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Potential energies for Ca2+: Cross sections for collisions of Ca+ and Rydberg Ca with Ca
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Ab initio self-consistent-field {SCF)and configuration interaction (CI) calculations have yielded potential
energy curves for the lowest X+ and X+ states of Ca2+. , The best CI calculation yields the following
parameters for the 'X„+ state: D, = 1.04 eV, R, = 7.55ao, eo, = 119 cm ', and B, = 0.0526 cm '. The
long-range regions of the 'X+ and X+ potential curves are both characterized by a Ca dipole polarizability of
170.4a 0, in good agreement with the experimental value of {169+17)a0. The charge-transfer total cross
sections have been calculated over the energy range E, = 10-10000 eV and are well reproduced by the
functional form Q" (A) = 15.67 —3.2761og,s E, (eV). The elastic differential-scattering rainbow angle is
predicted to be located at E8„=90 eV deg. Collisional-ionization cross sections and rates were also
estimated for Rydberg-atom Ca~~+ ground-state Ca collisions. The reaction rates are predicted to be on the
order of 10 ' cm'/sec and depend linearly on the principal quantum number n of the Rydberg atom.

I. INTRODUCTION

Very little is known experimentally or theoreti-
cally about the lowest 'Z„' and 'Z+ states of Ca, +.

Spectroscopic information is lacking and the only
available theoretical information is the asymptotic
splitting between the 'Z„' and Z,' states presented
by Sinha and Bardsley. ' However, spectroscopic
information is available on the low-lying excited
states of Ca, indicating that they are excimer
states similar to that observed in the rare gases. 2

Balfour and %'hitlock' have presented an RKR anal-
ysis for the A 'Z„' state of Ca, that indicates it is
bound by approximately 0.75 eV at an equilibrium
separation of 7 2QO By analogy with the potentials
of the rare gases, we could predict a similar
shape for the potential curve of the lowest 'Z„' state
of Ca,'. Calculations by Stevens and Krauss' on
the Mg,

' system further reinforce this prediction.
Thus the motivation for this study is to provide ac-

curate gb initio potential energies for the bvo lowest
states of Ca,'. Using these ab initio potential
curves, we have calculated the total cross sec-
tions for charge exchange and predicted the loca-
tion of the differential scattering rainbow angle.
Also, we have used the information obtained from
the long-range portions of the Ca, ' molecular
states to provide estimates of the chemi-ionization
cross sections for collisions between Rydberg and
ground-state Ca atoms.

II. ELECTRONIC %AVE FUNCTIONS AND POTENTIAL

ENERGY CURVES

A. Calculations

Electronic wave functions and potential energy
curves were calculated for the lowest 'Z„' and 'Z,"

TABLE I. Slater basis set for Ca.

nL

1S
1s
2s
2s
3s
3s
3S
4s
4s
4s
4s

19.9731
32.1500
17.2394
8.40361
7.46907
3.95936
-3.01657
3,09105
1.62884
1.01203
0.66733

2p
2p
3p
3p
3p
3P
4p
4p
3d

3d

9.12915
15.9947
7.37779
3.62974
2.34862
1.64038
1.0942
0.6977
4.76666
2.1222
0.8007

states of Ca, ' using both the analytical expansion
restricted Hartree-Fock (RHF) and the configura-
tion interaction (CI) methods. In the CI calculation
the electronic wave function was expanded in an
orthonormal, n-particle basis set of D„„symme-
try- and equivalence-restricted configuration state
functions (CSF). These CSF were linear combina-
tions of Slater determinants such that each had the
symmetry and multiplicity of the molecular state
under consideration. The spatial orbitals in the
S13ter determinants were expanded in terms of an
elementary basis set of Slater-type functions
(STF).

The elementary basis set used in this study is
shown in Table E. The Ca basis set of Clementi
and Roetti' was augmented by two 4P functions and
three 3d functions. The exponents for the 4P func-
tions were optimized for the self-consistent-field
(SCF) energy of Ca(4s4p, sP), and those of the Sd
functions were optimized for Ca(4s3d, sD). These
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added functions provide the flexibility needed to
describe the polarization of the Ca atom in an
electrostatic field, and allow for the distortion of
the atoms in the molecule. The final basis set
yielded SCF energies of -676.758043 and
-676.569769 hartrees for the ground states of
Ca and Ca', respectively. These energies com-
pare well with Clementi and Roetti's' results of
-676.75803 and -676.569 89 hartrees, which were
near the RHF limit.

The SCF wave functions for Ca,' are

(core) 6o',6a„'Z„'

(core) 6(r,6o 2 'Z,',
where

(core) = Iu,' ~ ~ 5o', le „'~ ~ 5o'„Im ~2m ~1m 42m ~~.

Both wave functions dissociate formaQy to prop-
erly symmetrized products of single-CSF wave
functions of Ca(4s', 'S) and Ca'(4s, 'S}. These sin-
gle-CSF atomic wave functions are not SCF wave
functions, since a common set of spatial orbitals
is used to describe both Ca and Ca'. The SCF
energy of Ca,' at B=~ is, for both states,
-1353.323 35 hartrees as compared with the sum
of the corresponding atomic SCF energies of
-1353.327 81 hartrees. Therefore, the error in-
troduced by the common-orbital restriction is
quite insignificant, and, for all practical purposes,
the SCF wave functions of Ca,' may be considered
to possess the correct formal dissociation be-
havior.

In the CI calculations the CSF were constructed
from the occupied and virtual orbitals of the SCF
calculations. Thr ee disjoint n-particle spaces
were examined: (i} the internal space spanned by
all the CSF constructed solely from occupied or-
bitals; (ii) the singly excited space spanned by all
the CSF with only one electron in a virtual orbital;
and (iii) the doubly excited space spanned by all
the CSF with only two electrons in virtual orbitals.
From each of these n-particle spaces several sub-
spaees were considered. Their definitions were
based on a division of the occupied orbitals into
the core, inner, and valence orbitals. The core
orbitals were the 1o, 2v, 3o', and 1m orbitals cor-
relating with the K- and I,-shell orbitals of the
separated atoms; the inner orbitals were the 4~,
50', and 2m orbitals correlating with the atomic
M-shell orbitals; and the valence orbitals were
the 6o' orbitals correlating with the 4s orbitals of
the sep3, rated atoms. A subspace spanned by aQ
the CSF with fully occupied core and inner orbitals
was named a three-electron subspace because it

described only the correlation effects of the 3
valence electrons. A subspace spanned by all the
CSF with fully occupied core orbitals was named
a 19-electron subspace, because it described only
correlation effects of the 19 outermost electrons.
A null space was named a zero-electron space.

A series of four CI claeulations was performed
to examine the importance of various n-particle
subspaces. The n-particle space of each calcula-
tion may be denoted by a triplet of indices (i, s, d)
corresponding to the number of electrons corre-
lated in the internal, singly excited, and doubly
excited subspaces. For example, (0, 0, 0) denotes
a null space, and (3, 3, 3) denotes the union of the
three-electron part of the three n-particle spaces.
In this notation our CI calculations are given by
(3, 3, 0), (19, 19;0), (3, 3, 3), and (19, 19, 3). The
dimensions of these CI calculations for both sym-
metries are 65, 871, 1131, and 1937, respective-
ly. The first two are known as first-order CI'
calculations. They include internal, semi-inter-
rial, and polarization effects. ' The third calcula-
tion includes the most important external, valence
correlation' effects. The last calculation includes
internal and semi-internal corr elation effects of
the 19 outermost electrons and the external corre-
lation effects of the 3 valence electrons.

B.Potential curves

The SCF and CI energies for the 'Z„' and 'Z,'
states are given in Tables II and III, respectively.
The CI (19, 19, 3) potential curves, our best re-
sult, are also shown in Fig. 1. For ease of com-
parison, the calculated energies are given as in-
teraction energies, Z;„,(R}=E(R) —E(~). The as-
ymptotic total energies Z(~) are also tabulated.

The minimum in each of the 'Z„' potential curves
was obtained by polynomial interpolation. The re-
sult was used to obtain the dissociation energy of
Ca,'. The long-range parts of these potential
curves were also parametrized to yield C~ and
C, coefficients. The results are summarized in
Table IV. The long-range parts of both 'Z„' and
2Z,', CI (19, 19, 3) potential curves are char acter-
ized by a dipole polarizability of 170.4a'„which is
in good agreement with the experimental value' of
(169+ 17)a',, but above the more reliable theor eti-
cal value of (154+3)a,' by Reinsch and Meyer. '

Vibrational wave functions mere calculated for
the 2Z„' state using the CI (19, 19,3) potential curve.
Spectroscopic constants obtained from the vibra-
tional energy levels are given in Table V.

A comparison of the calculated potential curves
gives some indication of their accuracy. The dif-
ferences between the CI potential curves of each
symmetry are quite small. This shows that inter-



2500 B.LIU AND R. K. OLSON

TABLE II. Interaction potential energies for the X Z'„state of Ca~', E(R) —E(~) (units of 10 hartrees).

R(a, )

4.0
5.0
6.0
6.5
7.0
7,5
7.75
8.0
8.5
9.0

10.0
12.0
15.0
20.0
30.0

E(oo )

SCF

232,419
70.799
-6,371

-22.235
-29.6l5
-31.828
-31.716
-31.065
-28.726
-25.677
-19.285
-9.594
-3.028
-0.563
-0.091

-1353.323353

CI (3,3, 0)

229,167
66.431

-11.516
-27.978
-36.017
-38.825
-38.953
-38.490
-36.346
-33.237
-26.067
-13.718
-4.479
-0.849
-0.115

Asymptotic total
-1353 327942

CI (19,19,0)

227.137
65.900

-11.645
-28.034
-36.034
-38.823
-38.946
-38.480
-36.335
-33.230
-26.064
-13.714
-4.477
-0.850
-0.117

energies (hartrees)
-1353.329999

CI (3,3,3)

218.496
59.356

-14.102
-29.036
-35.960
-38.001
-37.850
-37.165
-34.714
-31.434
-24.170
-12.153
-3.746
-0.721
-0.112

-1353.355860

CI (19,19,3)

216.774
58.902

-14.246
-29.122
-36.015
-38.070
-37.884
-37.197
-34.745
-31.466
-24.206
-12.186
-3.761
-0.723
-0.112

-1353.357717

TABLE III Interaction potential energies f

R(a())

4.0
5.0
6.0
6,5
7,0
7.5
7.75
8.0
8.5
9.0

10,0
12.0
15.0
20.0
30.0

E(00)

SCF

340.451
174.555
86.808
62.469
45.969
34.668
30.386
26.789
21.146
16.951
11.076
4.332
0.530

-0.297
-0.088

-1353.323353

CI (3,3, 0)

223.120
122.485
49.00-0

28.689
16.285
8.610
5.891
3.685
0.442

—1.588
-3.069
-1.311
—0.352
-0.457
-0.111
Asymptotic

-1353.327942

CI (19,19,0)

223.265
123.057
48.773
28.572
16.294
8.758
6.110
3.973
0.851

-1.088
-2.499
-0.94$
-0.290
-0.457
-0.113

total energies (hartrees)
-1353.329999

CI (3, 3, 3)

243.370
124.982
48.848
28.642
16.244
8.759
6.269
4.394
2.016
0.875
0.395
0.429

—0.414
-0.480
-0,109

-1353.355860

. CI (19,19,3)

243.313
125,460
48.486
28.424
16,197
8.870
6.448
4.632
2.340
1,244
0.748
0.598

-0.380
-0.480
-0.110

-1353.357717

TABLE IV. Parametrized fits to the average of the Z'„and Zg long'-range potentials and to
the Z'„potential at its equilibrium internuclear separation.

Calculation C4 (hartrees4) C6. (hartreese) R,(a,) D, (eV)

SCF
CI (3,3, 0)
CI (19,19,0)
CI (3,3, 3)
CI (19,19,3)

-75.9
-81.4
-83.8
-84.1
-85.2

+2860
—9190
-8300
-4760
—4420

7.58
7.67
7.67
7.56
7.55

0.867
1.061
1.061
1.035
1.036
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TABLE V. Spectroscopic constants for the Z'„poten-
tial. 220

I I I I I I llf I I I I I I Ilf I I I I I I II

G„(cm ~) B„(cm ~) D„(cm ) Ca+ + Ca — Ca + Ca+

0.00 0.053 4.13(-6)
117.93 0.052 4.20(-6)
234.42 0.052 4.16(-6)
350.15 0.052 4.16(-6)
465.09 0.051 4.20(-6)
579.17 0.051 4.20(-6)

u), = 119 cm-~ B,= 0.0526 cm-~

Powers of 10 are given in parentheses.

nal and semi-internal correlation effects of the
inner-shell electrons, as well as the external cor-
relation effects of the valence electrons, have
little influence on the shape of the potential curves.
From this it seems safe to infer that the external
correlation effects of the inner orbitals and all the
correlation effects of the core electrons are neg-
ligible. The small contribution of the external
correlation effects also suggests that higher than
double excitations would have very little effect on
the potential curves. Inclusion of these higher
than double excitations would result in a more at-
tractive, or less repulsive interaction potential,
but the change should be small compared to the
effects of the double excitations. Qn the basis of
the above analysis we conservatively estimate that
our CI (19, 19, 3) potential curves have an overall
accuracy of +10%. Our best estimates for the
bond length and dissociation energy of Ca,' ('Z„')
are R, =(7.55 +0.05)ao and D, =1.04+0.1 eV, re-

spectivelyy.
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FIG. 2. Comparison of the calculated resonant charge-
transfer total cross sections (points and line) to the ex-
perimental data of Panev et al. from Ref. 11 (dashed
line). At energies below 200 eV, the calculated oscilla-
tion frequency {proportional to v" ) becomes so rapid that
we have represented the averaged cross section by a
line.

III. SCATTERING CROSS SECTIONS

A. Resonant charge-transfer total cross sections

The ab initio potentials from the CI (19,19,3}
calculation have been used to calculate the reso-
nant charge-transfer total cross sections for the
reaction

Q,0=2m db b sin'h6 b .
0

In the straight-line impact parameter formulation,
the phase shift difference is directly related to the
difference in potential energies b. V(R) between the
'Z„' and 'Z~+ molecular states by the integral

Ca'+Ca- Ca+Ca'.

At center-of-mass collision energies, E, =10-
10 000 e7, it is valid to use the straight-line im-
pact parameter formulation" where the cross
section Q„ is given in terms of the difference in
phase shifts 45 as a function of impact parameter
b for scattering on the gerade and ungerade poten-
tial curves:

-0.8 1
"

dRRAV(R}
v (R2 -52)1/2 & (4)

-1.2

R(ap)

I

10

FIG. 1. Ab initio potential energy curves for the ground
state of Ca2' from the CI (19,19,3) calculation.

where v is the relative asymptotic velocity of the
collision.

Figure 2 presents a comparison of the total
cross sections calculated using Eqs. (3) and (4)
and the experimental cross sections of Panev et
aL." The theoretical and experimental gross sec-
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b, V(R) =A exp (-BR), (5)

then the phase shift difference for (4) is given by

ab(b) =-g/he)bK, (Bb},

where K, is a modified Bessel function of the sec-
ond kind. The cross section is then determined
analytically, with an accuracy of -5%, by the use
of the relationship given by Firsov, '4

q =-,'vbf,

where b~ is the impact parameter for which

I ~5(b, ) I
= I/v.

(7)

(6)

tions differ by less than 5/o. Such agreement was
unexpected since the absolute values of the experi-
mental cross sections were estimated to be un-

certain by'+30 /o. The experimental relative cross
sections, however, have a much lower uncertainty
of +2% at collision energies above 50 eV and are
also found to be in good agreement with the theo-
retical values.

Rutherford et al. ' have also measured these
cross sections in the energy range 15-250 e7 with

an estimated uncertainty of +30%-60%. Their
values are found to be approximately a factor of
2.3 larger than the theoretical cross sections.
However, the energy dependence of these experi-
mental values are in reasonable agreement with

theory.
Sinha and Bardsley' have calculated two sets of

cross sections for reaction (2) that depend on the
normalization constant used for the exchange
splitting. The ab initio potentials presented here
indicate that of the two normalization constants
used, q =1.0 and 1.5, the 1.5 value is most appro-
priate for the Ca'+ Ca reaction.

To obtain an accuracy estimate of the theoretical
cross sections presented in Fig. 2, we have also
ca,lculated the cross sections using the SCF and

first-order CI potentials. Rather than calculating
the cross sections numerically, we have used a
method described previously" for an exponential

splitting between the gerade and ungerade poten-
tials at large separations. If the diffe ence po-
tential can be represented by the functional form

and (10) is valid for the comparisons of the total
cross sections obtained using the potentials calcu-
lated with various degrees of sophistication. We
find that the SCF and the CI (3, 3, 3) and CI
(19, 19, 3) potentials yield cross sections that are
almost identical. The first-order CI potentia1. s
CI (3, 3, 0) and CI (19, 19, 0), on the other hand,

yieM cross sections that are -10% larger than the
previous two sets of potentials. Hence, it appears
that the calculated cross sections are reasonably
converged on the true values and have a probable
accuracy of +10/o. A curve fit of the monotonically
decreasing portion of the calculated cross section
yields:

Q'~'(A) =15.67 —3.276 Iog„E, (eV).

A complication is that inelastic processes may
further increase the total cross sections. Calcu-
lations by McMillan' on the Li,' system indicate
that the ma. gnitude of the calculated total cross
sections is only slightly changed by the inclusion
of inelastic events. However, the osciQatory
structure is changed appreciably. Hence, the os-
cillations observed on the calculated cross sec-
tions of Fig. 2 have a high uncertainty level.

B. Differential scattering cross sections

It is also of interest to estimate the position of
the rainbow scattering angle for collisions of Ca'
on Ca. A classical description of this process is
particularly easy to apply if the attractive state
of a system can be accurately described by an
analytical potential for m.

For the 'Z„' state of Ca, ', the Morse potential
form is applicable:

V(R) =D, (exp [2a (1-R/R, )] —2 exp[a(1 -R/R, )]].
(12)

We have used the CI (19, 19, 3) potential in the
rainbow calculation with D, =1.036 e7, R, =7.55ao,
and a = 2.836. The deflection angle for scattering
from an exponential potential of the form given by
Eq. (5) is related to the impact parameter and the
center-of-mass collision energy by"

Equation (6) can be further simplified if Bb» 2 by

the use of the asymptotic expansion"

If,(Bb)=1.2533(Bb) '"exP(-Bb). (9)

Ze =ABWC, (Bb), (13)

where K, is a modified Bessel function of the sec-
ond kind. Hence, for scattering on the Morse po-
tential given by (12):

The cross section is then obtained by using Eq.
(7) and solving for bz in the formula

(10)b&~2 exp(-Bb&) =h vB'~2/3. 9374A.

For the Ca, ' system, b, V(R) is exponential for
R w 12a„and Bb of Eq. (9}ranges from -10 at 10
eV to. -6 at 10 000 eV. Hence, the use of Eqs. (7)

Ee(eV deg) = 114.59D,(eV)

xPe [e & (2P) -K (P)],

where

P =nb/R, .

(14)

(15)
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The classical rainbow scattering angle is then the
minimum value of Eq. (14).

Inserting the Morse potential. parameters given
above into Eq. (14) and solving for the minimum
value, we find a classical rainbow angle at EO&
= 90 eV deg. The impact parameter corresponding
to the rainbow scattering is b = 8.8a,. As a check
of the above classical calculation, we have also
performed a s emiclass ical two-state calculation
of the differential scattering using standard meth-
ods." For a collision energy of 5 eV, the com-
puted rainbow angle is 87 eVdeg, in very good
agreement with the classical result.

C. Ionization cross sections

Ca**+Ca- Ca2'+e or Ca'+ Ca+e (16)

To estimate the cross sections for process (16),
we have assumed that during the ionizing collision
the neutral particles follow potential curves that
diabatically cross into the continuum of the ionic
state where electron ejection is known to occur
with almost unit probability at low collision ener-
gies. 2' The ionization cross section is then simply
given by

Recently, Armstrong et a/. "have performed
some interesting experiments using a dye laser to
pump Bydberg states of Ca. These authors ob-
served that when the two-photon energy was within
7300 em ' of the atomic ionization limit, ionization
occurred with a rate proportional to the square of
the laser intensity. This type of behavior may be
explained in terms of the Hornbeck-Molnar" ioni-
zation r eaction:

the principle electronic quantum number of the
Rydberg atom. %e could include the quantum de-
fect in the ionization energy of the Rydberg atom;
however, the approximate nature of Eqs. (17) and
(18) does not warrant its inclusion.

If Eqs. (17}and (18) are combined, the ionization
cross section

Q&on=&&+o'uZ/2

is found to increase linearly with n and to depend
on the square root of the dipole polarizability of
the neutral atom formed.

The probability P of Eq. (19) for the states
crossing into the continuum is more difficult to
estimate. However, for Ca**+Ca collisions, we
may relate the shape of the Rydberg potentials to
that of the attractive (core) 4sv ~4so„'Z„' and re-
pulsive (core)4so', 4so „' 'Z,' ion molecular states.
For collisions of Ca*"(4sns) with Ca, the 'Z„and
Z„states formed will have the basic configuration

(core)4se~24so'„nso', . Thus, because of the diffuse
nature of the Rydberg .electron, these states will
be approximately parallel to, and below, the at-
tractive 'Z„' ion state and will not cross. into the
continuum. However, the 'Z, and 'Z, molecular
Rydberg states will have the configuration
(c ore) 4su, 4se'„nso„whi ch is similar to the re-
pulsive 'Z~ ionic state, and thus they will cross
into the continuum. Hence, we predict a 50/o
probability of crossing into the continuum for Ryd-
berg Ca**(4sns}+Ca collisions. The collision
mechanism is a two-electron process, similar to
that, found for He*+He collisions, "that involves
the ejection of an s-wave electron from the 4sa'„
orbital and the transition of the Rydberg nsa~ elec-
tron to the 4sv, orbital:

Cion = vt Rg i (17) (core)4sa, 4sv „'nsv, - (core)4so ~24so„+e . (20)

where R is the crossing distance and P is the
probability that the particles follow the diabatic
potentials into the continuum.

For collisions between high-lying Rydber g states
and their parent ground state, it is possible to
estimate g by solving

(18)

In Eq. (18), we have assumed that the long-range
portion of the ionic potential is determined by the
point charge-induced dipole interaction, which is
given in terms of the dipole polarizability n~ of
the neutral partyer. We have not included the ex-
change interaction since it is exponentially de-

creasingg

and negligible compared to the R 4 inter-
action in the internuclear region of interest. The
Rydberg state interaction is assumed to be con-
stant and equal to its ionization energy, which to
first order is simply given by 0.5/rP, where n is

Armstrong et al."also observed ionization of
Rydberg Ca**(4snd). As for the Ca**(4sns) case
discussed above, the ungerade molecular states
will lie below the 'Z„' ionic state and will not
cross into the continuum. The gerade states,
however, will cross into the continuum and con-
sist of 'Z, and ' Z( rceo)4so, 4sa'„nd&x„'ll, and
~II,-(core)4so', 4sv~ md'~ and '6, and '6,-
( croe) s4v, asm nd6, For the. rmal energy colli-
sions we argue that only the 'Z~ and 'Z~ will cou-
ple to the continuum and give rise to ionization
via the two-electron process:

(core)4so~4so 2ndo, - (core)4so', 4s +eo,

where the electron in the 4sv„orbital is ejected
and the Rydberg electron in the nda~ orbital trans-.
fers to the 4so', orbital. The II~ and 4, molecular
states would require the conversion of a 4sa„or-
bital to a 4sv, orbital and the ejection of a p-
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d-wave electron, a process requiring more kinetic
energy than is available in a thermal-energy col-
lision. Hence, we predict only a 10/o probability
for electron ejection for Ca**(4snd) which is a
factor of 5 lower than that for the Ca**(4sns) sys-
tem discussed above.

For both the Ca**(4sns) and Ca**(4snd} systems
it is possible there may be a slight added contribu-
tion to the ionization cross section from the tra-
jectories that follow the attractive potentials.
Since the potential well depth is so much larger
than the collision energy, orbiting is possible for
selected collisional angular orbital momentum
quantum values. These orbiting collisions will
have an increased probability for ionization due
to the better overlap between the neutral particle
and continuum wave functions. However, the
number of orbiting collisions at a given collision
energy is small. Therefore, within the approxi-
mate formulism for chemi-ionization presented
above, we may neglect this orbiting contribution.

For thermal-energy collisions, the probability
for electron ejection, and hence the cross section,
must be zero when the Rydberg level lies below
the minimum in the potential well for the molecu-
lar ion. For the Ca, ' system, our calculated poten-
tial well for the 'Z„' states lies 40950 cm ' above
the separated atom limit of two ground-state Ca
atoms. Therefore, the ionization will be zero un-
til excited states of Ca are produced above this
limit. The observations of Armstrong et al."
support this conclusion; collisional ionization was
not observed when they pumped the 4p' 'D, state of
Ca at 40 720 cm ', but it was observed for the
next higher 'D, state at 42 919 cm '.

We have examined collisions of Ca**(4s20s)
and Ca**(4s20d) with Ca as representative cross
sections and rates for ionization. Using Eq. (19)
and the calculated dipole polarizability for Ca, we
estimate a chemi-ionization cross section of
1 x10 '4 cmm for Ca**(4s20s} and 2x10 "cm2 for
Ca**(4s 20d). These cross sections correspond
to thermal-energy reaction rates of 5 F10 "and
1X10 "cm'/sec, respectively. Using these rates,
we calculate that the lifetime of Ca**(4s 20s) or
Ca**(4s 20d) in a 0.1-Torr pressure of Ca atom
will be on the order of 1 p. sec, which agrees with
the observations of Armstrong et al."that the
lifetimes must be less than 1 msec.

Equation (19) is sufficiently general that it may

be used for ionizing collisions of high-lying ex-
cited states with their parent ground states. An
interesting example is the reaction

Ar*+Ar -Ar, '+ e or Ar'+Ar + e . (22}

Using a dipole polarizability" of 11.1a, for Ar, we
estimate chemi-ionization rates approximately a
factor of 4 lower than for Ca**+Ca collisions.
Hence, we would estimate a rate of -10 "cm'/
sec, along with only a linear dependence on the
electronic excitation level n. Kinetic studies con-
firm that the reaction rate for (20) is of the order
10 "-10 ' cm'/sec and is approximately indepen-
dent of the level of excitation as long as the ionic
state is accessible to a thermal-energy collision. '4

Hence, we conclude that our predicted ionization
rates for Ca**+Ca are good order of magnitude
estimates.

IV. SUMMARY

A.b initio potential energy curves have been pre-
sented for the ground 'Z„' and 'Z~ states of Ca, +.

Our estimated bond length and dissociation energy
for the 'g„' state are 8, = (V.55 + 0.05)a, and D, = 1.04
+ 0.1 ev, respectively. From the 'Z„' potential
well, we predict a rainbow scattering angle of 90
eVdeg for the elastic or charge-exchange differ-
ential cross sections. Total charge-exchange
cross sections were also. calculated over the colli-
sion energy range of 10-10000 eP and were found
to be in very good agreement as to magnitude and
energy dependence with the measurements of
Panev et al." Thermal-energy cross sections
and reaction rates were estimated for chemi-
ionization collisions .of Rydberg Ca** atoms with
ground-state Ca. Ionization cross sections on the
order of 10 "cm~ and reaction rates of 10 "cm'/
sec are predicted along with a linear dependence
on the principal quantum number. These predic-
tions appear reasonable considering the analogy
with Ar*+Ar ionization rates.
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