~~}(F~/F, )»1, &, -E~ and r~-E, .

IV. THREE -LEVEL ATOM

We will now consider the case in which the atom
plus field is in the state Ig, ko) at t =0, where the
state Ig) is connected to the states Ia) and lie) by
the atom-field Hamiltonian H„F. The wave func-
tion Iko) indicates, in the occupation number rep-
resentation, the wave function for a photon of mo-
mentum ko and energy v(), with E, —E~ =—vo. We
assume that Ig) 0

I f) and that the radiative decay
from Ia) and ie) to g) is insignificant compared
to the analogous decay to

I f}. We will make cal-
culations corresponding to a number of experi-
ments which can be performed on such a system.

First of all, let us consider the probability of
absorption of the photon vo as a function of coo.
Proceeding as before [Eqs. (22)-(25)] we have that
at t & 0 the system wave function will be given by

lq)~ =~,(f} I gko)+ ~.(f}la}

+ dE$ Q fz( t 1E( + dE2 @2' t 2E2 .
(46)

Fourier transforming, we obtain the Green's-
function equations:

and

t(aIHlf~) I' I Z~s" I =pq I (aIHIie)I' qT E, (43) [z —(Eg+&uo)]G~= dE(H~ (z,G(z

2 t&2 2 2 za a

(47a)

Then
1Fr, p, -— 2vrl(alHlie) I' I+~~

9'y &e

1 I (a I H I fee) I

~~

q~q l(a IH lie) l~

(z —E,)G, =H,~G~+ dE, H, ,z G,z
1

+ dE2Ba 2E G2&
2 2'

1}G1z~ —H1z
~ I zGz (47c)

or

(44}

(z —E2)G2z Hqz ~G~+H, z, ,G-,. (47d)

Solving the last two equations for G&&, , i =1, 2 and
substituting in the first two, one obtains

[z —~,(z) +i& (z}/2]G.(z}

F~ 1+~~ 1+~ (45)

Equations (44) and (45) indicate that, if q& is small,

[z —(o,(z) +i@,(z)/2]G, (z)

= [(oza(z) —iy„(z)/2]G, (z) + 1,

(46)

= [~.,( ) —i~.,(z)/2]G, (z),
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with

s),(z) E=+,~, +i' jdz, 8

IH„2E, I'
E )

y, (z) =2v[ IH, ...I',-.+ IH„,E, 12E2-,],
H

&i),(z) =E, +O' JtdE,

(P dE IHot2E2 I

2 z —E2
y, (z) =2m[ IH. ,E, IE, , + IH„,E, IE,.,],
(e„(z)=H„+(P dE, —"' '

z —E,

z —E22

yz, (z) =2&[(Hii (E(H&E(,)E, ,
+ (Hg, 2E2H2E2, (()E2=a].

(49)

We again make the assumption that the matrix ele-
ments in (49) are slowly varying functions of ener-
gy and we replace s by E, =E~ + ~p. We denote
the resulting y's and u's with the corresponding
capital letters, and Eqs. (48) become

(z —W, + ir,/2)G, (») =(W,.—ir,g2)G, (z) + I, (»)
(» - W, +irg2)G, (z) =(W —ir„/2)G, .
Solving the second equation for G,(z) and inserting
in the first one obtains'.

. r (w„- ir,+2)(w.,—r.,/2) &I

(52)

This equation can be introduced in (7) and the re-
sulting problem solved exactly. However, it is
convenient to consider an approximate solution
valid for

I H~, I, F, «F, . This corresponds to the
usual experimental conditions. Then z in the de-
nominator of (52) can be replaced by W~ leading to

(5O)

(e„(z) and y~(z) are obtained from &e~, and y„by
interchanging a g. The matrix elements not
previously defined are

Hw,
—(gko I H„F I

a),

H„= (gk, IH„F I2e),

H,„=(gEIH„lf~}.

Gg(z) = » —Wg+i 2.r
2;

(w,.-ir, ga)(w~, —ir„/a))-'
W~- W, +iF,/2

This can be separated into real and imaginary
parts, using 5=-%"~-8', :

(58)

-2 ~21 Iw,.I'- — 4' +5Re(r„w„)

=I 52+ —'
I

5 Iw"I'-,I- —;Re(r,.w.,)

2- i lw,.+5 " I' —' +2
a ~a

Consequently, use of Eq. (7} leads to

where
r,.I' r. w,.+5r,gr. l'

(55)

If we further define a "q parameter"

qg —= 2W~/F, ~

0' becomes

Ir,. ' Jr,.l' I-,'r.q. +5I'

(57)

(58)

That is, the absorption spectra will display the

1

familiar Beutler-Fano profile. '" There are, how-
ever, several differences between Eq. (58} and
the corresponding results of Fano. ' First, the
detuning 5 contains both a shift in the energy of
Ia} due to the interactions with the final states

I f~)
and Iie}, and also a shift in the energy of

I g) due
to the interaction with the ionization continuum
lie): In the approximation of Sec. III we have

5 =—E~+ vp —E, +6' -- ~' ——deIH„ I'
Eg + (alp —E~

The shift in the energy of Ia} due to
I
fu&) is just
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the Lamb shift of ia) in the approximation that the
decay to ig) is negligible. The decay probability
I', appearing in (58) is the total probability of de-
cay—not just the one due to autoionization. Fin-
ally, q~ defined by Etl. (57) does not reduce, in the
limit of Sec. III, exactly to the corresponding q
parameter of Fano, ' which we denote by q~. In-
stead

Finally, we note that, due to the approximation
made below Eq. (52}, the present r'esults hold also
if lg) = lf)

Now we can further calculate the profile of the
emitted electron (the final state being lE,j- ize)
as well as that of the emitted radiation(the final
state being

i
2Ez]-

i ftd, the limits representingr- ~). From (47c) we have

e. =-Y[l + (Ijey)(I"&/I".)1. (57'}

H)@i,g Hiz), o
fE — g+ az —Ei ~ z-E(

a+

Htsf g(z —W, +zF/2) +H'Is i g(Wg~ zF«/2)
=(s -E,)[(s —W, +zF,/2}(s —W, +zF&2) —(W,.—zF,&2)(W„-zF„/2)] ' (69)

We insert now (59) in (7) and retain, as before the component of n, s (f) which does not decay exponentially
with time:

or

(f )
Hgsi, g(Ei —W, +zFJ2) +Hisi, ,(W« —zF«/2)

(E, —W, + z'I' /2)(E, —W, +zF+2) —(W„—zF,+2}(W —zF„/2)

) iz
IHtsg, g(5, +zF+2) +Hagi, ,(W,g

—zF,g/2) I

(5,5 —I', I'/4 —IW, l + IF I'/4)z+[5, F /2+5 F/2+Re(F, W, )]z

(60)

with 5~=E, —W~, 5, =E& —W, .
In a similar manner we have from (47d}:

Gqs —(z —Eq) '(Hqsq, zG~+Hqsz„G, )

Hzzz, z(z —W + zT /2) +Hzsz, (W —zF /2)=
(s —E,}[(s—W, + zF /2}(z —W. + zr g2) —(W,.—zF,&2)(W —z F.,/2)]

which substituted in (7) results in

( )
Hzsz, g(5, +iF+2) +Hzsz a(W g zF~/2)

2
" =(5, +zF,/2)(5. +zF~2) —(W„- zF,+2)(W —zF.,/2)

with 5, =E,—W, and 5, =E2 —W, . Finally,

I Hzs, (5, + z F/2) +H ~,(W, —zF /2) lz

(5~5, —F~F/4 —
I Wz, t + I F~, I '/4) + [5~F+2 + 5,F~/ 2 +Re(F~,W~)]z

(62)

(63)

(64)

If we expand the K matrix, as in Sec. III above, we obtain for (61) and (64) (H~„=O)

(66)

and

where

(67)
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and

x = 6,/(I'g2).

tgggy —~ +tgyg + gg~

a~ t-~ le„ I' z
qy' E, (1+v' [lH I ')'D

(69)

(68)

If we further make the approximation that
I W,~ I2

«F, and I'„—= 2vH, +,~, then Eq. (66) reduces to
the result obtained earlier by Armstrong and
Beers'2 when the limit 1", 0 is taken. Specific-
ally we have

~1B,~ j2I'(.(" "'l'=
~q,'-(I+.~iH i~)2D

where the elements of the K matrix are given by
Eq. (12), with

IIE)=lfe} and l«)=lf.~.)
for 2&l ~n+l. (V3)

In Eq. (72), A =1 corresponds to the eigenstates
asymptotically describing an ion plus an out-
going electron, and A=2, . . . ,n+1 correspond to
the n eigenstates asymptotically describing an
atom in state

I f~) plus an emitted photon of fre-
quency eh. From the boundary conditions and the
orthonormality of the eigenstates

I AE), (see Ap-
pendix) one obtains the equations satisfied by the
Bi (E):

Q (1 —ivy)~, ,ai" 6(A—, A') (V4)

x [(qggy) + (q + qy —g) ] (70)
or

with

& =(6.& —2
I W..I'/r. )'+ (zr&2+ 6, + 2r,.W„/1.)

=-(6~)'+ (xr,/2+ 6,)' = 62(I +z'). (71)

Both Eqs. (61) and (64) are quite complicated and
it is difficult to make general statements concern-
ing the shape of the spectrum of either the elec-
tron or photon. However, it is clear that if 6,
=5~ (that is, if W, =W~) and for large values of

W„, the states la) and g&d, ) will form Autler-
Townes doublets, '~ and asymmetrical doublet
structure will be observed in both electron and
photon spectra. However, the value of 8'~, at .

which the doublet structure appears is not easily
obtainable from these complicated equations.

8) = cofactor(Tg(}/IT I (75}

(z-E,)G, =1 ++ JldEgH, , „z„Ggz (76)

(z —E~)G„z„Hgz „G„——all A,

which lead to the expression

[z —&0,(z) +-',fy, (z)]G,(z) =1,
where

la I'
(d, (z) =E, +Q (p dEg ——'

Eh 8

where T =-2-i'.
With the formal solution of the eigenstates, one

has the decoupled equations

V. MANY FINAL STATES
y.(z) =2.g IH.,„„I',„..

I-et us now generalize the theory of Secs. II and
III to the situation in which there are a number of
lower energy atomic states I f,}into which the ex-
cited atom can decay radiatively. We assume
there are n such atomic states; when the outgoing
photon states

I
&a,) are included, there are n con-

tinua
I f,(d, ). The states are assumed to satisfy

relations similar to those given in Eq. (2).
If one proceeds as in Sec. II and takes the Four-

ier transform of the time-dependent coefficients
a, (t), one arrives at a set of (n+2) coupled equa-
tions similar to those in Eq. (8). As before, de-
coupling of the equations is achieved by the K-ma-
trix method. In the present case, the (n +1}eigen-
states of H are given by

(gz) g (lm)~g ~ J(I) i~: qz) ~~(~)

Bg E /E
l=&

8"=(2v/I'. ) IH. .-.I', A -2 (80)

where 5„5»are the fractional probabilities of
decay into

I 1Ej and
I AE). The usual fractional

probabilities for transition into the various chan-
nels are, in this case,

z.=(2v/I'. ) I(a IH Ife) I'

Z„=(2v/I,') l(s IH If,~,) I',
(81)

(82}

where

~.'=2~ l(~IHI(~)l'+Q l(~(~If~)l' (»)
l=2

%e make the same simplifying assumptions as in
Sec. II thus introducing into Eq. (77) W, =m, (E,)
and I', =y, (E,). Then proceeding through the same
steps that led to equations (30) and (31), one fin-
ally arrives at

~, =(2./r. ) IH., (., I' (79)
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Now let us make the same first-order approxi-
mation as in Sec. III, so as to investigate the char-
acter of solutions for many final states. If we
keep only the first-order contributions to the K
matrix, then only K„and K„,/» 2 are nonvanish-
ing and explicitly evaluating the matrix T in this
approximation, one finds

The fractional probabilities then are given by

eFq~ 1 1 "'
F~» qg —A

~/A )y)2 Y+ ~+g 2
VA e 0=2 ~0 ~A

(92)

I7'I=~+" Q I» I',
z=2

cofactor(T«) =i'«, /&1

cofactor(T») =i'», / c 1

cofactor(T«} =1,
cofactor(T») = IT I

—v'IK„ I', /o1

(84)

(93)

The above expressions for the fractional probabil-
ities are quite complicated. Their deviation from
the usual F, and F~ depends on (1/F, )(F»/q, ) or
1/q2~ not being very small for some value of /.

VI. TWO OR MORE ELECTRON CONTINUA

cofactor(T„, ) =- vK, +«, k, /, +1, km/

Then, the eigenstates have the form

I
&»& =

I

& I'
(II

«&+~~ /» i II «&)

and

I»»&= I»»&+ I& I'(~«. l
&»&

(S5)

qi = (a I/il «&/v(a I/i
I
1E&Kii (S7}

Before calculating p, and 8'& we must find the
relationship between r, and r, . It is readily found
that

and

ITl' J", , 2 q

(a9)

Summing over A in the above equation and adding
to this the expression above it, we find

ro y
Po + Pk

(90)

I et us denote & the proportionality constant relat-
ing the I"s so that

r' 2

+gr, - &e
z, Cz/ ~

9'y J
(91)

m K&xKzi ~E . 86
z=2

The evaluation of the fractional probabilities is now
quite straightforward.

In order to express the quantities ~, and &~ in a
form analogous to the previous result, we intro-
duce the Fano q parameter for each state I/E),
l~2

28}=(2~/r, )~ "[lie}(jeI//la) —(j.)(ie If/1.)},
where

r, =2v[((alkalis) '+ (alalje)('},
The new states have the properties

(n~e Ine') =5(m, n)5(e —e'), m, n =1, 2

and

(a la I2e) =O.

(95)

As in the previous sections we employ the K-ma;
trix method to diagonalize the Hamijtonian with
respect to states Ile), I2e), and

I
f&o). The new

states are given by expressions analogous to Eq.
(72) and the pertinent expansion coefficients are
given by Eq. (75). Repeating the procedure which
led from Eq. (21) to Eq. (32) and making the same
type of approximations we obtain

'-~. =(2v/1;}l(al/belie}l'. /=1, 2
2' 2

(96)

r,
with

r.=2.41(a I/f Ile}I'+
l
(a I/i

I
2e3I'+ I (a I& lf~}I'3.

To obtain a first-order expression for 5 and r,
we consider the same approximation to the K ma-

In this section we examine the case of an excited
state Ia) which can decay to state

I f), by emitting
a photon of frequency m, and also can autoionize
to a number of states

I 0), 0 = 1, 2, . . . by emitting
an electron with energy e. We will limit our cal-
culation to two states, lie} and Ije), of the latter
kind for the sake of simplicity. Generalization to
more states is straightforward.

First following Fano, ' we construct two new
states I1e) and 2e):

lie) =(2~/r, )'"[lie}(i~lala)+ Ije)(je la la)}

(94)
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trix as in Sec. III. Namely, we will consider only
the lowest-order term in an expansion of K in pow-
ers of H&&. Thus the resulting T matrix is

T =1—i'=
—i mK„( —i'„q

-iwK2„ (97}

U we define a profile parameter

q = (a I
H

I f&u)/v(a I
H

I le)K&„

and

Eqs. (99) become

'E„(l+T—,) +I/q'
a

(100)

(101)

and

1 r,' 1
&2e=~I'+PTb 1+~

1 I'~ 1
g~

——~—Ep 1+~
a q

I', =—'(1+T~Fi, ),

(102)

(103)

&=1+~~+7', .b ~ (104)

Finally, we have for the fraction of decays result-
ing in a photon

y~ = (E~/6)(1+1/q2)(1 +T,E„) ' (105)

and for the fraction res-ulting in an electron

5s —'~ye+ ~2e —. F1e 1+Th+ ~ )

As discussed by Pano, ' any number of electron
continua can be handled in a straightforward fash-
ion by making combinations of states analogous to
those defined in Eq. (94). We shall therefore not
discuss the many electron-continua problem.

~ =«tlT I =1+v'(l&i. I'+ 1&2- I'). (98)

Introducing the approximate expressions for le],
I2e}, and

I
f&oj in Eqs. (96) we obtain

= 2r', (1+v'lz, „l')(alHlfe&
a +i'„,(alHI f&u) ',

(99)
= 2m

~2 p g~ I -"Ifi-ff-2(a IH I
Is&

a

+f~z„,(a IHlf~& I',
=2m'~ fmx, „( IaHII )e+( laHI f& ) '.

I"~lh

UII. CONCLUSIONS

We have studied the effects of final-state inter-
actions on the decay of (highly) excited states of
atoms which can autoionize. It is shown that this
final-state interaction can affect the relative prob-
abilities of autoionization and of radiative decay of
such states. Physically, this is due to the fact
that, in the case of autoi. onization, the resulting
electron and ion can undergo dielectronic recom-
bination, leading to a final-state atom plus emitted
photon; in the case of spontaneous emission, the
photon can be reabsorbed, resulting in the emis-
sion of an electron. Thus, as can be seen in Eqs.
(43) and (44), the probability of autoionization is
reduced by a facto r (1+v'IH..I') ' -=1 —v'IH- I'
which describes the loss due to recombination, .and
increased by an amount - w2 IH,„H„,I2, which des-
cribes the rate of reabsorption of emitted photons.
Exactly parallel statements can be made concern-
ing the probability for spontaneous emission of a
photon.

The approximate expressions obtained for 5, and
8:& in Sec. III show that these quantities can differ
from the usual expression E, and F~ if I/qy is of
the order of unity, or if ( I/q~2)( E~ /E) is large. As
discussed in Sec. III in the latter case the final-
state interaction is so large that the approximate
Eqs. (43) and (44} may be suspect and the more
complicated expressions of Sec. II should be used.
However, if (I/q&~)(E~/E, ) «I, then Eqs. (43) and
(44} should be quite adequate to describe the effects
of final-state interactions. Perhaps the most
striking prediction of these equations is that, even
when (I/q&)(E~/E, ) is very small, there can be a
large difference between y~ and E~ if 1/g is large.
That is, the fluoresence yield is particularly sen-
sitive to the effects of final-state interactions.

In Sec. IV, we showed that the absorption spec-
trum of the autoionizing state will be qualitatively
similar to that predicted by theories having no
final-state interaction. ' However, it was noted
that q~, which parameterizes the absorption spec-
tra [Eqs. (57) and (58)], is defined somewhat dif-
ferently from the q's which parametrize the emis-
sion spectra [Eqs. (34}, (88}, and (100}J. These
emission q's go, in the limit discussed in Sec. III,
to the q parameter of Pano'; the absorption q~ does
not, however, being related in this limit to a
"Fano-type" g~~ by

e, —=4'g [I + (I/Vy)(Fp/Fe)]

Although the difference between these terms is
small in the limit in which this approximation is
most nearly correct, it does indicate that in gen-
eral q parameters measured in emission will be
slightly different from those measured in absorp-
tion.
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In Sec. IV, we also showed that this final-state
interaction caused the spectra of both the emitted
electron and emitted photon to be quite compli-
cated. However, because of their complicated
form these spectra can be used to obtain a great
deal of information concerning the final-state in-
teraction; in particular, they can be used to deter-
mine the q parameters of both the initial and the
final atomic (ionic) states.

The calculations of Secs. V and VI can also be
done in an alternative manner which makes the
computational. 1y equivalent to the problem consid-
ered in Secs. II and III. This alternative consists
of first using the K matrix to diagonalize HJ, ~ with
respect to all of the possible "ion+ electron" and
"atom+ photon" states. Then, following Fano, '
from thai subset of diagonalized states whichas-
ymptotically look like the atom plus a photon, one
can make one linear combination which interacts
with ~a), with all the other orthogonal combinations
having zero matrix elements with ~a). Similar
combinations can be made using the subset of diag-
onalized states which asymptotically go to ion plus
electron. Then, the state a} interacts with only
a single combination of states which are asymp-
totically atom+photon, and only a single combina-
tion which are asymptotically ion plus electron,
just as in Sec. II. The resulting expressions, al-
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APPENDIX

The requirement that the wave functions con-
structed by the K-matrix technique described in
Sec. II be orthonormal leads to requirements on
the set of coefficients 8, (E). We note that the op-
erator H„F is a Hermitian operator so

~~s. is= (jE'la~pliE)
= V g, gag

The orthonormality condition requires that

(alE APE')= ~(n, P)~(E- E').
It follows that

(Al)

(A2)

though more compact. than those of Secs. V and
VI, may be less convenient to use. For example,
although this approach would easily give the total
fluorescence yield, it would not lead in a straight-
forward way to the fluorescence yield to a partic-
ular final state. In addition, the resulting q para-
meters would be quite complicated functions of
Fano- like q parameters.

5(a, B)il(E E) QB,'"-(E)B=(E')(()E
(

E')+ Pm&'f dE (dE" ~mE")'
ram

+pa ~l
dE" (/E~kE") —""" 'K

+P tP JIBE ddE'" "'m'm — "' m( E"
~
')E)E'

g g gf g
AP

=Q
~

&(~ m)&()E-E')+(E-E') '(&rs, mz -ffms;rz)
r, m E

++EJdd" ' *' B' (E)B (E')
B)(Ed EB) . l (d (A3)

But Fano' has shown that

(P dE" „—, „=(y dE"f(E"), , „— „+v 6(E — ')E5( EE") (A4)

so that the principal value integral in E(l. (A3} becomes

(E —E )' Jdd Edm, E', (l/(E —m"E"m) 1/( - '
)) +EW RE~m, , -Em, .5(E —E').

The integral may be simplified by expansion of the K-matrix elements as before
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1 ~z y+jz~. ms~ ~ +~ + dE Js» se .~ss ls.
~g gl ~ g g1 g]l ggNsfg ~ g

8

jS»s lS p + ~ ~ d~ SS~sMgg tnt&

g g gE, E ~ g

r 1
+ Q (Ei Ee)(E ~ (~sei JE&+ss, t&KS&~, m&' ~se, Js~~is, lsKJs~, ms~)

4 /

(A5}

vrhere jE" and s& have been interchanged in the second term in the integrand of the double integral. There-
fore, the double integral vanishes, while the first integral is equal to an expansion of (K,s,~,—K„s., is)
i(E —E'). Summing up terms, we find

&(a, ll)5(z —z') = Q (5(l, m)s(E -z')+w' Q zfg, ,azine, gn(z- E'})B", *(z)B~(E').
gsm

(Ae)

The orthonormality condition then reduces to

5(n, P) = + 5(l, m) +v Q K),(E)Kq„(E)
i

l~m
g [5„zvK„-(E)jB) (E) = 5(g, o.) . (A8)

A sufficient condition for orthonormality then is

"B7'(E}Bm(E)

= Q (([5~i —i«yi(E))Bf(E)j'
l,.m, g

x Q5j„-i'~„(E)|B„(E))). (A7)

Defining the matrix T by

T (E)= 1 -i'(E)

it follows that Bf is given by Eq. (75}.

(A9)
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