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Deflection of atoms by a resonant standing electromagnetic wave
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Deflection of an atom due to momentum transfer from a strong resonant standing electromagnetic wave is
investigated theoretically in the limit of short atom-field interaction time. The translational and internal
motions of the atom are treated quantum mechanically, while the field is treated classically. It is shown that
momentum transfer from a standing wave to an atom proceeds at the induced or Rabi rate, rather than the
spontaneous rate characteristic of radiation pressure. In a typical case, atomic deflections of order 1 are
achieved with 10 W/cm field intensity in a time less than the natural lifetime of the excited atom.

I. INTRODUCTION

The use of a resonant electromagnetic wave, or
a combination of resonant and static fields, to de-
flect a beam of neutral atoms has been the subject
of renewed interest since the advent of higher-
power tunable lasers. A potential application of
laser deflection is to problems of laser isotope
separation.

Several methods of photodef lection have been
proposed, ' ' some of which have been demonstrated
experimentally. ' " Most of these methods require
an interaction time that is long compared to the
natural lifetime of the excited atoms. This makes
the practical application of these methods impos-
sible in many cases, because an atom excited by
the resonant radiation makes transitions to meta—
stable states, which are not affected by the applied
field. ' Such transitions remove atoms from the in-
teraction cycle, and little or no deflection is pro-
duced. The purpose of this paper is to show that in

a strong resonant standing wave, significant atomic
deflections can occur in a time less than the spon-
taneous lifetime of the excited atom, and hence the
problem of transitions to metastable levels is cir-
cumvented by the speed of the process.

%hen an atomic beam is irradiated by a strong
resonant electromagnetic wave, Bbsorption-emis-
sion processes proceed at two distinct rates. Pho-
tons are absorbed from and emitted into the applied
field at the induced rate 0, and occasionally pho-
tons are spontaneously emitted, in random direc-
tions, at the spontaneous rate y. Deflection or
scattering of the atomic beam results when mo-
mentum is transferred from the field to the atoms,
and the rate of momentum transfer depends on the
nature of the applied field.

If the applied field consists of a single plane
wave, momentum is transferred to the atoms at
the spontaneous rate y. This momentum transfer,
i.e. , radiation pressure, proceeds at the spontan-
eous rate, because absorption followed by induced

emission into the same field mode involves no net
transfer of momentum, while absorption followed

by spontaneous emission transfers an average of
one quantum of momentum for each spontaneous
event (isotropic spontaneous emission does not
carry away the momentum acquired by the atom
through absorption).

If the appl, ied field is composed of two or more
plane waves, an atom can absorb a photon from one.
of the plane waves, and induced emission can cause
that photon to be emitted into a different plane
wave, with a resultant transfer of momentum at the
induced rate Q. Since the induced rate may exceed
the spontaneous rate by many orders of magnitude
in a strong applied field, it is expected that deflec-
tion processes operating at the induced rate will
be more efficient Bnd more rapid than processes
that operate at the spontaneous rate. In the follow-
ing we shall show that momentum transfer in a
standing wave proceeds at the induced rate, and
that it is thig feature of the interaction that gives
rise to the rapid deflection mentioned above.

In the model adopted here, the internal motion
of the atom is treated as a two-level system. 'The

center-of-mass motion of the atom is treated
quantum mechanically, and the resonant standing
wave is treated as a classically prescribed elec-
tric field. Analytical solutions of the Schrodinger
equation are obtained, in the rotating-wave ap-
proximation, on the assumption that the Doppler
width associated with initial beam spread and sub-
sequent atomic deflection is small compared to
the frequency width associated with the finite time
during which the atom interacts with the resonant
radiation.

In Sec. II, the theory of deflection of an atom by
a resonant standing wave is developed, and the ef-
fect of finite divergence in a beam of atoms is
briefly discussed. In Sec. III the limit of validity
of our assumption concerning Doppler effect is ex-
amined, and a numerical example is given to il-
lustrate the magnitude of deflections obtainable.
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P, (8) = p, W(p, e),

The Hamiltonian for Bn atom in a classically pre-
scribed electromagnetic field, in the dipole ap-
proximation, takes the familiar form

H =P'/2M+H, —j ~ E(R, f),

where P'/2M is the kinetic energy associated with
the center-of-mass momentum T, Ho is the Ham-
iltonian for the internal notion of the unperturbed
atom, p, is the dipole moment operator, and
f(R, t) is the electric field evaluated at the center-
of-mass position R.

We shall calculate the motion of an atom that
starts out moving in the positive z direction, en-
ters a region of resonant radiation at z = 0, and
exits the interaction region at s=L. The electric
field in the interaction region is taken to be a
standing wave of the form

& (x, t) = 2 (8'/c)'i '4 coskx cost@, (2)

for atomic motion in the x direction. As the atom
moves along the z axis, the interaction term in Eq.
(3) is switched on as the atom enters the interac-
tion region, and is switched off Bs it leaves this
region.

Upon exiting the interaction region, the atom
ha, s a certain probability density W(p) for momen-
tum p in the x direction. This momentum density
determines the probability density for displace-
ment x as z -™,P(x) = (p,/z)W(p, x/z). If the de-
flections are small (x/z «I, 8=x/z), the prob-
ability density for deflection 8 is

which is equivalent to two plane waves, each of in-
tensity I, counterpropagating along the x axis.
The polarization vector e is a unit vector trans-
verse to the x direction.

For an electric field of this form, only the x
coordinate of the center of mass appears in the
Hamiltonian. It follows that motion of the atom in
the y and z directions is unaffected by the field,
and only motion in the x direction is of interest.
Elimination of the inessential degrees of freedom
yields the Hamiltonian

H = P„'/2M +H, —p, ~ K (x, f )

where p, is the ~ component of atomic momentum.
To obtain the transverse momentum density

W(p), we solve the Schrodinger equation in the mo-
mentum representation. We start by writing down
the general equations of motion, and then simplify
these by using the two-level-atom and rotating-
wave approximations. The unperturbed Hamilton-
ian H' =P„'/2M+H, has eigenvectors ~n, p) = ~n) ~p)
and eigenvalues E„(P)=P'/2M+ E„, where ~n) and
&„ are the eigenvectors and eigenvalues of B„and
~p) is the eigenvector of P„with eigenvalue p. An
arbitrary state vector is expanded as

where Q„(p) is the amplitude for momentum p and
internal energy E„. Upon substituting this expan-
sion into the Schrodinger equation, its ~g)/st =H (i{&),

and using the orthonormality of the basis states
~n, p), we obtain the equations of motion

&a " = g f zp'(m, p /rr/ m, &4 &ID'&.

Evaluation of the matrix elements (n, p ~H
~
m, p'),

using Eqs. (2) and (3), is straightforward. The ex-
plicit equations of motion are

—cosa&tg g [p„(p —kk) + 4' (p+ +k)] i

(7)

where g = (8'/c)' '(n~ p, c ~m). Equation (7)
shows that a change of the excitation state of the
atom is accompanied by a transfer of momentum
+AN. Note that g„„=0if the atomic levels are non-
degenerate, The transformation

p„(p) = C„(p)exp[-fe„(p)t/k], (8)

with e„(p) =p'/2M+E„, puts Eq. (7) in the form

ig " p = —cos&otg g„(C„(p—Sk) exI&[- i(v„„+5- vp/Mc)t]+ C (p+6") exp[-f(& + ~i+ &p/Mc)~9
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c,(p)=(iQ/2)[c (p @k)+c (p+kk)],

C (p) = (iQ/2)[C, (p —Kk)+ C,(p+ A'k)]

(10)

where &u„„=(E, E-)/tt, 5=k+'/2Mc', and the am-
plitudes C„(p) are now slowly varying functions of
time (interaction picture).

If an atom, initially at rest, absorbs a photon of
energy k&o and momentum N&o/c, the internal en-
ergy of the atom increases by the amount Nco „, its
kinetic energy increases by the amount (tt&u/c)'/

2M=@5, and conservation of energy S~=N~ „+@5
shows that the resonant frequency of the transition
is ~ = u „+5. Thus 5 is a frequency shift assoc-
iated with recoil of the atom. The quantities +&op/

&4c are Doppler shifts due to motion of the atom in
the x direction. If the interaction time is suffic-
iently short, then both recoil and Doppler shifts
can be neglected. The condition that arpt/Mc « I
has the simple physical meaning that the frequency
width associated with finite transit time of the
atom across the field (transit time broadening) is
large compared to the accumulated Doppler shift.
We make this assumption of short interaction time
in the following analysis, Bnd discard exponential
factors of the form exp[-i(5 +vp/Mc)tj in Eq. (9).

We shall consider the case where the applied
field is resonant with only a single atomic trans-
ition (&o= ~„„, m =+, n= —). Then if we neglect
all but the two amplitudes C,(p) involved in the
transition (two-level atom approximation), "ex-
pand cos~t in exponentials, and keep only terms
on the right in Eq. (9) that vary slowly with time
(rotating-wave approximation), "Eqs. (9) reduce
to

able solutj. ons are obtained for all real values of
s. The general solution of Eqs. (12) is a superpos-
ition of waves

D,(p, t) = a, (s) exp[isp+ia(s)t]ds. (15)
v'2m

At t = 0, Eq. (15) reduces to a Fourier transform
relation between a, (s) and D', (p) = D, (p, 0). When
the inverse of this transform, namely,

00

a, (s) = D', (p) exp(-isp) dp,
v'2m

(16)

is substituted into Eq. (15), we obtain

D, (P t) = G, (P -P', t)D,'(p') dp',
~ CO

(17)

where

] . . 4

G, (p, t) = — exp[+i Q(s)t+ ips] ds .
27r

e lecos8 P (yi)nJ (z)s+sn8

the propagators G,(p, t) are readily evaluated as
series of Bessel functions

G, (p, t) = Q (ai)"J'„(Qt)5(p —nA'k), (19)

With the help of the dispersion relation Eq. (14) and
the identity

where Q=(8mI/cK ) '~'(-I p, ~ i I+). The phases of

I
+) are chosen so that Q is real.
Equations (10) may be solved exactly. The trans-

formationn

and the general solution Eq. (17) becomes

D, (P, t) = g (+i)"d„(Qt)D,'(P ntik) . — (20)

D, (p) =[C,(p)+C (p)]/2' '

D (p)=[C,(p) —C (p)]/2' '

decouples Eqs. (10) as

D, (p) = (iQ/2)[D, (p —Nk) + D, (p+@k)],

D (P) =-(iQ/2)[D (P —Ek)+D (P+ &k)j.

Upon substituting the trial solution

(12)

Consider the case where the atom is in the lower
state and has momentum p =0 at t =0. In this case,
C', (P) =0, C'(P) =[5(P)]'~', and from Eqs. (11),
D,'= +[-,'5(p)]'~' (square root of the 5-function is
used here so that the probability that the at,om is in
the ground state, namely, P'= j IC'(p)I' dp, is
properly normalized to unity). It follows from
(11) and (20) that the momentum probability den-
sity w(p) =

I
c I'+ Ic- I' = ID. I'+ ID- I' has th«orm

D, (p) = exp[isp + i&t] W(p, t)= g J„'(Qt)5(p —nlk).
n=-~

(21)

a(s) = Q coshks (i4)

into Eqs. (12), we obtain the dispersion relation Equation (21) states that the probability P„(t) that
the atom has acquired momentum n8k (n =0, +I,
+2, . . . ) is

for waves in momentum space. Physically accept- P„(t)= Z'„(Qt}. (22)
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In cases of practical interest, Qt is a large num-
ber. For in[&At, the probability J„'(Qt) is not a
monotonic function of n, but tends to increase with

lnl and has maximum "ear ln I= At Fo. r ln I~At,
J'„(Qt) decreases rapidly to zero as lnl increases.
In view of Eq. (4), the maximum deflection is 8,„
=hkAt/p, . This result shows quite clearly that
momentum is transferred to the atom at the in-
duced rate Q.

The mean magnitude of momentum transferred
to the atom,

(lp l) = Q hk
l
n

l
J„'(Qt), (23)

can be expressed in the closed form"

(l p l) =hk(Qt)'[J,'(Qt)+ J', (At)]

-hkQtJ, (Qt)J, (At), (24)

and approaches the value (lP l) = 2hkAt/~ =0 54nkAt
The rms momentum, at any time ~, is

given by the simple formula [(p')] ' =hkAtjJ2
= Q. Vl@kQt." Thus the spread of momentum in-
creases linearly with time.

In the above example, we assumed that the in-
cident atomic beam ha. s sharp momentum P = 0,
i.e. , the incident bea, m is a. pla, ne wave, and hence
has infinite transverse extension. For a finite col-
limated beam of width &x, the initial spread of
momentum is &p-N/&x, and the ratio of this
spread to the momen'turn delivered by a single pho-
ton is &p/hk-A/2m&x. It follows that there is a
little or no overlap of the terms in Eq. (20) when
&x is large compared to the optical wavelength,
and the probability density for momentum becomes

Our theory is based on the approximation that
recoil and Doppler frequency shifts 5 = N~'/2Mc'
and asap/Mc, respectively, are negligible. Ac-
cordingly, exponential factors of the form exp[-i(5
+ &uP/Mc)t] were replaced by unity in Eq. (9). This
approximation is valid when (5+ ar lp r/Mc)t «1.
The recoil shift is half the Doppler shift when lp l

Since we are only interested in ca,ses where

l p l
» 0'k, the above condition becomes co

l p l
t/Mc

«1. Replacing lp l
by the rms value [(p')]'t'

=6~At/M2c derived above, we obtain a constraint
on the interaction time

t & (2'i'Mc'/huPQ)'i'. (25)

'The maximum interaction time permitted by Eq.
(26), t, determines the thickness of the interac-
tion region L =u t, and the number of absorp-
tion-emission processes experienced by the atom,
n = Qt . If the atoms issue from an oven at tem-
perature T, p, =(2MkT)'~' and u, = (2kT/M)'~' (here
k is Boltzmann's constant). The rms deflection is

8, , = k(uQt /2'i 'cp,

=[hQ/2' 'kT]' '

of a plane wave by a sinusoidal phase grating. "
In effect, the atomic beam is diffracted by the
periodic amplitude [E(x)~coskx] of the standing
wave, and the deflection angles &„=nik/p, are pre-
cisely what one would expect on the basis of the
optical analogy, if the atomic beam is regarded as
a wave of wavelength equal to the de Broglie wave-
length A, =hjp, .

III. NUMERICAL EXAMPLE

W(p, t) = Q J„'(Qt)W'(p —nttk), (25)

Consider a mildly refractory, moderately mas-
sive atom with a strong visible absorption. Let

where W'(p) is the initial momentum density. The
pattern of deflections, in this ca,se, is the same in
all essential details as that discussed above.

If the atomic bea.m diverges with half-angle of,
say, 8= 10 ' rad, and has a. typical thermal vel-
ocity u -5&& 10~ cm/sec, then the initial spread of
transverse momentum is not small compared with
@k, and it is expected that inte rfe rence due to
overlap of the terms in Eq. (20) will affect the
probability density W(p, t). It turns out, however,
that, due to a rapidly va, rying phase factor assoc-
iated with divergence of the beam, the scale of
such interference is small compared to &P =Sk,
and therefore is almost certainly unobservable.
%e do not present this calculation, because the
smoothed distribution is the same as Eq. (25).

It is interesting to note that Eq. (21) is formally
identical to the equation for Fraunhofer diffraction

T = 1 000 K, ~ = 1.6 x 10-" g,

p, = (-
l

p, ~ i l+ ) = 4 D, ur = 3 && 10~ sec

Then, fort =2.5& 10' /cm' in the interaction re-
region, we calculate

0=5.6x 10" sec ', n=3500

g „=62x 1Q 9 sec, L =26& 10 cm

8, , = S.S & 10 ' rad= 2.2'.
Thus a 2' deflection is obtained for our "typical"
atom in a. field of 2. 5&& 10' W/cm'. The interaction
time required for this deflection is less than the
natural lifetime of the transition (r = 5 x 10 ' sec).
To achieve the corresponding 2.6- p, m beam thick-
ness requires focusing a 2.6-mm diam. laser beam
in one dimension by a, factor of 10'. Thus for an
unfocused laser intensity of 2.5 k%/cm', a total
laser power of about 130 % is required.
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