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Alternative derivation of the classical second law of thermodynamics
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One of the classical statements of the second law of thermodynamics is derived from an assumption about
the behavior of an isolated heat reservoir, together with a further assumption, which seems to be a rather
weak one, about initial states. The derivation is otherwise based on the unitary property of time evolution in
quantum mechanics. An analogous derivation, within the framework of classical mechanics, is also given; in
this case Liouville's theorem substitutes for unitarity.

I. INTRODUCTION

A fundamental. explanation of the second law of
thermodynamics is often sought in the form of a
proof that the entropy (somehow defined in statis-
tical mechanical terms) of a thermally isolated
system increases monotonically with time. ' W'ith-

out using the notion of entropy, and without estab-
lishing any such monotonic approach to equilibrium,
it is nevertheless possible to obtain one of the
classical statements of the second law from a
narrower basis, the main part of which is the
proposition that the ".heat reservoir" of the classi-
cal statement is a physical system which, if iso-
lated, attains an equilibrium state describable by
a canonical ensemble. The point of view of this
paper is not to seek an "explanation of irreversi-
bility" but rather to dispose, in as convincing a
way as possible, of the possibility of "perpetual
motion of the second kind. "

y &y &y & ~ e ~ &0 (4)

Let 2 ", ,y„Q",n, ~, P~,n, &, and Q~, o.,~y& con-
verge as n- ~ and let

e;)&0, . i,j =1., 2, . . . ,

Q]y = 1~ j = 1) 2y . . ~, (6)

Q u;q = 1, i = 1, 2, . . . .

U y,' is defined by

representations may be taken to be discrete.
The inequality (1), given (2), may be deduced

from the following theorem of real algebra, proved
in Appendix A. Let

x ~x ~x ~'''
2 3

E(x') &E(x) if x' ~x. (2)

Strictly speaking, the following derivation of (1)
assumes that there is a discrete repr'esentation in
which p(0) is diagonal. While it is presumably pos-
sible to extend the argument to cover the case of a
continuous or partly continuous spectrum, it is
not necessary to do. so for the purpose of this
paper. The representations actually employed for
p(0) may be labeled by the eigenvalues of energy
(together with sets of particle numbers, in Sec.
IV). Since the systems dealt with are finite, these

II. INEQUALITY

The argument is based on the following in-
equality: If the density matrix p(t) of a system
at time t is related to that at time zero by a unitary
similarity transformation, then

»[P(f)E(p(0))J -Tr[P(o)E(P(o)) ],
provided both sides of (1) converge and E(x) is a
monotonic nonincreasing function of its argument
xy l.e. )

To bring (1) into the form of (9), first write (1)
in a representation in which p(0) is diagonal.
Labeling rows and columns of this representation
by i and j, the left-hand side of (1)

T [p(f)E(p(0))]=/ p;;(f)E(p; (0))

= 2 IU~; I'up~(0) E(ping(0)), (10)

where U&,. is the j, i element of the unitary matrix
U which relates p(f) to p(0),

p(f) = U (f)p(0)U(f).

The right-hand side of (1)

Tr[p(0)E(p(0))J = g p«(0)F(p«(0)) . (12)

then, provided both sides of the inequality converge,
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%e may assume without loss of generality that
the p«(0) are so ordered that

p„(0)~ p„(0)- p„(0)- ~ ~ ~ . (13)

Setting y, = p;;(0), x; =E(p;; (0)), a;; =
( U&; (', and

y,'=p;;(f}, (1) assumes the form of (9), and the
premises of (9), expressed by (3)-(8) together
with the convergence conditions preceding (5),
are satisfied.

IV. DERIVATION OF THE SECOND LAW

The classical second law of thermodynamics
may be expressed in the following form": It is
impossible to construct an engine which will work
in a complete cycle and produce no effect except
the external performance of work and the cooling
of a heat reservoir.

III. SIMPLE APPLICATION OF THE INEQUALITY

A simple physical. application of the inequality
(1) is obtained as follows. If H, is the Hamiltonian
of a system at time t =0, let the initial. density
matrix p(0) satisfy p(0) =f(H,), where f(x) is a
monotonic nonincreasing function of x. It follows
that H, =E(p(0)), where E(x) is a monotonic non-
increasing function of x. Inserting this expres-
sion for E(p(0)) into (1) gives Tr[p(t)H, ]~Tr[p(0)Ho].
Thus, given the constraint on the initial density
matrix, an arbitrary time-dependent perturbation
to the system Hamiltonian (which is finally
switched off) cannot decrease the energy of the
system.

[The monotonic initial condition p(0}=f(H,} is a
very special one: indeed, although it is, strictly,
more general than the canonical equilibrium con-
dition, defined by f(x) = e ~", the two conditions
are effectively equivalent for ordinary maeroseop-
ic systems, as is implied by the result of Appen-
dix B.]

The inequality (1}is valid also if p is a finite
N &&K matrix. The algebraic theorem required
for the finite case can be simply obtained by adding
to the conditions (3)-(8) the condition that x„y;,
and a;& vanish if i or j exceeds N. A physical
example is provided by a single spin 1 in
a magnetic fiel.d, assumed tobe initially describable
by a density matrix diagonal. and monotonically
nonincreasing in the energy; this system cannot
have its (mean) energy decreased by any time-de-
pendent perturbation which is finally switched off.

We assume (in accordance with the remarks in
Sec. I) that the heat reservoir has been prepared
so that initially, i.e. , when first brought into
thermal contact with other bodies, it is describ-
able by a canonical ensemble. The following addi-
tional assumption wi1. 1 be made for the time being:
the "engine" (from now on called the "system
proper") is assumed to be initially in "piecemeal
equilibrium, " i.e., to consist initially of a num-
ber of statistically independent oarts, each de-
scribable by a density matrix of the grand canon. -
ical form; the temperature and the chemical po-
tentials ean be different in each part. Indicating
the vth part of the system proper by the super-
script v, the initial density matrix of the vth part
is given by

«'"'&0) =A'"'ax -&("'(H'"'- &"'«&&"'
9

v=1, 2, . . . . (14)

P" is a positive constant, H " is the Hamiltonian
of the vth part, N ) the number of molecules of
the ith chemical species in the vth part, and p.;"
the corresponding ehemieal potential. A. " is a
nor maliz ing constant.

The initial density matrix of the system proper
is the direct product of the initial density ma-
trices (14) for the parts. The heat reservoir is
assumed to be initially statistically independent of
the system proper. Indicating the heat reservoir
by the superscript h, the initial density matrix of
the heat reservoir is

( «)(0) ~(a)
( P(h)H( a)) (15)

—&np&0)=&&"'&& "& +I &&& "&(&&&"& -P &&&"&&& "')

+const.

Hence, taking E(x) = —lnx, the inequality (1) im-
plies

The initial density matrix p(0) of the system con-
sisting of the system proper and the heat reservoir
is the direct product

p(o) =p(")(0).p('(0) x P)(0)' ~ ~ .
H ") and the H ") all commute with one another
since they operate on different spaces. Accord-
ingly

Tr[p(t)p(")H(")]+QTr' p(f}p(") H( ) -g p(")f()(") ~Tr[p(0)p(")H(")]++ Tr p(O)p'"' H("'-g ) (,"'N("'
P P L i

(18)
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~ =&s 2s ~ ~ ~ s ~=&s 2s ~ ~

then

Tr [p(t, )H "l])Tr[p(0)H "l],

(19)

(20)

i.e., the energy of the heat reservoir cannot have
decreased.

The inequality (20) expresses the second law in
this case. The scope of (20) is wider than it ap-
pears to be at first sight: the initial condition (14)
on the system proper may be weakened, and a
weaker meaning than (19) can be given to the
"cyclic" nature of the process undergone by the
system proper.

Consider the following process, in a certain
weak sense cyclic. In each time interval n7 «t
((n+I)7, n =0, 1, 2, . . . , an amount of energy
»W'&0, where 8' is independent of n, is with-
drawn from a heat reservoir, a new (identically
prepared) heat reservoir being employed in each
cycle. The possibility of continuing this process
indefinitely can be ruled out provided the initial
state of the system proper can be constructed (by
the performance of mechanical work) from ma-
terials which, at some earlier time t'& 0 were in
"piecemeal equilibrium. " Let t" be the time at
which the last cycle ends. I et the inequality (18)
be formed for t' as initial time, and t =t" as final
time. It may be taken as an implication of the
cycle nature of the process undergone by the sys-
tem proper that the changes in mean energies and
particle numbers between t' and t" are bounded as
the number of eyeles increases; that is, that the
net contribution to the inequality of the terms in
N;"l and H "l is bounded. If the number of cycles
could be taken arbitrarily large, the terms in
H l would become dominant, and the sign of the
inequality would be violated.

V. ROLE OF UNITARITY

The classical second law is a statement about
the sign of the energy change of a heat reservoir.
This sign has been obtained by the present argu-
ment as a consequence of certain initial conditions,

In thiS expression the quantities p +, p ", and
p.

~") are constants determined by the initial state.
Let us suppose that at some time t =t, the Hamil-
tonian of each part of the system proper has re-
sumed its initial form, so that the quantity
Tr[p(t)H "]represents the (mean) energy of the
vth part. If, for t =t, the rgean energies and ~can
particle numbers for each part have returned to
their initial values, i.e., if

Tr[p(t, )H "']=Tr[p(0)H "'],

Tr [p(t, )N;"l] =Tr [p(0)N)l "l],

plus unitarity, Eq. (11). Unitarity follows from
the ascription to the system as a whole (including
the heat reservoirs) of a Hermitian Hamiltonian
(in general time dependent). This is an idealiza-
tion, since it involves neglecting the thermal. in-
teractions. which even the best insulated system
must have with its surroundings. While such in-
teractions may have a significant effect on the
"fine grained" entropy, -k Tr(p ln p), ' they do not
have a significant effect on macroscopic energies,
which are the quantities in question here. Such
energies are not sensitive to the physical- condi-
tions at the boundary of a properly insulated ves-
sel, as Joule's experiments incidentally demon-
strated.

VI. DERIVATION VQTHIN CLASSICAL MECHANICS

The classical version of the inequality (1) is

P; = g P;,, t=123, . . . .
f(i &&) f(f »)

(22)

d p, t Ep, 0)» d p, 0 E p, 0

(21)

p is the classical distribution function, g stands
for a set of canonical coordinates and momenta,
and the range of integration R is the whole physi-
cally accessible range of $, the whole of "phase
space, " assumed to be the same at time t and at
time zero.

If the system is initially in some 'state f' in R
it will be in some definite state g" in R at time t
Conversely (since the equations of motion can be
integrated backwards in time as well as forwards),
any state g" in R at time t arises from a definite
initial state E' in R. The system in the state $

may be though of as a "particle" at the "point" $.
An ensemble of systems may be represented by a
cl.oud of particles of some density o(g) per unit
volume. By Liouville's theorem, ' the correspon-
dence ('—&" preserves this density, v(g')=&((").
Hence, if the cloud initially fills the whole of
phase space at uniform density 0 it must do so
also at time t. Accordingly, in this case the num-
ber of particles in any fixed region of phase space
is the same at times t and zero; that is, the num-
ber of particles which have left between times
zero and t is equal to the number which have en-
tered. Let the whole of phase space be divided
into regions 1, 2, 3, . . . of equal vot.ume V. Let
the fraction of the particles initially in the ith
region which have moved to the jth at time t be
written P;;. Then the number of particles which
have moved out of the ith region is o'VQ&&z„&&P;&,
the number of particles which have moved in is
o'VQ&&& q;~P~;. Hence,
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From the definition of the Pi, ,

Pu ——1, i=1, 2, 3, . . . .
j"-1

It then follows from (22) that

(23)

QP;~ —-1, j=1,2, 3, . . . . (24)

Consider a given way of subdividing the phase
space into regions of equal volume V, and, as-
sociated with this subdivision, an i')itial distri-
bution function p($, 0) which is uniform in each
region, i.e., for which

d(' p(t', 0) = Vp((, 0), i =1, 2, 3, . . . ,
~

~ ~ ~ (25)

p;(t) =Id())((, t). (26)

Then

where the integration is over the ith region and $

is any point in the ith region. If X is the total num-
ber of particles in the ensemble, the number of
particles initially in the i th region is X j, df. p(g, 0)
and the number of particles in the ith region at
time f is Xf d) p(. $, t), where p(g, f) is the distri-
bution function which follows at time t from the
chosen p((, 0). Let us write

sequence of subdivisions in which the volume V
tends to zero, the inequality (21) must hold.

The discussion of Secs. III and IV remains valid
for classical mechanics provided Tr is replaced
by integration over the whole of phase space,
and the finite-dimensional case of Sec. III is omit-
ted. The remarks in Sec. V remain valid, except
that references to unitarity should be replaced by
references to I iouville's theorem.
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Pl +i j~j +ij ~j ~ (A2)

APPENDIX A

To prove the inequality (9) from (3)-(8) and the
convergence assumptions, we first prove

+g + '+g ~g +g + ''+g (Al)

for any k, adapting a method due to Ostrowski. '

p, (f) =p, (0)+ . P, , p,.(0) -p,. (0) g P„j j») j(j&&)

= QP, ; p;(0) ~

j=l
(27)

The change in the order of summation is al. lowed
since, for the matrix whosei, j element is e;jyj,
the row sums (sums over j) converge absolutely,
and the sum of the row sums, being a finite sum,
also converges absolutely. ' Defining

It may be assumed without l.oss of generality that
the regions are numbered so that

tj —— (y;j from A2,
i+1

p, (0)-p.(o)-p.(0)- " (28) (A3')

Writing y& = p;(0), x& ——E(p&(0)}, n&; P&&, and y,'——
= p, (t), the premises (3)-(8) of the inequality (9),
together with the assumptions about convergence,
are recovered and so, provided I is such that
both sides converge,

Further,
oO oO 00

o)
g

= Q (x)y = k ~
=1 j=l =1 = 1 j=l

and

(A4)

VQ p, (t)E(p;(0)}-V Q p, (0)E(p;(0)) .
i=1 i=1

(29) 0 « t(k) (] (A5)

The inequality (29) has been derived under the
assumption that the initial distribution function
p(g, 0) is uniform within each region. An arbitrary
p($, 0), however, can be approximated by replac-
ing it in each region by its mean value in that
region. In this case the right-hand side of (29) is
an approximation to the integral Jdg p($, t)E(p(t, 0)},
i.e., to the right-hand side of (21); and the left-
hand side of (29) is an approximation to the left-
hand side of (21). Since the error incurred by
these approximations tends to zero for a suitable

Hence
k k-l

(y( — y; = g (f'"' —1)(y —y, )
~l m ~].

+ g t (y„—y))) «0,
m=k+1

which establishes (Al).
Now let us define

(k) Ak)
~l +1 2& . ~2 2 3& ' '

&)
+k +4+1 '

(A6)

(A7)
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Then

Hence, from (Al),

&'"y'+&'"(y'+y')+ "+8"'(y'+y'+" +y')

(AB)

and since Q;x;y, converges, the right-hand side
of (A12), and therefore the left-hand side of (A12),
tends to zero as k-~. Similarly, ~x~„Q,"„,yI~-0
as k -. Hence &~ ) -0 as k -~. This completes
the proof of (9).

l.e.)

-&|"'y~+&'"'(y +y )+ "+4'"'(y +y + "+y )

lxl +y2 2 yk k yl 1 y2 2

k k

+Xk+~ yj—

If x„(0for all n the last term is non-negative and

Qyf = &gyp = Q a(y~ = y, . (A10)
j=z =1 =1 mj

Hence the last term on the right-hand side of (A9)

Xk+g yj yj

Xk+1 yj yj ~

yjXj + yjXj
~1 -"l

for all k, proving (9) in this case.
If x„&0 for some n„ then by (3), x„~x„&0 for

n)no. By hypothesis, Q&y& converges, and it
follows from (A1) and the non-negative property
of the yf that P,y,' converges absolutely. Qq ~o& &y

is also absolutely convergent, and so the change
in order of summation in the following equation is
allowed:

APPENMX 8

If the density matrix of a system is a monotonic
nonincreasing function f of the Hamiltonian H,
p =f(H), and if the system can also be divided into
two independent parts, both of which have an
energy spectrum wholly continuous and unbounded
above, then the density matrix of the system as a
whole is canonical, f(x) =exp(-Px), and the den-
sity matrix of each part is canonical with the same

Let the density matrices of the two parts be p,
and p„respectively, the energies E, and E,.
Then the monotonic condition for the system as a
whole asserts

if E~+E2 (E~+E~ . (B1)

Writing E, =x, E, =y, E= —I.n p„G =-Inp„Eq. (Bl)
may be written

E(x),+G(y)(E(x')+G(y') if x+y(x'+y' . (B2)

Let xp and xp " xp belong to the spectrum of x,
and let yp belong to the spectrum of y. Then y + g
belongs to the spectrum of y. By taking, in (B2),

y =y, x' =x —g, y' =y + g and then
xp K y yp + C x xp y yp we obtain

E(x,) -E(x,—g) = G (y, + g) - G(y ) . (Bs)

For 4+l~n»

(A12)

Equation (B3) implies that the derivatives of E(x)
and G(y) have the same constant value. It follows
that Pj~ ~3, and therefore pip2~ all have the canoni-
cal form with the same value of p.
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