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We study the properties of the laser field in the case where the cavity contains two cells, one which
amplifies and one which absorbs the radiation. We adopt the simplest possible model, in which there is only
one running mode in the cavity and all atoms are fixed and homogeneously distributed in space. We first set
up a semiclassical description. In the frame of the stationary semiclassical (SC) theory the most striking
feature is the occurrence of a domain in which three solutions coexist. A linear-stability analysis shows that
two of these solutions are stable. This gives rise to an hysteresis cycle. Most of the results in this section are
analytic. In the frame of a purely quantum description, we derive a generalized Fokker-Planck equation
which is exactly solved in the stationary case. This yields a stationary quasiprobability distribution function
for the field. In the domain where the SC theory predicts three solutions, the field-distribution function has
two maxima and one minimum whose positions are precisely given by the SC intensities. With this
distribution function we study the intensity and the intensity fluctuations: the intensity shows a rather abrupt
increase when crossing the narrow transition region; in this region the intensity fluctuations are extremely
high. By means of an approximate method to solve the time-dependent Fokker-Planck equation we study the
linewidth and show that it drastically decreases above threshold. Finally we consider the linearized and
quasilinearized Fokker-Planck equations which can be solved analytically. We show that the domain in
which neither of these equations fits the results of the generalized Fokker-Planck equation is extremely
small. The properties of the metastable states are analyzed in terms of the generalized and asymptotic
Fokker-Planck equations.

I. INTRODUCTION

It has been theoretically shown that optical sys-
tems containing saturable absorbers can exhibit
bistability. Examples are (i) the so-called optical
bistability or optical transition' which concerns the
light transmitted by an optical cavity filled with
absorbing atomic material, (ii) the laser with sat-
urable absorber, ' and (iii) the dye laser. ' From
the experimental viewpoint there exists a very re-
markable experiment on optical bistability per-
formed by Gibbs et al. ' which shows the hysteresis
cycle (of the transmitted light versus the incident
light) arising in the bistable situation. For the
laser with saturable absorber we are not aware of
any experiment as complete as that of Ref. 4; how-
ever, the existence of hysteresis effects has been
verified experimentally by I ee

equal.

' and by
Lisitsyn et al. '

In this paper we are concerned with the laser
with saturable abosrber. Salomaa and Stenholm' '~

have given a complete numerical analysis of this
problem on the semiclassical level for a gas laser.
It turns out that for suitable values of 'the relevant
parameters the semiclassical equations have two
different steady-state solutions which are stable
in the sense of the linear-stability analysis. In one
of these states the laser does not oscillate, where-
as in the other state the field has a finite intensity.

Hence, one immediately obtains a hysteresis cycle
for the laser intensity versus the pump parameter
of the active atoms. Clearly, the existence of a
bistable domain strongly suggests that a laser with
saturable absorber is an example of a system ex-
hibiting a kind of first-order transition far from
thermal equilibrium, exactly as the usual laser
(without absorber) is a prototype of second-order
phase transition out of equilibrium. ' In this spirit
Scott etal. ' ) have e,xtended the laser phase-trans-
ition analogy of Ref. 7(a) to the case of a laser with
saturable absorber by constructing a free-energy
analog for the laser. The discussion of the minima
of such a free energy in the bistable case allows
them to give a kind of Maxwell rule which fixes the
value of the pump parameter at which the laser be-
gins to oscillate. At this threshold the system
should suddenly jump from the zero-intensity
steady state to the finite-intensity steady state
(first-order phase transition). A similar analysis
for a four-level laser with saturable absorber has
been given by two of us. ' Although the approach
which is based on the semiclassical equations and
on a thermodynamical analogy is quite rewarding,
it is limited insofar as it contains an admittedly
ad hoc element, namely, the "Maxwell rule. "
Therefore, such an approach assumes the exis-
tence of a first-order transition rather than prov-
ing it.
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The aim of the present paper is to show the ex-
istence of a first-order transition in the laser with
saturable absorber on a firmer basis; namely, we
show that the physical quantities actually undergo
a rapid change in a narrow transition region. This
behavior really resembles what one finds in first-
order phase transitions occurring in systems at
thermal equilibrium. Of course the transition is
not infinitely sharp, because the laser is a finite
open system. To fulfill our program we use a
fully quantum-mechanical approach. The reason
for introducing a quantum treatment is not only
motivated by the need of a correct description of
the fluctuations which are known to have a critical
influence in the transition region. The main rea-
son is that in our problem even the calculation of
the mean values of the observables requires a fully
quantum-mechanical theory. In fact in the bistable
region tke Glauber quasipr obability distribution
function associated with the field in the stationary
state has two maxima. This means that the aver-
age values depend on all the features of the dis-
tribution function, e.g. , the relative heights of the
two peaks and their widths.

We use a model which is exactly solvable on a
semiclassical level. It describes the interaction
of a single running mode of the laser cavity with
tmo-level atoms mhich are fixed and homogeneously
distributed in space. The atoms are of two dif-
ferent species: the first one (active atoms) being
pumped to a positive inversion, the second one
constituting the absorber. On the basis of this
model we first make a complete semiclassical and
linear-stability analysis. This study is parallel
to that performed in'&'~ for the gas laser, but is
practically completely analytical. As a second
point we calculate the steady-state Glauber dis-
tribution function of the field. It is important to
stress in this connection thai in the bistable case
the laser with saturable absorber is an intrinsical-
ly high-intensity problem. Saturation effects are
crucial for the discussion of this problem, and
they must be fully taken into account. To deal with
these saturation effects, we use the techniques
developed by two of us to treat the problem of high
intensity lasers. '" This procedure allows us to
obtain the distribution function of the field in a
straightforward way. By means of this function we
calculate the intensity, the intensity fluctuation,
the linewidth, and the phase shift. The two latter
quantities are calculated following a procedure de-
vised by one of us" and which has been success-
fully used in the case of the laser with active atoms
only. Similar problems for a simplified model
mere considered by tmo of us."'&

A point which is interesting to discuss in this
context is metastability. In fact the quantum treat-

ment alloms us to see which one of the tmo steady-
state semiclassical solutions (which are stable ac-
cording to the linear-stability analysis) is abso-
lutely stable and which one is only metastable. It
is meaningful to ask questions concerning meta-
stable states such as the fluctuations and the line-
width in these states. Strictly speaking, one should
solve the quantum-mechanical equation for the
whole time evolution to answer these questions
since the metastable states are not stationary
states. However, we show that one can study the
properties of the metastable states by lineariring
the quantum-mechanical equation around the meta-
stable state itself. With this trick we associate to
the metastable state a formgl distribution function
through which we can study the usual properties
using standard methods. Of course this distribu-
tion describes the state of the system only as long
as it remains trapped in the metastable state.

In Sec. II me state the von Neumann equation
which is the starting point of our treatment. Sec-
tion III is devoted to the semiclassical (SC) theory
which is derived from the von Neumann equation
in Sec. IIIA. In Sec. IIIB me study the stationary
solutions for the intensity. This. study is com-
pleted in Sec. III C by a linear-stability analysis.
Section IIID is devoted to the derivation of the
frequency shift. In Sec. IV we make a fully quan-
tum study of our model. In Sec. IV A we derive the
generalized Fokker-Planck equation which governs
the time evolution of the Glauber distribution func-
tion associated with the field. In Sec. IVB we
study the stationary solution of this equation as
well as the mean intensity and the intensity fluctu-
ations. Section IV C is devoted to the analysis of
the transient properties of the Fokk@r-Planck
equation; this leads to a study of the linewidth and
the frequency shift. Section V is devoted to a study
of asymptotic equations and is divided into two
subsections: In Sec. VA we consider the linearized
Fokker-Planck equation whereas in Sec. VB we
consider the quasilinearized Fokker- Planck equa-
tion. In each ease we compare the results of the
asymptotic and the exact theories. The last para-
graph of the section is devoted to the discussion of
the metastable states. Section VI contains some
concluding remarks.

II. THE VON NEUMANN EQUATION

The physical situation which we describe in this
paper is a solid-state laser containing two cells in
its resonant cavity. Both cells contain an inert
matrix doped with atoms mhich may act as active
material under suitable conditions. The possibility
that the tmo cells contain the same inert matrix
and the same active atoms is not ruled out. The
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basic difference between the two cells is that in
one of them (the amplifying cell) the active atoms
are submitted to an intense pumping process so
that a state of population inversion between two
levels is created. On the contrary in the second
cell (the absorbing cell) the pumping is weak and
no population inversion is induced.

In the model we shall use we describe the active

and the passive atoms (i.e. , the doping ions in the
amplifying and absorbing cells, respectively) by
two-level atoms. Both levels of each type of atoms
have a finite lifetime. Furthermore we assume
that the cavity can sustain only one running mode.
Consequently, in the diagonal. Glauber representa-
tion the von Neumann equation which we associate
to our system is.

ih8, W(t) = (L„+L„+L„+iA„+iA )W(t),

where
N. ,

L„X=H„X XH„, —H„= g ktu(P)at(P)a(P)+ br'(q)A" (q)A(q),
P =1

Iy=-AV

L„zX=RP {g(P)at(P)PX+g*(P)a(P)[J3* 8/8P]X g*(P)P~Xa(P) g(P)[P 8/8P*]Xat(P)}
p =1

+ Ig (g(q)At (q)PX+g*(q)A(q) [P"—8/8P]X —g*(q)J3*XA(q) -g(q) [P - 8/8P*] XAt (q)},
q=1

A, =a. —'P. '.P),8 8*
N

A„= —g A(p)+ —-g A(q),2 p 1 2 1

A(P)X=y)(P){[at(P),Xa(P)] +[at(p)X, a(P)] }+y)(P)([a(P),Xat(P)] +[a(P)X,at(P)] }
-q(P pa(P)at (P)Xat (P)a(P) + at (P)a(P)Xa(P)at(P)},

A(q)X=y& (q){[At(q), XA(q)] + [At(q)X, A(q)] }+r&(q){[A(q), XAt(q)] + [A(q)X, At(q)] }
+q(q){A(q)At(q)XAt(q)A(q)+At(q)A(q)XA(q)At(q)} .

In these definitions X stands for an arbitrary op-
erator, v is the frequency of the field created in
the cavity, z is the damping constant of the field
in the empty cavity, P is the Glauber variable as-
sociated to the field. For the active atoms the
relevant parameters are the total number of atoms
(N), the energy difference between the two levels
[h&u(p)], the effective atomic transition rates be-
tween the two states (yt and y&) and the influence
of phase-destroying processes in the atomic damp-
ing (g). They are connected to the longitudinal
(y, ~) and transverse (y~) relaxation constants and
to the unsaturated inversion (cr) through

ran=a(r)+r)+'q) r(( =ri+r)
~=(r, r, )/(r, +r, ) . -

For the passive atoms we use the same notation
except that the symbols have a bar on them. The
atomic operators at(p), a(p) and At(q), A(q) de-

scribe the transitions between the two levels and
obey the anticommutation relations

[at(P), a(P ')],= 8 (P,P'),
[At(q), A(q')], =8(q, q') .

Finally the coupling parameter is expressed as

g(p) =-i[kvv] ' 'ur(p)e'"'"e 6',

(P = e d r p* 0; r ry 1;r

where v is the volume of the cavity, z is the field
wave vector (z'c'= v'), r(p) is the position of the
atom characterized by the variable(s) p, e is the
unit polarization vector of the field mode, e the
electronic charge, and y(i; r) the atomic wave
function of state i . The variable P (and q of
course) is a short-hand notation for all the vari-
ables needed to specify the atomic properties.
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Typically it can represent the position and the
frequency, in which case the sum over p is to be
understood as

N

Qf(p) = f dqq(r) jdeq(q)f(rq), ,
P=l V

where p(r) is the atomic density and g(&o) is the
distribution of atomic frequencies in the crystal.

III. SEMICLASSICAL DESCRIPTION

A. Derivation of the semiclassical equations
I

In order to derive the semiclassical (SC) equa-
tions from the von Neumann equation (2.1), we ap-
ply the following procedure. "~'~-"&'.& Vale derive
from Eq. (2.1) the equations for the mean values
«p, a(p), A(q), at(p)a(p), and At(q)A(q) under
the factorization assumption

—+e E(t) =Nv(t)+¹(t),d
I

~~
~

~
tdt

(3.8)

=(A~(q)A(q)) —(A(q)At(q)& which are the perturbed
atomic inversions. Because (at(p)& =(a(p)&* and
(At(q)& =(A(q)&*, this set of five equations is
closed.

ft is more convenient and physical to introduce
the decomposition

& p& =E(t)e-*"',

g*(p)(a(p)& =[a(p;t)+tv(p;t) je

g*(q)&A(q)& = [R(q t)+ —
(q; t)]e-'"',

where the new functions are real functions. Furth-
ermore, we shall assume that all atoms in each
cell are identical and homogeneously distributed
within the cell. In that case the index p (or q) dis-
appears and our basic set of equations becomes

(xYz& =(x&&Y&&z), (3 I) E(t)(n —) ) = Nu(t)+ NR(t), (3.9)

where X (Y, Z) is an arbitrary operator which is a
function of the field (active-atom, passive-atom)
variables. In other terms we neglect all atom-
field and passive-active atom correlations. The
mean value is defined by

(0) = Trfd 'p 0(q(i), (3.2)

where 0 is an arbitrary operator, W(t) is the so-
lution of Eq. (2.1), and Tr stands for the trace
over all atomic variables. A straightforward ap-
plication of the rule (3.1) leads to

d N N

i
qi

+q -q (()) = gg'(q)(q(p))+Qq" (q)(A(q))
/

(3.3)

c
—+y ut = w —Ant, 3.10d

—+y~ yt = Q ~zt+ g'DtEt, 3.11

—+y, R(t) = ((o —II)V(t), (3.12)

dt +y~ v(t) = (0- &o)R(t)+ ~g~'fy(t)E(t), (3.13)
d

d~

~

I I

~~
!I

~

t
~

~

~+y~~ D t =y~~o - 4g t 8 t, 3.14

~ ~
dt +yll fy(t) =y))(y —4V(t)E(t). (3.15)

d
dt +y (p) — (P) & (P)&=-D(p't)g(p)(p&

i q, +q„(q)) ii(q;q)d

='y (P) (P)+2g(P)& '(P)&&P&

+2g*(p)( (p)&&p*&,

(3.4)

(3.5)

L)=0(1+SE') ', v= (gIi'ED/6i, u=&v,

and we have introduced the standard notation

(3.16)

S = 4~g~'/y„6„ 6, = y, (1 + a'), a = (n —&o)/y, ,

B. Stationary solutions

We define the stationary state by the condition
that all time derivatives vanish in Eqs. (3.8)-
(3.15). Then the last six equations can be solved
in terms of the field amplitude E:

i —+y, (q) ~(q) (A(q)& = 7)(q; t)g(q)(P&, (3.6)
d

i —„,+q„(q)) ))(q;i)d

i y (I
(q)0'(q) + g{q)&At

(q)& &P& gq'(q)&A (q)& &P

(3.7)

with D(p, t) = (a~ (p)a(p)) —(a(p)at (p)) and 25(q, t)

(3.17)

where S is the saturation parameter of the active
atoms and ~ the detuning. Needless to say, a cor-
responding set of solutions holds for the passive
atoms: one simply has to add a bar on all atomic
functions and parameters in Eqs. (3.16) and (3.17).
Inserting these results into Eq. (3.8), we obtain the
equation which gives the intensity of the field and
which we write as follows:
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(3.18)

with

I= SE', A = o/o'(T) = N igi 'o/~5 i,
(3.19)

C= 1 u/e-(r) =1-I7lgl'~/~r„a=S/S .
I is the normalized intensity and v(T) is the
threshold inversion per atom for laser action when
the cavity contains only the active atoms. Note
that the SC stationary equation (3.18) for the nor-
malized intensity depends on only the three pa-
rameters A, C, and a. The parameter A char-
acterizes the amplifying cell (v& 0); its relevant
range is A&0. The parameter C characterizes
the absorbing cell (5 & 0) and is defined in such a
way that its relevant range is C&1. Finally, the
parameter a measures the relative saturability of
the two cells: when 0& g &1 it is easier to saturate
the active atoms than the passive atoms, whereas
when a&1 we have the converse situation.

Let us stress that Eq. (3.18) only gives the math-
ematical solutions to our problem; these solutions
can be positive, negative, or even complex. The
only admissible solutions are the real non-negative
roots of Eq. (3.18). In this last group the physical
solutions are the roots which correspond to a
stable stationary state. In this section we shall
determine the admissible roots of Eq. (3.18) and
in the next section we shall make the stability
analysis to see which are the physical roots. To
discuss the solutions of Eq. (3.18), we shall ne-
glect the additional intensity dependence which
arises from the modified damping constant 5~ via
Eq. (3.9); in other words, we approximate 0 by v

in Eq. (3.18). In the case where there is no ab-
sorbing cell this neglect is perfectly justified"
provided y~ » I(;, a property which holds in general
for solid-state lasers and which we assume to
hold here The r.oots of Eq. (3.18) are I,=O,

1.5 1.75

FIG. 1. Reduced intensities I+ ~ SE2 and I =0 versus
the pump parameter of the amplifying cell for 1 &a & C/
C —1.

We can now discuss the various possible situa-
tions.

(a) 0 & a & 1. When a is smaller than 1, the con-
dition (3.21) is trivially satisfied because X, and
X are complex conjugates. Furthermore, case
(ii) is ruled out. Hence one has the following ad-
missible roots:

I=I+, I=ID if A~ C,
0&@&1

I=IO ifA&C.
(3.23)

I=I, =A —C, I=ID if A C,
a=1

~

~

I=I if A&C.
(3.24)

(c) 1& a& C/C —1. In this situation only case (i)
is possible. For A& C condition (3.21) is satisfied

In this case the function I, = I, (A) for A & C is con-
vex towards the A axis.

(b) a=1. This case is trivial and we merely
quote the result:

I, = (1/2a)(a(A —1) —C+ ([a(A —1) -C]'

4g(C —A)1. ) (3.20)

The first condition to be imposed is that the roots
be real. This condition can be expressed as

(aA —X,)(aA —X ) &0,

X,= a+ C —2+ 2[(a —1)(C—1)]'I' . (3.21)

For the following discussion it is useful to notice
that if a&1, one has aC&X, and X, &a+C if C
& a/a —1. When the condition (3.21) is verified,
three possibilities can arise: 0

18 19 20 23 2C

(i) A. &C: I, )0, I &0;
(ii) aA&a+C, A&C: I &0, I &0;
(iii) aA&a+C, A&C: I„&0, I &0 .

(3.22)

FIG. 2. Reduced intensities I ~
= SE~2 and I =0 versus

the pump parameter of the amplifying cell fora & C /C —1.
The domain in which there are three solutions is
X+ &aA &aAC.
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have in the (A, C) plane for a& 1. We stress that
there is a striking similarity between Figs. 1-3
and the corresponding plots for a gas laser. '~'~

However in our model these results are completely
analytical.

C. Linear-stability analysis

1. General analysis

a
a-l

FIG. 3. Behavior of the roots I+ and I „given by
Eq. (3.20) in the (A, C) plane. Note that the root I =0
is a solution everywhere in this plane.

because ag&aC&X, . Hence we again obtain the
result (3.23). The only difference is that the func-
tion I„=I,(A) for A& C is concave towards the A
axis (see Fig. 1).

(d) a& C/C —1. This is the interesting situation
because now condition (ii) in (3.22) can be fulfilled.
Taking into account X & a+ C & X, and Eq. (3.21),
one verifies that the admissible roots of Eq. (3.18)
are (see Fig. 2)

a&C/C —1

I= Io if aA. (X+

I=I, I=I, I=ID if X,&aA&aC,

I I I Io if A) C (3.25)

The new feature is the occurrence of a new domain
defined by the conditions X,=aA & aC in which all
the roots of Eq. (3.18) are admissible solutions.
Therefore it is important to study the stability of
these roots to know which one of them is a physical
root. Figure 3 shows how the roots I and I, be-

To study the stability of the admissible roots we
shall make a simplifying assumption: we consider
the case Q=~ =co= v. This is physically sound be-
cause in the experimental situations one tries very
hard to minimize the differences & —v and cV —v;
furthermore, some experiments are performed
with the same atoms in both cells (hence ur = (V),
the difference between the amplifying and absorbing
cells being then the intensity of the pumping. We
are then left with a set of five equations, namely,
Eqs. (3.8), (3.11), (3.13)-(3.15). Let X(t) be any
of the five relevant functions. We introduce the
decomposition X'(t) = X+X'exp(-A. xt) where Xis the
stationary value of X(t). Inserting this decomposi-
tion into the five equations and linearizing them
with respect to the X' leads to

(—A, + 1)zE' = Nv'+
¹

(-X + dh ) v ' =
i G

~

'(DICE ' + D'KE);

(-X+X,) V'= ~G~'(D~E'+3'~E),

(-A. + d~~ )D' = —4(v'~E+ v ~E'),

(-A. + d~~)D
' = —4(V'~E+ V~E'),

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

where d =ye ' and IG)'= )g)'~ '. In order that these
five equations admit nontrivial solutions, it is nec-
essary that the associated determinant vanishes,
and this of course furnishes an equation for A. .
When I=I,=O this algebraic equation is

(X —d„)(A. d ~)f(A. 1)(X d )(A. d )

-&IGI'D(~-d, )-&IGI'D(~-d. 6=0 (3»)
When I=I, the equation is somewhat more compli-
cated:

C(0)A, '+ C(1)A.'+ C(2)A. '+ C(3)A.'+ C(4)A + C(5) = 0,
(3.32)

where the five coefficients are

C(0) =1,
I

C(1) = -[1+ d + d + d + d, ],
C(2) =t(d~~d +adiidi)+d d +d +d —d —d + (dii+~~l)(1+d +d )+dA — 1 —C

1+I 1+aI
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C(3) = —aid„d~ 1+d~+ d~~ + —Id~ d~ 1+d~+ d~~ + —d„d„(1+d~+ d~)
1 —C A

—(d)( + d(() d~dj + dg+ dg —dg
A —1 —C

1+I 1+aI

C(4)=al'd„d d„d ~ afdid 2d +diiii t1+d
1 —C
1+gI

1 —C
1+aI

A — — A — — — A — 1 —C
+Id~~ dj. 2d~ + d~~ 1+d~+

1
+ d~) dI) d~d~+ d~+ d~ —d~ —d~

C(5) = -2id, ~d„d,d, aI+ a +
1 —C A
1+aI 1+I

We shall not try to solve the fifth-order equations:
although this can be done analytic'ally, "all we are
interested in for a stability analysis is to know the
sign of the real parts of the roots A. (i), i = 1 to 5.
This can be done by means of the extended Routh-
Hurwitz theorem" which we now state for the case
c(0) & 0 and all c(i) real. Consider the polynomial

f(x) = c(0)x"+ c(l)x" '+. . .+ c(n —1)x+ c(n) .
To this polynomial we associate a set of determi-
nants D(m), m=1, , n defined by

c(3)

c(0)

c(2)

0. . .0

c(1).. . 0

c(2m —1) c(2m —2) c(2m —3). . .c(m)

with the convention c(m) =0 for m&n.
Theorem: The number of roots of f(x) having a

positive real part is equal to the number of changes
of signs in the ordered sequence S given by S = c(0),
D(1), D(2)/D(l), D(3)/D(2), . . . , D(n)/D(n —1).
Consequently, with the notation used in this paper
a root x(i) of f(x) will correspond to a stable state
if and only if all signs alternate in the ordered
sequence S.

We first apply this theorem to Eq. (3.31) for
which the sequence is S =+ 1, —1 —d~ —d ~, —D(2)/
(1+2 +d ), d d (A —C). A first condition is
A &C. But when A. &C we also have D(2) &0 because

D(2) = -d, (l+ d, ) (1+d, + 8,)
+Adi(1+ d ) —Cd (1+de) .

Consequently, we see that I=I,=O is a physical
solution in the domain A & C. This result is inde-
pendent of the value assigned to g. Let us now

apply the Routh-Hurwitz theorem to the more com-
plicated equation (3.32). The sequence to be
studied is S=+ 1, -[c(1)f, -D(2)[c(1)f ', D(3)/D(2),
D(4)/D(3), c(5). A necessary condition for the

stability of I, is c(5) &0. Explicitly, this condition
becomes here (1+ai)'+ (a —1)(1—C) &0. The
reader' will easily verify that the inequality si/sA
& 0 leads to exactly the same condition. Hence a
necessary condition of stability for I, is that the
slope of the intensity in the (I, A) plane be positive.
A glance at Fig. 2 indicates at once that only I,
verifies this condition so that I is always an un-
stable state. There only remains to study the sta-
bility condition for I,. Unfortunately, this re-
quires the analysis of D(2), D(3), and D(4) which
is hardly possible analytically. Therefore we have
made this analysis nume. rically and verified that
I, is a stable solution for a typical point in the do-
main aA & X, with the numerical values g = 2, d

dz d~[ = 2& A = 5y and C = 5.5. Of course this
is a partial result because it concerns only ohe
point of the bistable domain and uses only one set
of values for the relaxation constants. In fact
when d~~ & 1 then I, could become unstable. "+
Furthermore, an instability of the Risken-Num-
medal, type"' is not a Priori ruled out; we have
not investigated thi. s possibility which in the case
of the usual laser is known to occur only for very
high values of A. In the following we assume that
the parameters are chosen in such a way that I, is
stable vyhen it is real and positive.

Figure 4 displays the distribution of the physical
solutions in the (A, C) plane. The main character-
istic of this figure is the occurrence of a bistable
domain: when X, & aA & aC two physical solutions
I„and I, coexist. This is even more transparent
on Fig. 5 which shows how the intensity varies as
a function of A. Let us consider this last figure
in detail. Starting from a sit@ation where the laser
does not sustain any oscillation (aA «X,), we in-
crease A (by increasing the pumping in the ampli-
fying cell for instance). Crossing the boundary
aA=X, we reach the bistable domain in which the
intensity remains zero until we reach the second
boundary at A = C, where a sudden jump occurs
and the laser begins to operate with a finite inten-
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stable region at all, then the maximum intensity
I(1) is at least twice the minimum intensity I(2).
If we increase g at constant C, the width of the bi-
stable region and the maximum intensity I(1) in-
crease whereas I(2) decreases. More specifically
we have

A(l) -A(2) - C —1,
I(1)- C —1, I(2) -0 . (3.36)

FIG. 4. Distribution of the stable roots in the (A, C)
plane.

The width of the bistable region is

A(1) —A(2) = I(1)—2I(2) = aI'(2) . (3.35)

This shows in particular that if there is any bi-

sity. For greater values of A we simply follow the
curve of I,. On the contrary, if we start with a
value of A such that A» C, we are on the upper
branch of Fig. 5. Decreasing gradually the value
of A, we remain on the upper branch until we
reach the critical value aA =X„where the laser
suddenly ceases to sustain the oscillation. In
other words, we are in the presence of an hys-
teresis cycle: the value of the intensity in the
bistable region depends crucially upon the path
followed to reach this value. The bistable region
is characterized by the upper and lower values of
A and the corresponding values of I, :

A(1) = C&a/a —1: I, =I(l) = C —1 —C/a, (3.33)

aA(2) =X', : I, =I(2) =a '[-1+(C—1)'i'(a —1)'i'j .
(3.34)

A point which we can show analytically on the
basis of the previous linear-stability analysis is
the existence of a critical slowing down when A.

approaches A(1) from below or A(2) from above.
Let us consider first the latter case. As A. =A(2)
+ ~e [, e -0 one has BI/BA-0 which as we have
shown implies that c(5)- 0. Hence as A approaches
the critical value A(2), one of the roots of the
characteristic equation (3.32) tends to vanish. We
recall that the real part of the roots of Eq. (3.32)
give the rate at which the system returns to the
stationary state once it has been slightly removed
from it. 'Therefore, as A=A(2)+ ~e~ and e -0, re-
gression to the stationary state I, becomes slower
arid slower. This critical slowing down is similar
to that which one finds in tunnel diodes" and in
optical bistability. '~ ~ The existence of a critical
slowing down for A =A(1) —~e ~, e -0 follows along
the same 1ine taking into account that the constant
term of Eq. (3.31) is proportional to A —C.

Z. Adiabatic elimination of the atomic variables

In most lasers one has y, » x. If we further-
more assume y~» ~, we can adiabatically elimi-
nate the polarizations u, u, v, v from Eqs. (3.8)-
(3.15) thus obtaining a reduced set of equations.
This procedure is certainly correct provided A is
not too large. Hence setting du/dt = du/dt = dv/Ct
=d v/dt= 0 in Eqs. (3.10)-(3.13) and eliminating
u, u, v, v, we obtain the three coupled equations

c
d, 2, I(,) I(,)»lgl'D(, ), 2&lgl D(f)dt 6g

5-

a= 4/3 C=

+y~~ D t =y~~ o' —Dt I t
(

d

~] +y &(t) =y [& —aD(~)I(t))(
d

(3.37)

2-

-1
l7 20

FIG. 5. Example showing the three possible domains
and the hysteresis cycle.

where I=SE'. The system (3.37) has been studied
in Ref. 16(b) where it is shown that when z»y„ the
stationary solution I, can become unstable. In fact
in this case the cubic characteristic equation which
one obtain's by linearizing'Eqs. (3.37) around the
stationary solution I=I„D=a(1+I,) ', 8=7
x(1+aI, )

' has two complex-conjugate roots with
negative real parts. In this situation the system
exhibits a limit cycle behavior. We shall rule out
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this possibility in the following by assuming that

«&r&, W&, r ll
(3.38)

Under condition (3.38) one can also adiabatically
eliminate the population inversions D and D, ob-
taining the following closed time-evolution equa-
tion for I(t) which is valid for t-~:

dI(t) A 1 —C
dt 1+l(t) 1+pl(t)) (3.39)

b KA 4«(1 —C)
1+I 1+aI (3.40)

where we have used the definitions (3.17). This
equation only holds for Ix0. Using Eq. (3.18) we

can also write

n= v —«a+«(a —Z)(1 —C)(1+aI) '

=v —Kt +K(Z —t)A(1+I)

These equations are very complicated because A,
C, and I are still nonlinear functions of 6 and Z.
However one must note that the difference between
the unperturbed and the perturbed frequencies
0 —v must be very small because our system is
contained in a resonant cavity which can sustain
only a discrete set of modes. Hence we are en-
titled to linearize Eq. (3.40) around 0= v. This
yieMs

y,v+ K(g+ Ky ((g/y —(u/y )(1 —C)/(1+ aI)
y~+ K+ «y~(1/y ~ —1/y~)(1 —C)/(1+ aI)

yd V+ K(d + Kyd ((d/yd —(d/yd )A/(1+ I)
y~+ K+ Ky~(1/y~ —1/y~)A(1+I)

D. Stationary renormalized frequency

Let us again consider the Eq. (3.8)-(3.15) in the
stationary state. Until now we have discussed in
great detail the properties of the intensity which
is the solution of Eq. (3.8). Another quantity which
may be of interest is the renormalized field fre-
quency 0 given by Eq. (3.9). In the stationary state
this equation becomes

IV. FOKKER-PLANCK DESCRIPTION

Although the SC description furnished a first and
relatively simple description of the system we are
studying, it is quite incomplete and unsatisfactory
in ma, ny respects: (i) the linewidth of the field
vanishes (the field is purely monochromatic); (ii)
the true stationary state must be unique: the hys-
teresis cycle corresponds to the existence of meta-
stable states whose lifetime is unusually long;
(iii) because the field is described as a pure co-
herent state there are no fluctuations at all. It is
precisely to give a more sensible answer to these
three points that we now develop a purely quantum
description.

J (P, P*; t) =e"~'TrW(t), (4.1)

(P; p, p*;t) =g(p)e*" "T=a'(P)W(t), (4.2)

B(p; p, p*; t) =g*(p)e' " ' Tra(P)W(t), (4.3)

C(p; p, p*; t) =e'e&' Tra~(p)a(p)W(t) . (4 4)

where kg~= I,~ and we recall that Tr stands for
the trace over all atomic variables. The function
P defined by (4.1) is the field distribution function
in the Glauber diagonal representation: it is the
function we are interested in. The functions A. , B,
and C are auxiliary functions related to the active
atoms, and of course there is a corresponding set
of functions L, B, and V related to the passive
atoms. Using Eq. (2.1) and the definitions (4.1) to
(4.4), we easily get

A. Derivation of the Fokker-Planck equation

To derive the master equation which gives the
time evolution of the Glauber I' function, we shall
use a method which is particularly well suited for
our problem; basically, we use a slightly modified
formulation of the theory developed by one of us."

' Let us consider the full von Neumann equation
(2.1) and introduce the functions

(
a N

tp ——ttt P(P, P;t) Bg d(P;PP;t=) ——B(P;PP;t,)),P=l

+ lt Q(, tT(pi PP'; t) ——B(d; ll, P*; t,))

[N s/st+ Ny, (p) iA~ neo(p)+hv]-B(p; -p, p*; t) =I lg(p)l (PI (p, p*; t)+(s/sp*-2P)c(p; p, p*; t)),
[i@el&t+i@y (P) iA +~~(p) @vR(-p; P, P*; t) -= -@la'(P)l IP*I'(P, P', t)+ (s/sp 2P*)c(P; P, P*;-t)'I,

[itis/st iAE+itty))(P)lc(P'—P p*;t) =try))(p)2[1+ (p)p'(ptp*; )+@PA(p; p, p*;t) hp*B(p; p, p*—;t),

(4.5)

(4.6)

(4 t)

(4.8)

and a similar set of equations for L, B, and C. The only approximation we have introduced to derive these
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equations is to assume that there are low concentrations of active and passive atoms in their respective
cells. The next. approximation we introduce is the adiabatic elimination of the atomic variables. More pre-
cisely, we assume that the inequality (3.38) holds, and we consider times t such that ty~(p)»1 and

ty(((p)»1. Practically, this enables us to replace the operators ke, —A~+y, (p) and ks, —Ar+y()(p) by
y (p) and y()(p), respectively. This leads to

gP sgst, ~(P), , 5(q) 8P 8P~

&()')lz() )I*, ~ &(~)l(7(q)l & '&. 8

) p &8(P) ~ V(q) 8P* P 8P
" l«p)l'

»», —» p- 'p, p*-t~(p)»„p*- —
pp c(p;p, p*;t)

y, (P)&(P) y (P)g(P) 8P sP*

"(»I«»l'
p —' p*

'
c(p, p, p*, t) (4.10)

y„(p)f(p)
and a similar equation for C(q; P, P; t). In Eqs. (4.9) and (4.10) we have used the notation 5(P)
=y (p)[1+ t)'(p)], 4(p) = [e(p) —v]y '(p). As a last step towards the Fokker-Planck equation, we neglect
the derivation operators in Eq. (4.10). We shall not attempt to justify this procedure here because in a
future paper" we provide a fairly complete discussion of the "Fokker-Planck" equations with and without
this last approximation. Introducing P = re', we finally get

a 1e, , g, 1 a @1''
P(r, 8;—t)= ——r'E(r')+ F(r—')+ ——r —+ —,—,G(r') P(r, 8;t) .et ' ' r 8r 88 r 8r Br r' 88' (4.11)

F(y) =- zA 6 )('h(1 —C)
1+Sy 1 . aSy

lgl'(I+o)& Igl'(1+(y)I7)
4~

For E and I' we have used the parameters A, a, C,
and S defined in the semiclassical description. One
sees at once that the drift term E(r') is intimately
connected to the SC intensity equation. The coef-
ficient of the angular derivative F(r') has also a
known structure: it is related to the correction of
the unperturbed frequency [see Eq. (3.40)]. The
only new coefficient is the "diffusion" coefficient
G(r') for which we only retained the dominant con-
tribution, namely G(y) =q. The occurrence of the
"diffusion" part in the Fokker-Planck equation is
ultimately connected with the spontaneous emis-
sion process and enables us to take fluctuations
into account Equation . (4.11) generalizes the equa-

In the frame of the simplified atomic model in
which all atoms are equivalent and homogeneously
distributed in each cell, the three coefficients ap-
pearing in Eq. (4.11) are

E(y) =)( 1— A 1 —C
1+Sy 1+asy

tion first deduced in Ref. 9 for the laser with active
atoms only. If we introduce the normalized inten-
sity P =Sr' and neglect the diffusion term, Eq.
(4.11) becomes

B. Stationary solutions

To begin our analysis of Eq. (4.11), we seek its
stationary solution which is independent of e. The
stationary equation is

rE(r')+q —P(r) = 0
Cr (4.12)

This equation can be solved by the method of char-
acteristics. One immediately verifies that the
time-evolution equation for the variable & coincides
with Eq. (3.39)-, whereas the time-evolution equa-
tion for the variable 8 coincides with Eq. (3.9)
when the inequalities (3.38) hold, i.e.,

—=2)E(S 'g) =2zf 1—df 1-C
dt 1+ & 1+a&

—=F(8-'&) .d6I
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and its solution is

P(z) =N '{e '(1+z)"(1+az)' & ']' (4.13}

where z =Sr', e = K(2Sq) ', and the normalization
constant N is defined by

N=mg ' dz e ' 1+z A 1+gz (1-c)/
0

The extrema of P(z) are given by the condition
dP(z)/dz =0; i.e. ,

(ii) a) C/C —1

I=O) gA&X, )

I=I, , I,O, X, &aA &aC,

I= I„O, A) C .
In this situation P(z) has one maximum at z = 0
when X, & aA, two maxima (at z = 0 and z =I,) and
one minimum at z =I when X, &aA&aC, and finally
P(z) has a minimum at z = 0 and a maximum at
z =I, when A & C. We stress that in our model one
cannot make the so-called "cubic" approximation,
i.e. , expand the drift term E(y) into a geometrical
series and keep only the first two terms. In fact
for X, &aA&aC one would not obtain a two-peaked
distribution function. The saturation effects arising
from the denominators 1+Sy and 1+ aSy in E(y)
must be fully taken into account.

A first conclusion which can be drawn from this
analysis is that a stable solution of Eq. (3.18) al-
ways corresponds to a maximum of P(z), whereas
an unstable solution corresponds to a minimum.
In other words, a stable solution is related to a
most probable value, and an unstable solution is
related to a least probable value in the distribution
function P(z). The basic difference between our
present problem and the usual laser problem (in
which there is only one cell) is that now there is
a domain in which P(z) has two maxima. Conse-
quently, in the SC description we found two stable
stationary solutions. It is obvious that in the quan-
tum case there will be a unique mean stationary

1+z 1+Qz

which is exactly our SC equation (3.18) for the in-
tensity. It is therefore very easy to discuss the
behavior of P(z) in relation with the discussion of
the roots of Eq.-(3.18):

I=O, A&C,

(i) 0&a & C(C —1
I=O, I, A& C .

This means that when A & C the only physical root
is I=0 and therefore P(z) has one maximum pt
z =0. When A& C, P(z} has a minimum at the ori-
gin (z = 0) and a maximum for z = I, [see Eq. (3.20}].

intensity despite the existence of a double-peaked
distribution function. Furthermore, it becomes
obvious why I is never a stable solution.

By means of the stationary solution P(z) we may
evaluate the various stationary moments of the
field. In particular, we have studied the first and
second moments defined by

(I) =S(r') =2zS rdrr'P(r)

= ms-' dz zP(z),
0

(I') =s'(r') =2ws f rc'hr. 'J'(r)
0

a=4iC=20' 6=10
3

4
6-"100---

2-

0
17 20

FIG. 6. Comparison between the SC intensity {para-
bolic curve) and the mean quantum intensity for two
values of e.

= ~S-' dz z'P(z) .
0

Note that we used reduced variables as in the SC
description. Throughout this paper all integrals
involving P(z) are evaluated numerically.

Figure 6 displays a plot of the intensity (I) for
two values of e and the corresponding SC result
[or equivalently, the position of the three extrema
of P(z)]. Note that the transition region becomes
much narrower when e is-changed from 10 to 100.
As a matter of fact, our choice of e =10 and 100 is
rather pedagogical because a realistic estimate of
e for a solid-state laser is e —10'. But for such
values of e the transition is so sharp that it is
hardly possible to draw, e.g. , the graph of the
fluctuations versus A. Anyway, the case e =100
already clearly shows that (I) exhibits a first-or-
der phase-transition-like behavior, .giving a rather
sharp definition of the threshold for laser action.
This feature arises from the fact that in the larg-
est part of the bistable region one of the two peaks
of the distribution function completely dominates
the other. In other words, increasing the pump
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ln (I')
(I)'

quantum

linear
........... quasilinear

Eq. (4.11). Such a program cannot be carried out
in an exact and analytical way. We shall therefore
use an approximation scheme which proved to be
successful in the case of an ordinary laser. " Let
us consider the Fokker-Planck equations (4.11).
Its general solution has the form

P(r, 8; t) = g g A (n, m)e' P„(r)

0& RE. (n, m) &ReA. (n+1,m),

(4.14)

where A, (n, m) and P„(r)e' e are the eigenvalues
and eigenfunctions of the Fokker-Planck operator
and the constants A(n, m) depend on the initial con-
dition. In the long-time limit one can keep for each
m only the contribution corresponding to the eigen-
value A. (0,m) with the smallest real part. Hence
the solution (4.14) takes the form

J (r, e;t) g e'"'P, (r)y(m, t). (4.15)

0
17.5

I

18
I

19

FIG. 7. Intensity fluctuations ca1culated from the exact
and from the two asymptotic quantum theories. The
parameters are a =4, C =20, and ~=100.

C. Transient solutions

To give at least a basic quantum description of
the laser field there remains to find two more
characteristics: the effective frequency and the
linewidth of the field. Because these two functions
are associated with time-dependent properties of
the field, we must seek the transient solution of

parameter A from the value X,/a one sees that
P(z = I, ) remains much smaller than P(0) until A
reaches the transition region. In this narrow re-
gion of transition, the peak at z =I, rapidly grows
up, so that P(I, ) becomes larger than P (0).

Figure 7 shows the logarithm of the ratio (I')/
(I)' which is a suitable measure of the fluctuations
(the quantum evaluation to which we are referring
here is drawn in full line in Fig. 7). Comparison
with Fig. 6 shows that there is a drastic increase
of the fluctuations in the transition region. As a
matter of fact, in this transition region the two
peaks of the distribution function have comparable
heights, so that the mean value of the intensity is
largely different both from 0 and from I„ thereby
producing extremely important fluctuations. Note
further that the width of the domain in which the
graph significantly deviates from ln2 (under thresh-
old) and from zero (above threshold) is very small
and practically coincides with the transition region.
We shall come back to this point in Sec. V.

and

n(m)= ' „f,"drrl l "F(r')P(r)
f,"dr rlml+&P(r)

f,"dz z 'F (z)P (z)
f,"dzz l-lt2P(z)

q f."dr r 'P(r)-
f,"dr rl m I+ ~P(r)

e Sf,"dz z "l"'I'P(-z)
f,"dz z l mls'P (z)

(4.18)

(4.19)

Because the field is proportional to (P) =(re'e), its
linewidth and frequency are given by ~(1) and A(1),
respectively. In Fig. 8 we have shown two plots
(corresponding to two values of e) of in[1+ r(1)/qS]

which is a measure of the linewidth. This is the result
of the numerical evaluation of (4.19). We see that with
increasing values of e the transition from a finite
value of ~(1) towards a nearly vanishing linewidth

In particular, when E,F, and G in Eq. (4.11) are
constant, one has

(4.16)

where P(r) is the stationary solution [see also Eq.
(5.2)]. We shall assume that for the determination
of P(m, t) expressions (4.15) and (4.16) ar'e reason-
able approximations when E and F are no longer
constants. Of course P(r) is now the exact sta-
tionary solution (4.13). Inserting the ansatz (4.15)
into Eq. (4.11) and integrating over r, one finds an
equation for P(m, t) whose solution is

Q(m, t) = $(m, 0)exp[imO(m) —m'v(m)]t (4.17)

with
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A(1) =0 —v=F((r'&),
tn(l+ ~)

qS a =4/3 C=20 6 =10

4:-ioo
x.e. ,

«dA «Z(1 —C)
1+(I& I +aO&

(4.20)

This is precisely the equation (3.40), obtained in
the SC description. The difference is that now (I&
is the true stationary intensity.

V. ASYMPTOTIC DESCRIPTIONS

3

1-

0 .
17.5 18 18.5

Although we now have a fully quantum description
of our system, we are not yet satisfied. The
trouble with an equation like (4.11) is that the con-
siderable amount of information it contains is near-
ly inaccessible owing to the difficulty of obtaining
a complete analytical solution. It is for this reason
that we investigate in this section two asymptotic
descriptions (leading to the linearized and quasi-
linearized Fokker-Planck equations) in order to
determine as far as possible their relative domains
of application. It is quite clear that such theories
cannot cover the transition region; however, there
remains to know the width of the region which is
not covered by these asymptotic descriptions. We
shall see that this width is surprisingly small.

FIG. 8. @or clarity we have plotted here the logarithm
of 1 plus the reduced linewidth ~(1)/qS. These graphs
show the influence of e on the sharpness of the transition.

becomes very sharp. This corresponds to an
abrupt line narrowing which occurs when the laser
passes from below to above the threshold. An ef-
fect of this type has been observed in the experi-
ments of Ref. 6(b). In connection with this resu}t
we want to mention a difference which arises with
respect to the usual laser problem. I et us define
a linewidth factor o. through 7(1)= o.qS(I& '. In the
usual laser case (one cell) the function a decreases
monotonically from 2 (well below threshold) to 1
(well above threshold). In the present case the ex-
treme values 2 and 1 remain the asymptotic values
of o. , but in the transition region n is no longer a
monotonic function: two maxima of n (versus A)
arise in the transition region. This means that the
actual dependence of the linewidth with respect to
the intensity is much more complicated than a sim-
ple (I) '-dependence.

Because we are working in the interaction repre-
sentation [see (4.1)], the function A(1) is the cor-
rection to the unperturbed frequency. But this cor-
rection is relevant only above threshold where
P(z) is sharply peaked around one maximum and
where the field is practically a pure coherent
state. Hence we may approximate O(1) by (see also
Ref. 11)

where

E = (C«-A),
F = -«[m+5(1 —C)],

)g(' I(VI+o) (g)W(I+v)
46 45

Equation (5.1) is a typical Fokker-Planck equation
and can be solved analytically. The solution is

P(r, g f) = g p g(n, m)e™e~(nm)tr,
ff=0 m =-oo

x e rz/2aL lml -(r2E/2q) (5.2).

In this formula A(n, m) are constants determined by
the initial condition, X(n, m) is given by

A, Linearized Fokker-Planck equations

The linearized theory is a weak-coupling theory:
one assumes that the field-matter interaction is
weak. Instead of rederiving this theory we shall
simply start from Eq. (4.11) and retain in the three
coefficients E, F, and G the dominant contribution
in g and g. Hence we have

8 E 8 2 8P(r, e—; f) = ——r'+F-
8t ' ' r 8r 8(9

1 8 8 1
+q ——r + —, ,—P(r, 8; t)r 8r 8r r'
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P(z) =S~v '(C-A—.)e (5.4)
I

with the notation used for Eq. (4.13). Let us note
that P(z) is normalizable if and only if E & 0 which
means A. & C. This gives a mathematical upper
bound to the domain of validity of the linearized
description. The first stationary moments are

A. (n, m) = (2n+ )m()& —imF, (5.3)

and L„"(y) are the associated Laguerre poly-
nomials. " The stationary solution of (5.1) is

P(x g t) = g g A(n, m)e'~ e )«nm, )~

n=0 m=-0

x e ~'"I'+' H„(bx/I, ), (5.11)

where A(n, m) are constants determined by the in-
itial condition, A. (n, m) is given by

A(n, m) = (qS/I, )(8b'n+m') —imF(S 'I, ), (5.12)

and II„(y) are the Hermi'te polynomials. " The sta-
tionary solution of Eq. (5.8) is

(I) = [~(c-w)]-', (5.5)
P(x) = Nexp[-(bx/I, )']

(I') = 2[&(C -A)]-', (5.6)

~(1) =Re~(0, 1)=Z=2qS/(I) . (5.7)

so that (I')/(I)' = 2, whereas the linewidth of the
field is given by

= Nexp[-(b(g I+)/I+] )
N= 2bS[tt' 'I, erfc(-b)]

erfc(y) = dte '
)

(5.13)

We shall commerit on these results after having
derived the quasilinearized equation.

Note that (5. 13) is the Gaussian approximation of
the exact stationary distribution (4.13) around
/=I, . The first stationary moments are

B. Quasilinearized Fokker-Planck equation

In Sec. IV we have seen that when the laser is
above threshold, the intensity fluctuations are very
small. This feature suggests immediately the pos-
sibility of linearizing the Fokker-Planck equation
(4.11) around the value I, of the intensity. This
procedure is well known in the case of the usual
laser2O and is called quasilinearization. To illus-
trate it let us first rewrite Eq. (4.11) as follows:

I

(5.14)

(I) =I, ,

(I') = I', (1+1/2b'),

(5.14')

(5. 15')

and ln((I')/(I)') =1/2b'«1. The linewidth of the
, field is given by

(5.15)

For b» 1 Eqs. (5.14) and (5.15) practically reduce
to

—P(g, e;t)= 2—tE(s 't)+ F(S 't)—
Bt ' ' 8( 88 T(1) = Res(0, 1) =qS/(I) (5.16)

P(x, 8; t) = —8sqb'I, ' —x+F (S 'I,)—8' ae

8 ], 8
+q$4I+ 2+ —,P x, 8;t

~x I+ 80

where we have introduced the notation

(5.9)

I
e A a(1 —c)

', 2 (1+I,)' (1+aI,)' . (5.10)

Equation (5.9) is a Fokker-Planck equation; its
analytic solution is

8 8 ]. 8
+qS 4 —

g
—+ —,P(t, 8;t)

eg eg g ao'

(5.8)

with ( =S~'. Introducing the variable x= g —I„one
develops the terms of Eq. (5.8) into a Taylor ex-
pansion around x=0 and for each of them keeps on-
ly the first nonvanishing contribution. One obtains

while Imk(0, 1) gives the usual phase shift [see Eq.
(4.20)J.

C. Comparison with the complete Fokker-Planck equation

From Eq. (5.14') and Fig. 6 we see that above
threshold the intensity obtained in the quasilinear
approximation practically coincides with the in-
tensity calculated (numerically) with the stationary
solution (4.13): they both coincide with I, . The
situation under threshold is illustrated in Fig. 9 in
which we have plotted the ratio of the intensity cal-
culated with Eq. (4.13) and the linearized intensity
(5.5). A comparison of the linewidths is shown in
Fig. 10 where the dotted (dashed). curve gives the
ratio of the exact and linearized (quasilinearized)
linewidth [see Eqs. (5.7) and (5.16)]. From the
Figs. 9 and 10 one sees that the situation is very
clear: either the linearized theory gives a very
good result (as it does well below threshold) or it
entirely fails to give any sensible result (from the
transition region upwards). The same holds for
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the quasilinearized theory which works excellently
only above threshold. Hence it is only in the trans-
ition region that the exact solution (4.13) is really
necessary to get meaningful results. This conclu-
sion is confirmed by Fig. 7 where we have plotted
ln((I')/(I)') for the exact stationary solution (full
line), for the linearized theory (horizontal line),
and for the quasilinearized theory (dotted line).
The plot for the quasilinear theory begins of course
at A = X,/a and is obtained by use of Eqs. (5.15)
and (5.16). Note that when A approaches X,/a from
above, one has 5 0 so that (I')/(I)' (v —2)/2.

D. Metastable states

)7.5
I

&8

l

i9

On the basis of the stationary distribution (4.13),
one sees that if one excludes the narrow transition
region, then for each A in the range X,&aA&aC
only one of the two steady-state solutions I=I, and

I=0 is absolutely stable. However, the other solu-
tion still has a physical meaning as a metastable
state. To illustrate this point let us consider the
function

'C(ex)

~(&)

C(ex)

E(ql)

0
17.5 &8

l
I
1

I

1

I
l
1

1

I

1

I
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i

I
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FIG. 10. 7(l) and v.(ql) are the linewidth derived from
the linearized and the quasilinearized theories, re-
spectively. The parameters are a = 43, C=20, and
e =100.

FIG. 9. Ratio of the exact and the linearized intensities
versus A for a =-, C=20, and a=100. V(z) = -ln [I (z)/P(0) j, (5.1V)

1

where P(z) is given by (4.13). In our problem V(z)
plays the role of a generalized thermodynamic
potential. It has two minima at I=0 and I=I, sepa-
rated by a "barrier" centered on I=I . The stable
state corresponds to the absolute (i.e. , the lowest)
minimum. The problem is similar to that of a
Brownian particle moving in the potential profile
(5.1V). If the particle is initially in the well cen-
tered at the relative minimum, it remains there
until a large fluctuation makes it jump over the
barrier. Hence the relative minimum corre-
sponds to a metastable state. I.et us come back
to our system. Since it remains in the metastable
state for a relatively long time, it makes sense
to ask which are the properties of the system when
it &s in this state. To answer this question one
should, in principle, solve Eq. (4.11) for an initial
distribution function peaked around the metastable
state and analyze the solution in the time interval
in which the distribution function remains peaked
there. However, an approximate evaluation can be
obtained by making the reasonable assumption that
the behavior. of the system as long as it remains in
the metastable state is determined by the part of
the potential profile which surrounds the relative
minimum. On the basis of this assumption we can
study the properties of the'metastable state using
the linearized or the quasilinearized Fokker-
Planck equation.

To be more precise let us consider first the SC
solution I=O for A ~ C. Under threshold, I=0 is
the absolutely stable state and we already know
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that the linearized equation (5.1) describes well
the properties of the system in this situation. For
values of A varying from the transition region to
A= C, the state I=0 becomes meta. stable but it is
still described by the linearized equation (5.1}.
Hence one associates to the quasistationary meta-
stable state the stationary solution (5.4}which
describes the system as long as it remains in the
metastable state. Qf course this procedure makes
sense only as long as the distribution (5.4) re-
mains narrow, i.e. , as long as A remains some-
what smaller than C. In such a way Eqs. (5.5) to
(5.V), for A &C but above threshold, are reinter-
preted as describing the properties of the meta-
stable state I=0. In particular since E- C-A one
sees that this metastable state exhibits a line nar-
rowing as A approaches C. A completely parallel
discussion can be repeated for the state I=I,.
Namely, for A &X,/a but below threshold, we as-
sociate the quasilinear equation (5.9) to the meta-
stable state I=I,. Hence in this range of values of
A, Eqs. (5.14)-(5.16) are reinterpreted as de-
scribing the yroperties of this metastable state. In
particular, one finds a line broadening as A ap-
proaches X,/a from above. In conclusion, the li-
nearized and quasilinearized Fokker-Planck equa-
tions give a meaningful description in the whole
range of their definition either referring to the
stable or referring to the metastable state.

VI. CONCLUSIONS

We have introduced a simple model to describe
a solid=state laser with an absorbing cell, and we
have studied it both at the semiclassical and at the.
quantum- mechanical level.

The SC equation which gives the stationary values
of the intensity I has been solved analytically. A
remarkable feature of this equation is that it de-
pends only on three parameters a, A, and C de-
spite the large number of parameters introduced
in the model: a measures the relative saturability
of the absorbing atoms with respect to the active
atoms, A is the pump parameter of the active
atoms, and C=1-Bwhere B&0 is the pump para-
meter of the absorbing atoms. This reduction in
the number of variables allows us to give a full
classification of the SC steady-state solutions. In
particular, one can explicitly specify the range of
values of a, A, and C for which one finds three
different stationary solutions I=0, I=I, I=I .
The stability of these solutions has been investi-
gated by means of the extended Routh-Hurwitz
theorem. We showed analytically that the solution
I=I is always unstable, whereas the solution I=0
is stable only for A&C. Qur stability analysis for
the solution I=I, is incomplete because the in-

equalities arising from the Routh-Hurwitz deter-
minants are too complicated to be studied analyti-
cally. These determinants have been evaluated
numerically for a suitable choice of the parame-
ters in the bistable region for which the solution
I=I, turned out to be stable. Qn the basis of this
analysis, it is shown that in the bistable ease the
SC intensity versus the pump parameter A exhibits
a hysteresis cycle. We give explicit expressions
for the maximum and minimum values of A and I
which fix the vertices of the cycle. In particular,
it turns out that the maximum intensity is at least
twice the minimum intensity and that in the limit
of large a the width and the height of the cycle both
become equal to C-1. Moreover, we can show
analytically that approaching the maximum and the
minimum values of A in the cycle, one finds a
critical slowing down of the macroscopic mean
values (intensity, polarizations, and atomic in-
versions).

The quantum-mechanical description is based on
a suitable Fokker-Planck equation for the Glauber
quasiprobability distribution function of the field.
This equation is deduced under the assumption of
low density of active and passive atoms and by per-
forming the adiabatic elimination of the atomic
variables. It can be solved exactly in the station-
ary case. The solution depends only on four para-
meters: the three SC parameters a, A, and C and
a new parameter q which appears in the diffusion
term of the Fokker-Planck equation and is there-
fore linked to the fluctuations. In the bistable do-
main the stationary distribution function has two
maxima, at I=O and I=I, and one minimum at I=I .
This means that the two stable SC solutions I=0
and I=I, correspond to most probable values,
whereas the unstable solution I=I corresponds
to a least probable value. The plot of the mean
value of the intensity versus A shows that it prac-
tically coincides with zero or with I, except in a
transition region. In this region the two peaks of
the probability distribution have comparable heights
and the intensity undergoes extremely high fluctua-
tions. The width of the transition region is deter-
mined by the parameter p.. if p is large, the tran-
sition region is very narrow, and in the limit q -~
one gets an infinitely sharp transition recovering a
true first-order phase transition. The transient
properties (e.g. , line width and phase shift) have
been studied by means of a suitable procedure
which allows us to evaluate approximately the solu-
tion of the Fokker-planck equation in the long-
time limit. Furthermore, we have investigated
the possibility of using asymptotic but exactly
solvable equations. It turns out that the linearized
Fokker-Planck equation reproduces quite well the
exact results for A below the transition region.
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The same holds for the quasilinearized Fokker-
Planck equation when A is above the transition re-
gion. The interest in this result arises from the
fact that the transition region is extremely small.
On the other hand, the full nonlinear Fokker-
Planck equation is essential to define the transition
region, as well as to describe the properties of the
system in the transition region. To this extent the
nonlinearity must be fully taken into account be-
cause an approximation of the "cubic" type changes
completely the characteristics of the solution.
Finally, the linear and the quasilinear descriptions
are reinterpreted in connection with the metastable
states. In fact, for A ~ C but above threshold, the
state I=O is metastable and we describe the pro-
perties of this metastable state by means of the
linearized Fokker-Planck equation. Likewise,
below threshold, the state I=I, ip metastable and
we associate to it the solution of the quasilinearized
Fokker-Planck equation.

Practically all the results of this paper should be
subjected to experimental test. The experiment

should concern both the metastable states (appear-
ance of an hysteresis cycle, dependence of the
size of this cycle on the relevant parameters,
presence of a critical slowing down when the
boundaries of the cycle are,approached, fluctua-
tion and linewidth in the metastable states) and
the stable states (dependence of the mean inten-
sity and of the linewidth on the pump parameter,
position and width of the transition region, fluctua-
tions in the transition region). Experimentally, a
metastable state can be achieved, e.g. , by starting
from a stable state and rapidly varying the pump
parameter until the metastable region is reached.
Then the system will remain temporarily "trapped"
in that metastable state which can then be observed
and studied.
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