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We have computed the position and width of the 15(25s)?%S resonance of He™ using five different wave
functions for the ground state of He. These wave functions include different amounts of spatial and angular
correlation. The difference in the width using a closed-shell target-state function and a three-configuration
target function with spatial and angular correlation is only 6.6%. The width using the former function is
12.55 meV, while that for the latter is 11.72 meV. We also performed the calculations without constraining
the relative amplitudes of the configurations in the target function to those obtained from a variational
calculation of the He ground-state energy. In these calculations we did not encounter the same instability of
the complex energy as reported elsewhere in the literature. Finally, improvement in the target-state
functions results in a convergence of the scattering-state energies towards the rotated rays. This is to be
expected since the description of these states is dominated by the open channel.

I. INTRODUCTION

The width of an autoionizing or autodetaching
Feshbach resonance depends on the coupling of the
closed channel with the various possible open
channels or continua.! Thus all methods which
yield resonant positions and widths require a re-
presentation of a scatteringlike or P-space wave
function and a representation of a boundlike or @-
space wave function. The exact partitioning of the
total wave function into P and @ components is not
unique, although the partitioning is generally such
that the @ -space part decays exponentially as any
radial coordinate goes to infinity and describes in
some manner the closed channel part of the reson-
ant wave function.

The manner in which the two components are
used to obtain the resonant positions and widths
depends on the method used. In the close-coupling
scheme the total wave function is used to obtain a
set of coupled differential equations for the scat-
tering function from which a total phase shift is
obtained. The resonant parameters are obtained
by fitting the cross section to some expression
such as a Breit-Wigner expression. Similarly,
variational techniques such as the Kohn method
yield total phase shifts from which the resonant
parameters must be extracted.

The width in the Feshbach formalism is obtained
from a Fermi golden rule expression, i.e., itis
proportional to the absolute value squared of the
matrix element of (J¢-E) with respect to the P- and
Q-space wave functions. A similar type expression
is obtained for the width in the stabilization meth-
od® assuming the position obtained in a stabilization
calculation of Q¥ corresponds to the center of the
resonance, i.e., where the resonant phase shift

has a value of 3.

In another technique known as the complex coor-
dinate method,® one employs a non-Hermitian com-
plex Hamiltonian obtained from the normal Her-
mitian Hamiltonian by transforming all radial co-
ordinates to a radial coordinate multiplied by a
phase factor, i.e.,

ri~-pet®. 1)

In this method one computes directly a complex
energy corresponding to the “resonance”. The
imaginary part of the energy yields the width via
the relation

E,=-iT. (2)

In a previous paper,? hereafter referred to as I,
we suggest that one can better visualize this tech-
nique if again one assumes that the wave function
consists of a P- and a Q-space part. The general
properties of these two parts are the same as in
the other methods, except that the P-space part
is now square integrable when

a>p=%|ArgE,) |, (3)

where E, is the complex energy of the pole of the
resolvent. For details concerning computations
with this method, see I and a related paper® which
generalizes various aspects of I.

Thus by the nature of the problem, all methods
employ a wave function which can be viewed as the
sum of two parts—a P-space part and a @-space
part. Since the @-space part corresponds to closed
channels, it is square integrable and presents no
problems. On the other hand, the determination
of the P-space part and its coupling to the @-space
are the problems which the various methods must
address. In all of the methods, the P-space part
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is chosen to go asymptotically as the product of
the target wave function and the continuum function
for the unbound particle. However, exact target
functions are known only for one electron target.
Generally, single configuration approximations of
the target state wave functions are used, although,
in principle, one could use, for example, an arbit-
rarily accurate target-state CI wave function in
any of the methods. In fact, the only extensive
study of the effect of accurate target wave func-
tions is by Bain et al.° for the 1s(2s)? 2S resonance
of He". They impose a Gamow or Siegert boundary
condition on the wave function to compute the re-
sonant parameters.” Their wave function consisted
of a @-space type wave function plus a term of the
form @ ¢re*o(1 — € "0)/7,, where @ is the antisym=
metrizer and ¢, is a target function. For target
wave functions they used linear combinations of
1sls’, 1s”2s, and (2p)® configurations. When they
restricted the linear coefficients to those obtained
from a variational calculation of the (1s)* 'S state
of He, they obtained results similar to that for
just an open-shell target function. On the other
hand, when they allowed the coefficients to be de-
termined by the variational calculation of the re-
sonant calculation, the widths obtained were re-
duced by a factor of about 5. Clearly, the limited
correlation introduced by the 1s”2s and (2p)? con-
‘figurations should not result in such a drastic re-
duction. We will return to this point later.

The complex coordinate method is particularly
suitable for studying target state correlation. This
is because the P-space function in this method is
square integrable; only a straightforward eigen-
value problem needs to be solved to obtain both the
position and width of the resonance, and the only
effect of using an accurate target state wave func-
tion computationwise is that configurations involv-
ing the target state have more Slater determinants
to sum over in computing the matrix elements.

In I we presented the results of a calculation of |
the resonant parameters for the 1s(2s)? %S reson-
ance in He". The target state was represented by
an open shell 1s1s’ wave function. The widths ob-
tained with various sized wave functions agreed
well with transmission experiments but not with
differential scattering experiments. In this paper

TABLE I. Linear coefficients.

TABLE II. Nonlinear Slater parameters,

B,y 1s 1s’ 1s”’ 2s 2p
A 1.6875
B 2.1832  1.1886
c 2.1832  1.,1886  2.7023 0.6344
D 2.1832  1.1886 2.4690
E 2.1832 1,1886  2.7023 0.6344 2.4960

we will give the results of a series of calculations
in which a variety of target state wave functions
are used. In Sec. II we discuss the various ap-
proximate target state functions and their assoc-
iated variationally determined energies, while in
Sec. III we give the computed complex resonant
energies resulting from the use of the various tar-
get functions. Section IV is devoted to the discus-
sion of the scattering states for the different tar-
get functions, and Sec. V summarizes the results.
Atomic units are assumed throughout except where
explicitly noted otherwise.

II. TARGET STATE WAVE FUNCTIONS

In previous calculations® on the resonant para-
meters for this resonance closed shell (1s)? and
open shell (1sls’), representations of the target
ground state have been employed. The latter al-
lows for a certain amount of spatial correlation.
We used this latter function in L

In addition to these functions, we use three more
variational functions which allow for more spatial,
as well as angular correlations. This is accom-
plished by including (1s”2s) and (2p)? configu-
rations. In all, five different wave functions of the
form

¥,=2 ol @)
are eniployed. These are

¥,=CG1s(1)1s(2) (5)

Yp=Q1s(1)1s7(2) (6)

¥o=0Q[c,1s(1)1s’(2)+ c,157(1)2s(2)] 7

TABLE III, Variational energies for the five different
target functions (experimental energy= 2,903 924).

Ui (1sls’) (Ls'’2s) (2p)?
c 0.537 449 —0.013 249 0
D 0.531835 0 0.017 7812
E 0.538 664 —0.017780 0.017881%

2This coefficient assumes the function is written as
4172 (2p,a2p B — 2p@ 208 + 2 20,B).

v, E;

-2.,84716
-2.87502
-2.97598
-2.89517
-2.895 69

OOk




TABLE IV. Complex energies for various target functions.

—Eg -E;x10° —Eg —E;x10 —Eg —E;x 10 —Ep ~E;x 10 ~Eg —E; x10°

a Target

0.01791

2.191 00

0.010 39

2.19075

0.001

COMPLEX-COORDINATE METHOD. II.

0.08470
0,197 65

2.190 98
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0.051 08

2.19076
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0.222 82 2.19076 0.22111 2.190 82
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V,=@lc,1s(1)1s7(2)+ ¢;2p(1)2p(2)] (8)
¥o=@c,1s(1)1s"(2) + c,15”(1)2s(2)

+¢32p(1)2p(2)] - (9)

All configurations included the proper spin sym-
metry. The Slater orbitals are defined as

xnlm(-f) =N'r”‘1e'"Y',"(9, ¢), (10)

where N is the normalization constant.

The linear and nonlinear parameters were ob-
tained from variational calculations and are given
in Tables I and II, respectively. . Initially, a 2p2p’
configuration was used, but after optimization the
two nonlinear parameters agreed to within a per-
cent so that they were taken to be equal to reduce
the number of integrals. The resulting energies
are given in Table III along with the experimental
energy.

III. RESONANCE CALCULATIONS

In I we discuss the partitioning of the total wave
function into P- and @-space parts. This partition-
ing is not unique and does not correspond to a pro-
jection via orthogonal projectors. For Feshbach
resonances, this partitioning reflects an approxi-
mate representation of the open and closed chan-
nels, respectively.®

In this calculation the @-space part consists of
the same 31 configurations as in I. The P-space
part consists of four configurations of the form
@(1sls’ns), where ns is a Slater orbital which is
a function of pe*® and configurations which are an-.
tisymmetrized products of target wave functions
and “continuum orbitals”! of the form

o3 = explxipp) exp(-8p)[ 1 ~ exp(-p)]/p . (11)

In this calculation the value of p is taken to be
1.19, which is approximately the correct value for
k for this resonance. In I wave functions with 20,
24, and 32 P-space configurations of this latter
type were used. By examining the linear coeffic-
ients, we were able to select a 16-configuration
subset of these and reproduce the results of I.
These configurations were those which contained
the “continuum orbitals” with the largest values of
5, i.e. the & values are 2.5, 2.0, 1.5, 1.0, 0.75,
0.5, 0.25, and 0.1. This simply implies that the
most important basis functions are those which de-
scribe the nonasymptotic region. This also illus-
trates why the resonant parameters are not overly
sensitive to the value of p, as we show in I. In
these calculations the five different target state
functions are used in all 20 of these configurations.
Table IV contains the complex energies obtained
with the five different target functions as a function
of the rotation angle . By comparing the complex
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TABLE V. Resonant parameters?,

Position (eV) Width (meV)

A 19.388 12.55
B 19.387 12.13
c 19.387 12.03
D 19.386 11.87
E 19.386 11.72
FP? 19.403 11.4
G? 19.403 11.1
HP 19.403 11.4

2From Table II using a ground state energy of
~79.0016 eV and a conversion factor of 27.211 652
ev/au,

® From Ref. 6, where F, G, and H correspond to tar-
get functions B, C, and E, respectively, and a 27-con-~
figuration wave function is used. Note that their 48-term
wave function yields a position of 19.398 eV and a width
of 12 meV.

energies at small o in Table IV with those of Table
V in I, one observes that the effect of including the
long-range functions is to yield better complex en-
ergies at smaller rotation angles a@. This may
arise because the long-range behavior of the un-
bound electron is described by a function of the
form

¢~ expli|k]|pe’*®]
=expi|k|pcos(a - B)lexpl - |%|p sin(a - B)],
(12)

where B is defined in (3). As a approaches 8 from
above, this function extends further and further,
becoming unbounded when a<B. Thus inclusion of
very long-range functions may be required to ad-
equately describe the resonant wave function near
the critical angle B.

Table V contains the resulting resonant paramet-
ers. As can be seen, the width decreases as one
increases the correlation. On the other hand, the
decrease in going from a single configuration
closed-shell target function to a three-configu-
ration function with spatial and angular correl-
ation is only 0.83 meV or a reduction of 6.6%.

Half of this reduction is obtained by simply open-
ing the (1s)? shell.

One must, however, note that since

(‘I’P[‘l’o>*0 (13)

in the manner in which we have decomposed the
total wave function, a certain amount of correl-
ation in the P-space part is supplied by the @-space
part. Thisis verylimited though, since configura-
tions inthe @ ‘space are suchastobasically describe
one electroninthe vicinity of the nucleusand two elec-

trons removed some distance, whereas the P-
space part describe at least two electrons near
the nucleus.

When Bain et al.’ studied the effect of correlated
target wave functions, they performed calculations
with target functions B, C, and E in which the ¢,’s
were chosen via a variational calculation of the
ground-state energy of He or via the resonant cal-
culation of the 1s(2s)?2S resonance in He". They
called the first calculation a constrained variation
since the relative amplitudes of the configurations
were constrained to the values from the atomic
calculation on He, and the latter was called an un-
constrained variation since the relative amplitudes
were allowed to be determined by the variational
principle for the resonant calculation. As stated
in I, these calculations were performed by impos-
ing a Siegert boundary condition on the variational
wave function. This was accomplished by having
one configuration in the wave function of the form

¥ = Q¢ explikr,), (14)
where
E,=Ep—iE;=3k*=3|k|%® (15)

k was determined iteratively by initially assuming
some value, computing E, variationally, recom-
puting % from (15), and recomputing E, until 2 and
E, satisfied (15) to some specified accuracy. ¢
was only varied in this configuration, although
several other configurations were of the form
@prpaT0. In the case of the unconstrained vari-
ation with wave function C, the value of the width
decreased by 3, while a similar calculation with
function E yielded a value for the width which was
25% smaller than in the case of the constrained
variational calculations. This type of behavior
should not occur if these additional configurations
are only describing correlation in the target
states. Although it is not obvious why the simple
open-shell target function yields what appears to
be a very good value for the width, in unpublished
calculations using small numbers of P-space type
configurations, we have found that the width can
be a highly oscillatory function until a sufficient
number of configurations have been added. A sim-
ilar type of phenomenon may have occurred in the
calculation of Bain et al.

To study this further, we also performed uncon-
strained variational calculations with target func-
tions C and D. In these calculations, all twenty
P-space configurations were split into two parts—
one containing the 1s1s’ and the other containing
either 1s”2s or (2p)?. Thus the wave functions
each contained 71 configurations. The results of
these calculations, along with those of Bain et al.,
are given in Table VI for a values of 0.08, 0.2,
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TABLE VI. Unrestricted variation of coefficients of
target configurations.

c D

a -Eg —E; X103 -Eg —E;X10°
0.08 2.19083  0.22693  2.19085  0.21445
0.20 2.19083 0.22686 2.19085  0.21446
0.80 2.19083  0.22660 2.19085  0.21446
Ref. 6 2.19033  0.159 2.1902° o0.171°P

2 This calculation is independent of « since it employed
only functions of pe’®.

b This corresponds to unrestricted variation of target
function E.

and 0.8. From Tables IV and VI, one sees that
the width for target function C changed by only
2.5%, while that for D changed by less than 0.5%.
Due to the negligible change in the width for these
unconstrained calculations with functions C and D,
and the fact that a 91-configuration wave function
would have resulted for a similar calculation with
target function E, the latter calculation was not
performed. The stability of the energies with re-
gard to the addition of configurations in this calcu-
lation tend to indicate that the instabilities ob-
served by Bain et al. were probably due to an insuf-
ficient description of the P-space part of the wave
function.
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IV. SCATTERING STATES

Many of the eigenvalues correspond to scatter-
ing states that should lie on rays which begin at
each threshold and make an angle of —2a with the
real axis. In Fig. 1 we have plotted those eigen-
values that can probably be associated with the
ray extending from the first threshold for target
functions A, B, and E at a rotation angle of 0.2
radians.!! As can be seen, the curves described
by these eigenvalues approach the ray, which is
based on the exact threshold energy as the target
trial function is improved. The quality of the tar-
get-state function is particularly important for
these states, since they correspond to the (1s)?
channel, and thus most of the configurations in the
Q-space part of the wave function are not impor-
tant in their description, since these latter config-
urations correspond to two electrons somewhat
extended from the nucleus.

Characteristic of these curves, as was observed
in I, is the dip. As discussed in I, the energies of
these states can be written

E=[Er+3|k|?cos(2a)] —i §|k|?sin(2a), (16)

where Ep is the threshold energy and 3% is the en-
ergy of the state above threshold. If we identify
the value of p in (11) with 2 and recall that the ro-
tation angle is 0.2 radians, we obtain a complex

1 1 1 1 1 1

-30 -29 -28 -271 -26 ~-25

-24

=23
Eqp (au)

FIG. 1. Complex energies associated with the first threshold for the target functions AA, mB, and @F at
a rotation angle of 0.2 radians. The results for target functions C and D lie between those for B and E.
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energy
E=(E;+0.562) - 0.2763 . @am)

This is just in the region of the dip. Thus the func-
tions of the form (11) help describe those scatter-
ing states, whose energy is in the vicinity of 3 p?,
best.

In the vicinity of the dip the principal source of
discrepancy is now probably correlation in the
three-electron system. Further improvement in
the target wave function is not likely to be signif-
icant since the difference between the experimental
energy of the ground state of helium and the vari-
ational energy for function E is only 0.008 a.u. The
sources of discrepancy on both sides of the dip are
the correlation of the three-electron system and
the basis for the description of the unbound elec-
tron.

V. SUMMARY

We have reported calculations of the 1s(2s)?2S
He™ resonance positions and widths for five differ-
ent target functions with various amounts of angu-
lar and spatial correlation. The width decreased
by just 0.83 meV when a closed-shell target func-
tion was replaced by a three-configuration target
function with angular and spatial correlation. The
ground-state energy for this latter function differs
from the experimental energy of He by only 0.008
a.u.

In addition, the complex energy was stable with
regard to allowing the variational resonance cal-
culation to determine the relative amplitudes of
the configurations used to describe the target

ground state. This is in contrast to a previous
calculation® which suggests the previous wave
function did not adequately describe the resonant
wave function—particularly the open channel or
P-space part.

Finally, the representation of the scattering
states was substantially improved since they are
predominantly described by the P-space part.
That is, as the quality of the target-state function
improved, the eigenvalues associated with the
scattering states of the first threshold converged
toward the expected ray. To further improve the
description of the scattering states, however, one
would have to include correlation of the unbound
electron with the target electrons, as well as use
an expanded representation of the unbound elec-
tron. It should be recalled, though, that the exact
scattering states are not square integrable.

Although the width in this calculation is not over-
ly sensitive to the quality of the approximate
ground-state wave function, this may not be the
case for resonances associated with higher thres-
holds or when several thresholds are very close.
For these cases the complex coordinate method is
very well adapted to incorporating arbitrarily ac-
curate target-state wave functions in the calcu-
lation of the resonant parameters.
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