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The accurate evaluation of expectation values such as fi = ($~6&fi)~Q) and fn = &416&fi—»)IA)
where Q = Q(f, gz, ...fs) is an eigenfunction of a Hamiltonian H is of interest for a variety of problems in
atomic physics. Transformations are found to new forms Il and Ilz which are likely to give considerably
more accurate values when, as is usually the case, only approximate wave functions are available, A
successful test of the method is presented for the case of electron-electron and electron-nucleus contact
interactions in helium. We give some identities which may be similarly useful in the evaluation of off-
diagonal matrix elements of relativistic operators such as y, g(f,), which arise from the parity-violating part
of the neutral-current interaction and are important in the calculation of parity mixing in atoms.

I. INTRODUCTION

There are a number of situations in which it is
necessary to evaluate matrix elements of an elec-
tron-nucleon or an electron-electron operator in-
volving a 5 function of the separation r between the
two particles. A list of examples would include
hyperfine interactions, relativistic spin-spin
interactions and neutral current, parity noncon-
serving interactions between electrons and nu-
cleons or between two electrons. ' In each ease
one has only approximate wave functions for the
electrons, and it is not clear g priori to what
extent these wave functions give accurate values
for the matrix elements of 5-function operators.

In this paper we present some identities that
can be used to transform the matrix elements of
the indicated type into other forms that involve
the electron wave functions over the full range of
interparticle separations. Since the usual ap-
proaches do not generate wave functions that are
especially accurate at small separations, we ex-
pect that the transformed matrix elements will be
more accurately approximated by the available
wave functions than the original ones would be.
To be concrete, let us consider two particles 1
and 2 in an external field, with a wave function
(=g(r„r, ) which satisfies

Ifg =E(, H = p', /2m, + p, /2m, + V'",

where V' '= V',"+ Y',"+ V», with V'," the interaction
of i with the external field and V» the mutual inter-
action of 1 and 2. The identity in question for
5(r,) then takes the form

(1.2)

where, with V"' assumed to be local,

with r, = ]r, ~
and 1,= r, xp, . The identity for 5(r)

=5(r, —r, ) reads

&q(6(r) (y&=&y(D,.(q), (1.4)

where

(1.5)

Here p, =nt, ms/(m, + ms) is the reduced mass and
l = r & p is the relative orbital angular momentum,
with p= i '6/Br the momentum conjugate to the
relative coordinate r.

To test our expectation we have evaluated (5(r,)&

and (D,) as well as &5(r)& and &D») using various
Hylleraas wave functions for helium. %Ye indeed
find that the D form of the matrix element agrees
with the exact value much more closely than does
the 5 form when both are evaluated with the same
approximate wave function. In particular, the
evaluation of D» with a three-parameter wave
function gives a value whose error is only 0.6%,
compared to the 5(r) form for which the error is
8.6% —a gain in accuracy of more than an order
of magnitude.

In the absence of an external field and with V»
a local potential, e. g., V» ——V(r), (1.4) reduces
to

&y I6(r) ( y&=(p, /2. )&e( V'(r)
( e&

-(1/2.)&e~ '~'le&, (1.6)

where Q = Q(r) is a bound-state eigenfunction of
p'/nit + V(r). For an S state the 1' term vanishes
and (1.6) reduces to

( 0(0) ('=(tt/»)&@( V'(r)
) 0&,

a formula which has bec'ome familiar in recent
years from its application to the naive charmonium
model; with V =ar+b the right-hand side of (1.V)
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is just ga/2w, independent of the radial quantum
number n. ' However, for a state with l0, the
5-function term vanishes and one gets instead a
relation between the mean value of r ' and V'(r):

only. Then the commutator term in (2. 4) is just
B V,/Br, . On taking the expectation value of (2.4)
with a solution g of (2. 2) we get

(r- &= [q/I(t+1)]&V'(r)). (1.8)

For a linear potential this implies that (r ') is
independent of n. This observation may be of
interest for the fine structure since the short-
range spin-dependent interactions coming from
exchange of a massless vector quantum have an
~ ' spatial dependence. For the popular choice
V = ar + b —g/r (1.8) relates (r '& to (r ').

The derivation of the identities (1.2) and (1.4)
is given in Sec. II, together with similar identi-
ties which hold for a system of more than two
particles. The application of (1.2) and (1.4) to
electron-electron and electron-nucleon contact
interactions in the helium atom is given in Sec.
III. In Sec. IV these ideas are extended to rela-
tivistic systems and to off-diagonal matrix ele-
ments of operators of the type 86(r, ) or @6(r»)
where 6 is a Dirac matrix. The resulting iden-
tities are of a type which may be useful in the
evaluation of parity-violating effects in atomic
physics. Section V contains a summary of our
results and a simple physical interpretation of
identity (1.6). In Appendix A we describe some
details of the evaluation of (D,& and (D») for
helium. In Appendix B we explain how rigorous
estimates of the accuracy of (6(r,)) and (5(r»))
can be made when these quantities are evaluated
with approximate wave functions.

Here we have assumed that g vanishes sufficiently
rapidly as r, — so that ()IH,B/Brilq&=&H, ylB/
Br, l g&, which is certainly the case when ( is a
bound state. If we add the complex conjugate of
(2. 5) to Eq. (2. 5) we get

pyeX
l y&+ c.c.

The left-hand side of (2.6) is just

(2. 6)

dr, * =4m r~=0 2 7

m, 8V'," 1
& ~ (2.9)

The identity (2. 8) is a special case of (1.2).
The generalization of (2.8) to a bound state of H
particles in an external field is immediate, be-
cause the total kinetic energy is a sum of one-
particle operators. Thus with

provided that g vanishes at r, = ~. It follows that
for a bound state and with V'," Hermitian, (2. 6)
may be written as

(2.8)

with D, given by

II. 5-FUNCTION IDENTITIES FOR N-PARTICLE SYSTEMS

A. 5(r& )-type identity

N

H= K +V'" K =p'/2m. ,J i i i ~

j=l
(2. 1o)

Consider first a single particle 1 in an external
field, described by a Hermitian Hamiltonian H„

H, =K, + Vf*, K, =p', /2m, (2. 1)

and wave function g= g(r, ) satisfying

(H-z)q= o

the analog of (2. 4) is simply

(2. 11)

and a wave function g= g(r„r„. . . , r„) satisfying

(H, -E)q= o. (2.2)

Let B/Br, denote the derivative with respect to
r, = lr, l

with r, = r, /r, fixed. Using polar coordi-
nates for the Laplacian 0', one finds

,K, =(mp', ) ' -(mp, ') '1'„

where 1,= r, & p, . It follows that,

(2. 3)

(2.4)

For simplicity, we assume that the interaction
V;" with the external field is local, V'," = V;"(r,)

(2. 12)

On taking the expectation value of (2. 12) with g
and proceeding as in the one-particle case, we
then get the sought after identity. '

(2. 13)

where

(2. 14)

with

(2. 15)
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Again we have assumed that V"'is Hermitian and
local. If V"'is not local, the replacement

~+av" t~i a.
2 (:Bf' (2. 16)

B. 5(r&2)-type ident1ty

The derivation of an identity such as (1.4) is
based not only on the additivity of the kinetic en-
ergy but on the separability of K, +%2 into a "rela-
tive" and "total" kinetic energy. Thus with

r=r, —r, , R=(m, r, +m, r, )/(m, +m, ) (2. 17)

and

should be made in the definition (2. 15). For N=2,
the identity (2. 13) coincides with (1.2).

v"'= v,„(r,)+g. v. ,(r, ,),
i&J'

(s. 1)

= v,'„(r,) + v,',(r„). (3.2)

and, with r-=~„,
evt t

,'„{r,) ' + V,'(r, ) —'+ V',{

where V., is the electron-nucleus interaction and
V, , the electron-electron interaction. Moreover,
the many-body wave function 0 = 4{r»r». . . , r„)
(spin coordinates are suppressed) satisfies the
antisymmetry principle. The potential terms
entering the identit'ies (2.13) and (2. 22) can then
be made more explicit. From (3.1) we have

1 2 1p= —— p=-
i Br' i BR

we have

(2. 16)

J 3
(3.3)

K, +K, = p'/2g+ P'/2(m, +m, ),
where

p = (m,m, )/(m, + m, )

(2. 19)

(2. 2O)

where the primes denote a derivative with respect
to the displayed variable. Because of the antisym-
metry of 4 all terms in the sums on j make the
same contribution to expectation values, so that

is the reduced mass. Let 8/Br denote differentia-
tion with respect to r= Ir I, with r and R held
fixed. Then for a Hamiltonian of the form (2. 10)
we get, using (2. 19),

I,2= I,'2,

where

(2.22)

(2. 23)

=(pr ) ——(gr ) 1 + —V' '
Bg

(2. 21)

where l = r &p is the relative orbital angular mo-
mentum of 1 and 2. We now take the expectation
value of (2. 21) with a, bound-state wave function

(= g{r„r„.. . , r„) and write the part dr» dr, dr, —
of the volume element d7' in the form d~12 —drdR
and proceed as before. The result is

PVtot
I+&=&+IV.'-.(r)+v'.(r»

6
'+ v,'„(r.) "I+&

+ (&-2)&g
I
v,'.(r,.),"

+v.'.(r„) "le&. (s. 5)

Of course, the contributions of the second and
third term in (3.5) are equal as are those of the
fourth and fifth terms, but it is convenient to keep
the symmetry between 1 and 2 manifest. The
partial derivatives entering (3.4) and (3.5) are
readily calculated:

and

p, BV 1
272 8 V 277

(2.24) and

Bf' t'1 —g2 + f Bf'1 f'1 —g~ + g
BX1 2XX ' Br 4

(s. 6)

Again if V"' is not local, the replacement analog-
ous to (2. 16) should be made for Bv'"/Sr. For
N= 2, the identity (2.22) coincides with (1.4).

III. APPLICATION TO ATOMS

13 12 13 23

Bf 4f 12K]3
(3 7)

with 1 —2 for sr, /sr and sr„/Br
In practice, for an atom with nuclear charge Ze

one has of course

A. SimplifK:ations v,„(r,.)= -zn/r, , v, .(r)= n/r (3.8)

For the case of an N-electron atom or ion, V"'
is a sum of one- and two-body operators,

and V,', (r,)= Za/r'„V, ',(r) = o/r'. However-,
the formulas as written in (3.4) and (3.5) remain
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valid if the usual local spin-spin interactions and
even if spin-orbit interactions are included in H
since, e. g. ,

, ({r,)o, 1, = g'(r, )a, ' 1,1 1 l l i i

is Hermitian if ] is real.

pi p2 QZ QZ Q

2m 2m
(3.9)

The ground-state wave function has the form C

= po(r„r, ))(, where )( is a Pauli spin-wave function
and (o is the L= 0 eigenstate of (3.9) with lowest
eigenvalue E»

IIPo=Eo $o ~ (3.10)

Then the quantities of interest are

I,=&&. 6(r,)

ling,

I„=&go 6(r)lqo&, (3.11)

Using the expressions (2. 14) and (2.23) for the
transformed quantities I,' and Ii2 as well as the
relations (3.4) and {3.6), specialized to the case
N= 2 and a Hamiltonian of the form (3.9), we get

I'=(41D.14.& I'.= (41D.[0g, (S.»)

m (oZ o, Br 1——x,'l ',
2m(& x2i & Br, 2p

(S.13)

m t'nZ Br, nZBr, a 1

4v (0 Br r', Br r' 2w

(3.14)

B. Contact interactions in helium

For a two. -electron atom or ion the Hamiltonian
ls

Let ( denote an approximate rather than an exact
solution of (3.9) and define

I,.=(416(r)14& I'„=&4 1D .14» .
(S. iS)

(3.16)

According to what has been suggested ab'ove, the
quantity I,' is bkely to be closer to the exact va. lue

I, than I, and similarly for Ii2 relative to Ii2 We
now test this idea for the case of the helium atom.

Although the nonrelativistic ground-state wave
function go of He is not known in closed form,
numerical work on (o has reached a high degree
of precision. Thus the 1078-parameter wave
function of Pekeris gives, in atomic units,

I, =i.810419, I„=0.106355. (3.17)

Also important for our purpose is the fact, that the
degree of exactness of these numbers can be rig-
orously established, by using techniques such as
those developed by Redei. 4 In particular, as
shown in Appendix 8, the above values for I, and
I» differ from the exact values by less than 0.07%
and 0. 24$o, respectively, which is exact enough
for making comparisons.

In Tables 1(a) and f(b) we show the values of I,
and I,' and I» and Ii2y respectively, as computed
from the one- and three-parameter Hylleraas-
type wave functions g= ((s,M, t) given-by Bethe
and Salpeter, ' who also list values I, and I» ob-
tained from such wave functions. The values of
I,' and I,', were computed from (3.15) and (3.16)
with the D's defined by (3.13) and (3. 14); the inte-
grals encountered (see Appendix A) can all be done
analytically. As can be seen, there is a striking
gain in accuracy in going from I to I', both for
6(r, ) and for 6{r»). In particular, with only three
parameters, use of I,' and I,', gives results wA:irk

are toithin a fete tenths of a percent of the exact

TABLE 1. (a) Comparison of I&= (t) (d(r~))$) andEt= ($)Dt(g) for one-and three-para-
meter Hylleraas-type wave functions g for the ground state of He; D& is given by Eq. (3.13)
of the text. The column labeled "error" shows the p'ercentage difference from the exact
valuei&= (tpp[d(rt))pp} = (lpp[Dt[ipp) = 1.8184 a.u. (b) Similar comparison of I fp (Q[d(r)[p)
and I{p= (Q [D&p[$), with D&p given by Eq. (8.14) of the text. The exact value is Itp
= &t('o)d(r) llo) = &golDtplt('o) = O. 1O888 a.u.

(a)
Number of
parameters Value (a.u.) Error Value (a.u.) Error

5)
Number of
parameters

1.5296
1.7878

Value (a.u.)

Mlo
1.3 Vo

Error

1.6996
1.8146

IV )
I(2

Value (a.u.)

6.1 /o

0.23 Vo

Error

0.1912
0.1153

80%
8.4'/

0.07874
0.1070
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egsu88. Moreover, the three-parameter value
S,', is more accurate than the six-parameter value
E» —0.1151a.u. and even the ten-parameter value
I» —0.1087 a.u. , while the three-parameter value
Ey exceeds the six -parameter value I,' ~ 1.8167 a.u.
in accuracy.

IV. RELATIVISTIC ELECTRONS AND PARITY
NONCONSERVING CONTACT INTERACTIONS

N

H= 0g 'p]+ ]m + V (4.2)

In this section we shall generalize the results of
the precedirig sections in a number of ways. First,
the atomic wave functions 111=4'(r„. . . , r„) will
be regarded as 4N -component Dirac-type spinors
satisfying

(4. 1)

where

H.'".(s', j),
. 4&j

where e, is a numerical constant and r, ,=r,. -r,
Ne shall therefore mainly be interested in

matrix elements of operators of the type (4.3),
with 6 = y', or a, for 5(r,) and 6 = y', -o, ' a, for
5(r»). We shall consider these in turn in Secs.
IV A and IV B. We shall also briefly consider the
case 6=1 in order to obtain a relativistic gener-
alization of the identities derived in Sec. II.

(4. 5)

A. Electron-nucleus parity-violating contact interactions

with the electron j and c, and c, are numerical
coefficients whose value depends on both the nu-
cleus and the underlying weak-interaction theory. '

, The parity-violating part HP", of the weak electron-
electron interaction has the form

N

H" =-'-..P[(y, —.-, -,)+(y,-.-, a, )]5(,,)
(C g

and V"' represents a sum of (parity-conserving)
electron-nucleus and electron-electron interac-
tions. Secorid, we shall study the evaluation of
operators of the form Let us define

1. Relevant identities

65(r,), 65(r„), (4. 3) Ms, =(e.~y', 5(r,)
~
e, ) (4.6}

where 6 is a Dirac matrix, or a product of Dirac
matrices referring to different particles. Finally,
we shall consider matrix elements of such opera-
tors taken between different eigenfunctions of (4.2).

CXf-diagonal matrix elements of operators of the
type (4.3) enter the calculation of the parity mix-
ing of atomic states arising from the weak neutral
current. It is interesting to note that while the
usual 5-function interactions in atomic physics
arise only as nonrelativistic approximations to
photon exchange, the 5-function interactions com-
ing from the weak neutral current are present
independently of such approximations. It is only
necessary that the mass of the exchanged Z' boson
is much larger than all electron momenta which
have appreciable probability.

In the approximation in which the nucleus is
treated as an infinitely massive point source, with
total spin S„„„the parity-violating part II~"~ of
the weak electron-nucleus interaction takes the
form'

g
&'"„=——Q(V,y', c,a, S„„,)5(r,)—

i"-1

(4.8}

We consider the commutator

p 6 &]= '6'[P' f']+[ ' 6']f'p' (4'}
On use of the relation

V1V11r1 = —-w5" 5(r1) + T1~,

where

we get

[a, p„e f,]= ——;vza, 65(r,)+fa,e&T,

(4. 10)

(4.11)

Nf.,= (e.
~
a,5(r,)

~
+,), (4.7)

where 4', and 4', are (completely antisymmetric)
solutions of (4. 1), with eigenvalues 8, and 8„
respectively, necessarily of opposite parity. To
obtain forms of M' and M which involve distri-
buted operators rather than 5 functions we may
proceed, for example, as follows. Let 6 =
= (6', 6', 6') denote a vector whose components
6' are constant 4 & 4 matrices, and let

f,= -&p', '= r1/+1 ~

= pa.'"„(f), (4 4)
(4. 12)+ [a'i1 6']fi Pi'~

If we take 6 =0, we find on using the relations

where y,' and 0., are the usual Dirac matrices
(a =y o) acting on the spinor indices associated

c1 3Y1 1 a1c 1T1 o [ lg +a1]

(4. 13)
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in (4. 12), that

[n, ' p» a, ' f, ]= -4miy,'5(r, ) —2i a, . 1,/r,', (4. 14)

where l, =r, &p,. Since, with H given by (4.2)

IH, a, f,]=In, p„n, '~i]+[v"'~i'fJ (4 ~ »)
~&4, i61, ii „}&4„tH'. "„(I)I4,.&

g,
(4.20)

we get, on taking the matrix element of (4. 15) with

4, and 0, and using (4. 14), the identity

~.' =(i/4~)[(~. —b.)&~.ln ' r /r'I~)
+ 2i(C,

I
n, 1,/r

-&~.I[ v"'. . ./ r']I+,&] (4 16)

If 6 commutes with B» e. g. , if 6 = S,«, then the
la, st term in (4. 12) vanishes and we infer

[n, p„r,/r'J = —
—,
' min, 6(r,)

+ i(3 a., r,r, —n, )/r', . (4. 17)

On using the analog of (4. 15) with n, f, replaced
we get the identity

M„=—[(8, —s,)(@,I r, /r',
I +,)

Here the g„are single-particle Dirac wave func-
tions satisfying

H(1)g„(r,) =Z„g„(r,), H(l) = n, p, + P,m + l7(1);

(4.aS)

and (R, = n, ' e exp(ik ' r, ) is the relativistic radia-
tion operator; the sum on g is over a complete
set of solutions of (4.21) and hence includes those
with negative energy.

Following a method exploited by Sternheimer, '
we define wave functions

g tn&(n l(R, li&

g
(4. 22)

tn&(n lIR, f f)
g

-i(e, l(3n, r,r, —n, )/r',
I e,&

-&e,
I
[V"', r-,/r,']

I
e,& J. (4. 18)

Equations (4.16) and (4.18) exhibit the quantities of
interest in terms of matrix elements of distributed
operators.

2. Application to parity-mixing calculations

which satisfy the inhomogeneous equations

[8& —H(1)J I I& =(R,g' &f14ti I i&(,
[E, -H(l)] I@&=. 61,q, -(iI61, If&tl,

It follows that

(4.23)

(4.24)

Given any approximate relativistic wave func-
tions 4, and 4, for the atomic states the forms
(4. 16) and (4. 18) can be used to calculate the
parity-mixing matrix elements and compared with
the direct evaluation which requires accurate
knowledge of the wave functions near the nu-
cleus: Such a comparison will give some indi-
cation of the accuracy of either calculation. Here
we shall only consider the further use to which
the identities (4. 16) and (4. 18) can be put in the
case where one makes the simplest kind of cen-
tral-field approximation. If the interaction 1/"'
in (4.2) is replaced by a sum of one-body opera-
tors,

+(g IA, I(„&,
where

A, = a, '1,/2vr -i[Us(1), o, ' r, /4nr~~].

(4.26)

(4.26)

Similarly, (4. 18) takes the form

g„I n, 5(r, )
I j„&=(@„—E„)(j„I3ir,/4gr',

I y„&

which still involves values of wave functions at the
point r, = 0. To illustrate the use of our identities
in this context let us specialize (4. 16) to the one-
electron case with. wave functions satisfying (4.21),
when it takes the form,

(q y', 6(r )
I 4„&=(E„-H„)&y ia, ' F,/4vr',

I q„&

(4. 19)
where

(4.27)

where U(i) is an effective potential acting on the
ith electron, the calculation of parity-mixing ef-
fects of course undergoes magnificent simplifica-
tions. The amplitude for the absorption of a pho-
ton of momentum k by an atom, making a transi-
tion from a state Ii) to a state

I f) of the same
parity, then gets a contribution from parity mix-
ing which is proportional to

P3, = 3(3n, r r, n, )/4m', ——3i[U(l), r,/4'', ].
(4.28)

If we use (4.25) and (4.27) to rewrite
(g&IH~'gl) I g„& and (g„lH~"„(1)Ig,.& and substitute
the result into (4.20) we may use closure on
the terms in which the energy denominator cancels
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and the definitions of I& and E) in the other
terms, to rewrite M in the form

C&= g&A& —&2Snuc
' B&, (4. 30}

The nuclear spin commutes with (R, so that on use
of the relation [8, r„a, 'e]= 2ia, &r, 'e Eq. (4.29)
reduces to

Mm;„=g [&qqI [i(c,o, -sc,S~«) r,r,', 8,,] I y,.&

+&y, Ic, II&+&FIc,Iq,.&], (4.29)

where

I

have already been performed. However, it must
be emphasized that these identities hold indepen-
dently of this approximation and could therefore
also be used, in a similar way, in calculations
of parity mixing in which corrections to the cen-
tral-field approximations are included" or, more
generally, in which wave functions which include
correlation are used. Applications of these
identities to such calculations in specific atoms
will be reported elsewhere.

B. Electron-electron parity-violating contact interaction

(~r )
ig gx

t'

L-if,ir, i',x) '

1 I
((i, )

i,'iP 'iX)~v -z &y'

(4. 33)

where y and y' are two-component spinors. It
follows readily from (4.25) that

&g, I y, 6(r i) I e, & =4—'[Ã, E)«I,",
I
y '

I a, &+-&f~ I
& '

I f.&

-4&g, I. If.&1&x Ix&,

where the left-hand side of (4. 34) is just equal to
if~(0)g, (0)&x'I x&/4m. For the case at hand, Eq.
(4.27} assumes the same form with the factor
&x'

I x& replaced by &x'I c
I
x&.

In the foregoing, we have used the central-
field approximation for the sake of concreteness
and to illustrate the use of identities (4. 16) and
(4. 18) in a context in which practical calculations

(4.34)

M,„=g[&(,I-2—,n, ~r, eg 'I|I,.&

+ &&z I c, I
l& + (F

I c, I P;&1 . (4. 31)

For the case where the effective potential V(1) is
diagonal in Dirac matrices and local, e.g., in the
Hartree approximation, the commutator terms in
both A, [Eq. (4.26)] and B, [Eq. (4.28)] vanish
and

Ci--cion ' 1J»+i
—sc,(sn, i,S„„,'r, —o, ' S „.)/4vr', , (4.32)

which does not involve the effective potential ex-
plicitly. Equation (4.31) should be useful in prac-
tical calculations of parity mixing in atoms.

In this connection it may be useful to state the
explicit form of the identity (4.25) in terms of the
radial wave functions g(r, ) and f (y, ) associated with
the large and small components of the Dirac
spinor g(r, ). As an example we specialize (4.25)
to the case of single-electron 8,&, and P, &, states
with wave function g, (r, ) and g, (r, ) whose general
form is

The matrix element of H'",(1,2) between eigen-
states 4, and 4', is given [see (4.5}]by

(4. s5)

f = r/r'

we have, in analogy with (4.12)

(4. 37)

[5, p»6 f]=—', vi 5, 66(r)-+i a', O'T'

+ [o', 6']f'p'„ (4. 38)

[o .p„e f]=+ -', via, . 66(r) i o', 6' T'"—

where

+ [ !,6']f'p!, (4.s9)

T'" = (sr'r' —6'~r'}/~'. (4.40)

On putting 6 =c, and then 6 = -o, in both (4.38)
and (4.39) and adding the resulting four equations
one gets

[n, p+ u, p„(o, -(x) f]
=-4vi. (y', + y', )(1 —

—,
' a, 5,)6(r)

+ i(y', + y', )8/r' —2iP„, (4.41)

where

(T2 —30'g '
&(72

' &

is the tensor operator and

P~2 ——Q~
' f X p~ —~2 ' f Xp2 ~

(4.42}

(4.4s)

The matrix multiplying 6(r} in (4.41}is not quite
I'~», needed in (4.35). However, if we also put

where r = r, —r, and

l2 (yl y2)( 1 o2) yl y2 ol 2 +1 o2 '

(4. s6)

To "desensitize" I.,„we need to find some identi-
ties analogous to (4, 14) and (4. 17). We note first
that with 6 a constant matrix vector and f defined
by
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where

g»=i(B, o,f p, —5, cr,f p,

+ a2 ' fbi '
p2 —ai '

foa
' pi) ~ (4.45)

On adding (4. 41) and (4.44) we see that with

h„=((y, —cT, ) 'f+i(e', x(r, ) 'f (4. 46)

we have

[a, p, + a, p„&„]=(-4@i)I'„6(r)-2i(P„-Q„).
(4.47)

The identity (4.47) is an analog of (4. 14) and ean
be used in a similar way. With H given by (4. 2)
we have

8= ii, «y, in (4.38) and (4.39) and again add the
resulting equations we get

[a, p, + a, p„io, xo, ~ f]
=~xi(y,'+ y,')(a, a, )6(r)

i(y-', + y'.)sir'+»e. ..
(4.44)

M'„-(q, I o, p,5(r,) + 6(r, )cr, ' p, I q, &/2m

=—(w, —8' )(g, I f, r,/r, I g )

+4 [&5 4. I
xl,ir'I4 )

+((o.xl./r')y. l p. le.&]. (4 51)

For the special ease of a single electron, with

g, = R( r) o r,y/~ra P, I, state and P,=R,(r,)y/
44v an S,&, state, Eq. (4. 51) reduces, on cancel-
lation of a factor of 4e, to

3R,'(o)R,(o)/2m=(w, w—,)(R, Ir,'IR-, )

—(2/m)(R, I r, 'd/dr
I R, ) .

(4.52)

Equation (4.52} coincides with a result given pre
viously, "derived directly from the nonrelativistie
Schrodinger equation.

Similarly, (4.49) reduces to.

&t. l(oi Pi+o2 p2)6(»(1-oi o.)+h. e ~ It.&

[H, h, ]= [a, p, + n, ' p, h, ] + [V"', h ] (4.48) =—(g'. —ll'a)&I. I
i »I P.&+ ' ' '~ (4.53)

so that on taking the matrix element of (4.48) with
4, and 0, and using (4.45) we get

L,„=(i/4v)[(s, —s,)(e.II „Ie„&
+2i(e.

I
(P„-q„)I eg

e. I
[v",I,„]Ieg]. (4.49)

C. Nonrelativistic limits

Equation (4.49) exhibits L,,=(%',
I
I"'„6(r)I%'g as a

sum of terms involving only distributed operators
and is an analog of (4. 16) and (4.18). The P»
term is similar to the second term in (4. 16).
However, the Q» term is of a type not encountered
in the electron-nucleus interaction.

where the terms not written out may be obtained
by making replacements such as

a;g(r) - [p&,g].+io, x [p;,Z]/2m

in the terms beyond the first in (4.49).
To conclude this subsection we consider briefly

a kind of inverse problem —finding relativistic
analogs of the nonrelativistic identities studied in
Sec. II. To be specific let us consider a single
electron in an external potential U,„(1)with wave
function 4 an eigenfunction with eigenvalue 8 of

H, = a, p, + P,m + U,„(1)=H,(1)+ U,„(1). (4.54)

The commutator of H, with 8/Br, does not yield
an identity for (4

I 6(r,) I 4), unlike the nonrelativis-
tic case. The trick here is to consider the square
of H,

The nonrelativistic equivalents of identities de-
rived in the preceding sections may be useful for
atoms with small enough Z. To obtain these we.
replaced 4' in (4. 16), (4. 18), and (4.49) by

FP, = Hao+ [Ho, U,„],+ UIX,

and to note that

(4.55)

(4.5o)

where g is the eigenfunction, with eigenvalue W,
of the nonrelativistic Hamiltonian II„,correspond-
ing to II, and retain only the leading terms in an
expansion in powers of c/c. Actually we need only
use the fact that p, g=g. Then Eq. (4. 16) reduces
to

(4.56)

where p", = p, -f, p, is the part of py transverse
to r, . On taking the expectation value of (4. 56)
with @we get

—(4 I[(n, . p", }/4'„U.„].Ie&. (4.57)
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Since the last term in (4. 57) is 6(v'/c') relative to
the first two terms (assuming that U is, e. g., dia-
gonal in Dirae matrices) and since 8 =m for v/c
«1, the nonrelativistic limit of (4.57) coincides
with the identity (2.14}, specialized to N= 1.

Identities similar to (4. 57} ean be obtained for
both 5(r, ) and 5(r»} when P &1, again by comput-
ing the commutator of H' with 8/Br, and 8/8r and
then taking the expectation value with an eigen-
function 0 of the relativistic N-electron Hamil-
tonian H [Eq. (4.2}]. However, the nonrelativistie
limit of these identities is not as transparent as
that of (4.57).

Finally, we note another identity, similar to
(4. 52), given in earlier work, "viz. ,
3R '(0)R,(0)/2m = (Rs

~
[W + W, -2 V,„(1)]r,'

~
R, &

-m ' dr R,'(r)R.'(r),
0

(4.58)

and ask for the relativistic generalization. %e
define

N.,=&@. iy', y', e(r, ) ~q, &

and note the anticommutator identity

[H, y', tr, ' f,].= 4 miy', y', 5(r,) + 2iy, u, 1,/r',

+2mtrt fi+[ "'~yttrt'ft].

{4.58)

(4.60)

V- SUMMARY AND DISCUSSION

A. Summary of results

The main results in Sec. 0 are the identities
(2. 13) and (2.22). These state that if g is an
eigenfunction of a nonrelativistic N-body Hamil-
tonian of the general form {2.10), then I,
-=&/(5(r, ) y&=&( D'

~y& andi, =-&([5(r, )(y&
= &g~D';s'(g&, where D' and D';,' are simple
"distributed operators, " defined by {2.15) and
(2.24), each involving a term proportional to a
derivative of the interaction potential V"' and an
angular momentum term. These identities can
be regarded as generalizations of an "8-state
identity" which has been used in discussions of
the charmonium model. It was argued that use of
the alternative forms D', 'and D',2' is likely to give

From (4.60) one infers that for a local diagonal
ytot

7

X.,=(I/4v)[&e. ~(Z. +8, -2my', 2V"')y', &, f, e, &

-2i&4, y', u, ' I,/r', ~e, &]. (4.61)

Qn specializing to the one-particle case and going
to the nonrelativistic limit, one easily sees that
for the case of S and P states (4.61) reduces to
(4.58).

more accurate values for I, and Iy2 when only ap-
proximate wave functions are available. In sup-
port of this idea it was shown in Sec. IG that the
contact interactions entering the 6 (n'Ry) correc-
tions to atomic energy levels can be very accurate-
ly evaluated by use of these identities, even with
relatively crude wave functions, at least in the
case of helium. As an example, a three-param-
eter Hylleraas mave function used with D» gives
a val~e for I» which is correct to within a few
tenths of a percent, a result which is better than
that obtained with a ten-parameter wave function
used with 5(r„).

In Sec. IV, the ideas involved mere extended to
relativistic many-body systems, in particular to
many-electron atoms and to matrix elements of
the form M,'„=&4,

~
y', 5(r,)

~
4'g and M, s = &q',

~
e,5(r,)

~

x4,&, where 4', and 4, are eigenfunetions of a rela-
tivistic Hamiltonian IJ of the very general form
(4.2). Identities which exhibit M,', and M,» as
matrix elements of distributed operators were
derived [Eqs. (4. 16) and (4. 18), respectively].
It was then shown how these identities can be
used to ameliorate one of the difficulties en-
countered in the calculation of parity-mixing ef-
fects in atoms: the apparent need to have wave
functions which are especially accurate at parti-
cular points in coordinate space, i.e., r,.= 0 or
r,. = r, This was illustrated in the central-field
approximation, by the derivation of Eq. (4.31) for
the contribution M;„ to the amplitude y+ 0,
arising from the parity-violation part of the weak
electron-nucleus interaction (4.4). Equation
(4. 31) exhibits M;„ in terms of distributed opera-
tors and the solutions of the inhomogeneous equa-
tions shown in (4.23). We also derived an identity
{4.49) for the quantity

L,„=&@,~(y', +ys)(l- rr, n, )5(r) ~+, &,

which may be similarly useful in the study of
parity-violating effects arising fro~ the weak
electron-electron interaction (4.5). In passing,
we obtained a relativistic generalization, Eq.

. (4. 57), of the nonrelativistic identity (1.2) for
5(r,).

To conclude this paper we shall (i) give a physi-
cal interpretation of the 6(r,) identity and (ii) dis-
cuss briefly the question of the inclusion of the
effects of.virtual electron-positron pairs in cal-
culations of parity violation.

B. Physical interpretation of the identity for 5(rt }
It is interesting to compare the identities (1,7)

and (1.8) for 1=0 and I 00, respectively. The
identity (1.8) for I x0 states admits a simple
physical interpretation. It may be rewritten in
the form
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(p, ~p'„~p, &=0 (i~o),
where

(5. 1) N

H= g(o,. p,. + P;m) +Y" (5.12)

(5.2)

Now for a particle of mass p, moving with angular
momentum 1 in a central field V(x), the radial
equation of motion is just

class

where
2-BV 1

Bx

(5.2)

(5.4)

For a closed orbit

F=O, (5.5)

where the bar denotes the time average over a
complete cycle. It follows that

+el ass 0 (5.6)

f.,= -[a,[a, ~]]. (5.9)

From r„= (f p+p f')/2p= (f p —ir ')/pwe see,
that F„"=i[H,i p —ir '] and hence that F'„' will
contain a contact term given by —V'x '/2p
= 2n6(r)/p, . Thus one finds

S'„'=E'„'+2mb(r)/p, . (5. io)

It follows that both the l = 0 and l &0 identities may
be uniformly written in the form

&y, ~s„~ y,&=o (5.11)

if one takes into account the nonclassical contact
term in &'„'. The fact that this term has its origin
in quantum mechanics can be made clear by noting
that we have been using units in which 5 = 1. In
the usual units, the contact term has the form
2@I'6(r)/p, , which vanishes for ~+-0.

and hence (5. 1) is just the quantum equivalent, for
a stationary state, of (5.6) for a closed classical
orbit. However, this interpretation seems to fail
for S states P, since, with definition (5.2), the
identity (l. 7) has the form

(5.7)

The interpretation can be extended to 8 states
if we note that the operator I „' is not the appro-
priate quantum equivalent of I'„' ' in all cases.
To see this, let us define F'„' by

(5.8)

where i„=i[H,r„]and i„=i[H, r]'s—o that

in our derivation of identities relevant for the
calculation of parity-violating effects in atoms.
The usual choice for N&1 is

N N 2
Vtot P

i=l f(j ~fj
(5. ia)
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where V,„(i) is the electron-nucleus interaction.
However, the Hamiltonian (5. 12) then has no bound
states. " When electron-electron interaction is
included one must be careful in applying the pre-
scriptions of hole theory rather than one-electron
theory. Within the framework of the central. -field
approximation these problems are not manifest,
but they must be faced as soon as one wishes to
go beyond this approximation. A practical form-
alism which avoids such difficulties does exist. It
is based on a modified Dirae-Coulomb Hamiltonian,
derivable from quantum electrodynamics, in which
the interactions terms are sandwiched between
positive-energy projection operators and effects
involving virtual electron-positron pairs can be
treated systematically by perturbation theory. "
Effects of transverse-photon exchange, as repre-
sented by the Breit operator, may also be included
in zero order without encountering spurious higher-
order terms. This approach has been used suc-
cessfully in a number of different physical prob-
lems" "and should be useful in including pair
terms in the calculation of parity-violating effects
in atomic physics. '

Added note: After completion of this work some
related papers were brought to our attention.
Equation (1.8) can be regarded as a special case
of a more general equation for the matrix element
of x" between radial wave functions, derived by
D. E. Hughes, J. Phys. B 10, 3167 (1977). More
accurate values of (5(r, )& for helium than one gets
from direct evaluation with a variational wave
function have also been obtained by other techni-
ques. See, e.g., A. Dalgarno and A. L. .Stewart,
Proc. R. Soc. London Ser. A 257, 534 (1960) and
C. Schwartz, Ann. Phys. (N. Y. ) 6, 156 (1959);
ibid. 6, 170 (1960).

C. Pair effects in calculations of parity violation

We have deliberately refrained from specifying
the form of V"' in the relativistic Hamiltonian

APPENDIX A: EVALUATION OF I~ AND I)2 FOR HELIUM

In terms of the Hylleraas variables s =~y+x„
t = r, r„nd ua= x» t-he potential term in (3.9)
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takes the form

8Qs Q
p+ —„~ (A1)

where Z has been taken to be 2. The derivatives
required for D, and D» then become

Although 1', and 1 may be expressed in terms of
derivatives involving s, u, t, and angular varia-
bles, for our purposes it is simpler to evaluate
laig(s, u, t) and laic'(s, u, t) directly by use of the
chain rule. This gives

ev"' 8Q SI;+Q'

ar, (s+t)' u'(s+t

SVi" ua(s'+ Sta) —t'(ss'+ t') n

( a ta)s a '

(A2)

{AS)

1 aiy(s, u, t) = —,'(s'+ t' —2u') ——
——,'(s' -u')(t' —u') ——

I
——

QBQ(QBQ
(A4)

(A6)

2st & Sq Sq & (s' -u')(t'-u') I
a a Sg

]. p(s, u, t)=, al s —-t —I+ a, , I t(ss'+t') —-s(s'+st')—sa-ta( St Ss j (s —t) ( St Bs

With a volume element de. = m'u(s' —t')ds du dt and g real, the expressions in Eq. (3.12) for I,' and I,', then
take the form

P

~e (A6}

(S —g J
(AS)

The Hylleraas ansatz for ( is

+8"tfs /2 ~C +n+2t~S nt2l+m (AS)

write approximations I, and I» for I, and I» as

I,= (pl 6(r }lp& -and I„-=&ql6(»l|t'& (112)

where a= (n, 2t, m) with integer n, l, and m, N is
a normalization constant, and z and C, are varia-
tional parameters. Substitution of (AS) into (A6)
yields

N
I,'= v s Q C,Ca'Ritl 0 (A9)

APPENDIX B: ERROR BOUNDS FOR I) AND Iu
FOR HELIUM

The Hamiltonian is H=K+ V„, where, with
r=r, —r„R=—', (r, +r, ), &=i '8/Br, and 0s
=i '8/SR, K is given by (a.u. )

K= —~V -2V = -V -4V

Let g be the exact ground-state eigenfunction of H
and let P be an approximation to P. One can then

where S denotes a sum of integrals each of which
can be done analytically; I,', may be written simi-
larly in terms of a matrix S;,'. The expressions
for these quantities, which are conveniently taken
to be symmetric in the superscripts, are too
lengthy to be recorded here. "

The errors e, and ~» are defined by

a, = Ii, —I, l, a d ~„=II„-I„I.
A practical formula for an upper bound on e, has
been given by Redei. ' We sketch the essential
steps in his treatment and then indicate the modi-
fications needed for e„.

The approximate wave function is written in the
form

C=(1 n'}'"C+-e',

&sit&=&f If&= & &(lf&=0

An upper bound on q' is provided by

qa, „=(E, E,)/(E, -E,),-
where Ea= (P IHI () and Ea an—d E, are exact eigen-
values for the ground state and the next highest
state of the same symmetry. Using Schwartz's
inequality, Redei derives another inequality [his
Eq. (10)], a special case of which is

l(1-ai')I, I, l
-2qI', ~.(f I 5(r,)-I f)'~

+~'&f I6( .&If& (136)

where q is chosen to be real and positive and g and

f are orthonormal,
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Next an upper bound for (f 6(r, )l f) is found. The
bound

&f I6(")lf&-,—,&~lf I&:f&'"&fl-~llf&'", (»)

Use o«he relation ~'lf I'=2Re(f *&'f) +2
I
&f I'

and the triangle inequality give

1 1
(f 6(r) f&

(— f*—v'f d r d R2' y

not written down by Redei, but implicit in his equa-
tions, is then used to show that

1 1+——
I
'vf ' d r d R .2' y

(814)

f I6(r, )lf& &Kf IKf& '&f IKlf&'~'. {8
We now use, as in Ref. 4, the following inequali-
ties

These inequalities are independent of the defini-
tion of the function f. Further inequalities which
depend on the definition (84) of f and the form of
H=K+ V"' that give upper bounds for q& f IKIf&'~'
and q&Kf IKf&'~' can now be used. These bounds,
derived by Kinoshita, ' are

g& f IKI f&' -B=—2$,„+[@,„(E +4)+(E E)]'~-

(89)

q&Kf IKf&' '(C/[3&/2v)E]
~B+[g'+E' —(1—q' )E']'~' (810)

f*'7'f—d r d R (2&%'f
I
9'f&'i'& f I

—v'
I f),

dr dR( V' V'

From these one can see that, just as in (BV),

& f I
6(r)

I f&
-

2
«'f

I

v—'f &'"&f ~'
I f&

'"—. (815)

To put this upper limit in a form analogous to (88),
consider the obvious inequality

&f I-&' If&-&f I-&'If&+ l&f I-&'lf&=&f I Klf&

(816)

where

(811)

where K is defined in (81). One can also show
that

The use of (86), (88), (89), and (810) then gives
the final result~

1( emax — (2C&/2@&2 y C y iia I ),1 1 1 2 max
~max

(812)

(813)

&fI~&~~If) ,,f„+ I&=I -d—~~R—. *'

In order to derive the analogous bound em»'x for
~» we begin by making the obvious replacements
in (86) to give

I
(1—q')I„I„l-2iiI,',-'& f I6(r) I

f)' '

+n'&f l«)lf&.
One can find an upper bound for & f I

6(r)
I f&, which

corresponds to that in (BV), by following the pro-
cedure of Redei. Repeated integration by parts
yields

«f ~~ f&=&Kf IKf&. (817)

The substitution oi the bounds (816) and (817) into
(815) gives

&f I6(» lf&- 2—,&Kf IKf&'"—&fIKlf&'" (816)

which differs from (88) only by a factor of ~.
Following the steps leading to (812) one then finds
an analogous result for E'y2.

(2/ &~1~&2 y/ 4. 7p I ) (819)
Omax

where A =—C/W and C is defined in (810).
The error bounds (812) and (819) were evaluated

for the case of the 1078-parameter ( developed by
Pekeris, ' with E, approximated by the correspond-
ing E,. Other sources" "provided values for
g',„and O'. These values are presented together
with the results for e, and ~„ax in Table II.

TABLE G. Upper bounds & ~'x and &&2" for the error e~ and a&2 in I~ andI~2, respectively,
defined by Eqs. (B2) and (B3) of the text; also listed are the values of the quantities
ED= &$(JL[g), o = g[H (g) E0 anda 2,„[defined—by Eq. {B5)) needed for the evaluation of
the E's via Eqs. (812) and (B19).

c &'" (a.u.)

0.0012

/~2 (a.u.)

0.00025

&0 (a u )

-2.903 724 375

2
~max

2x10 9 b

o2 (a.u.)

1.698x10 ~ ~

'See Ref. 3. "See ref. 17. 'See Ref. 18.
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