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We present molecular-dynamics computations of the thermal conductivity, and two viscosities of the
classical one-component plasma in a rigid, uniform background. The Kubo formulas are proved for the
Coulomb case, and it is shown that some care has to be taken in defining the Kubo currents in order to
avoid divergences arising from the long range of the Coulomb interactions.

I. INTRODUCTION

The static and dynamical properties of the one-
component plasma (OCP) have been studied ex-
tensively. ' ' In the strong-coupling regime, the
transverse and longitudinal viscosity coefficients
g and /+3 g have been calculated by choosing a
two-parameter Gaussian form for the memory
functions associated with the correlation functions
of transverse and longi'tudinal currents and by
determining the parameters by comparison with
the exact short-time behavior. ' Wallenborn and
Baus, on the other hand, have obtained~ the vis-
cosity coefficients in the framework of a kinetic
theory. The two calculations are in agreement
in showing that the viscosity g (Refs. 3 and 4) ex-
hibits a minimum as a function of the temperature
and that t; (Ref. 3) is negligible compared to g,
but discrepancies remain, particularly at high
temperatures. Moreover the thermal conductivity
has not yet been estimated. We have therefore
computed these three coefficients through mo-
lecular-dynamics (MD) computer simulations.
Some care has to be taken in defining the Kubo
currents (in particular the energy current) in
order to avoid divergences and ambiguities arising
from the long range of the Coulomb interactions.

Let us recall that the OCP consists of point
particles of mass m and change e, interacting
by a e'/r potential and moving in a uniform and
rigid background of opposite charge, in such a
way that the total charge is zero. We choose as
units of length and time the quantities r, and
(d~' defined by

&p = 47IP8 /sl,
where &u~ is the plasma frebluency and p is the
number density. Coupling between par ticles is
characterized by the parameter 1"= Pe'/ro (where
P=1/ksT) Classical mech. anics can be used as
soon as the de Broglie thermal wavelength is
small compared with r„ i.e.,

(21rr/r )' «1 (r =me'r /S') ..

We are interested in the strong-coupling domain
1 &F &155, where F = 155 corresponds to the fluid-
solid transition. A hydrodynamic description
is valid only in this domain of strong coupling. '
A crude calculation allows us to underline this
point. Taking the square of the distance of closest
approach of thermal particles as an estimate of
the cross section, (Pe')', we obtain the mean free
path &= 1/p(Pe')2 and the collision time v = Xv'pm,

&'7. 30, s5. lt, o,

FIG. 1. Diagram logi07' {T in K)-logfop (p in m ).
The straight lines give the helium case:
(1) The temperature upper limit {UL) of the nonrelativ-
istic zone for the ions.
(2) The temperature lower limit (LL) of the nonquantum
zone foi the ions.
(3) The temperature LL of the nonquantum zone for the
electrons.
(4) The temperature UL of the strong-coupling zone
(~=1).
(5) The temperature LL of the fluid zone {V=155).
(6) The density LL of the small electronic screening
zone.
(7) The density UL of the zone in which the nuclear core
has no effect. The points correspond to the interior of
Jupiter {J), the white dwarfs (WD), laser implosion ex-
periments (L).
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with co~7'=I'; for small values of T', the col-
lision time is great compared with the period of
plasma oseillations and we are in a kinetic r'eg-
ime, where the hydrodynamic description is in-
valid, because local equilibrium is not achieved.

The OCP can be applied in a first approximation
as a model of various astrophysical situations,
in particular of white dwarfs and also to laser-
fusion experiments, where the system is essential-
ly one composed of protons and electrons. We show
on a 7 pdiag-ram (Fig. l) the borders of the do-
main in which our approximations are valid and
the points corresponding to different experimental
situations.

In Sec. II, we established the formulas giving
the kinetic coefficients by defining the Kubo cur-
rents which occur in the Coulombic case. In Sec.
IQ, we present the results of our MD ca1.cul.atiog. s.
A brief, preliminary account of this work has
been published elsewhere. '

II. MICROSCOPIC EXPRESSIONS
FOR THE TRANSPORT COEFFICIENTS

Qutside equilibrium, the OCP is a locally
charged system, which leads to the presence of
a macroscopic electric field in the hydrodynamic
equations and obliges us to rederive the Kubo
formulas giving the transport coefficients. These
have already been established for the viscosity
coeff ic ients' and we are interested here primarily
in the thermal conductivity.

A. Kubo formulas for the transport coefficients

1. Thermodynamic fluctuations

The system in local equilibrium is described
by the number density p(r), the internal energy

density z(~), and the local velocity v(r); other
thermodynamic quantities are s, the entropy per
particle; T, the temperature; p, the chemical
potential; P, the pressure; and e, the energy
per particle; the deviation of a, quantity f from its
equilibrium value, is denoted by Of:

5f(r)= —+Ofhce'~' and Oft, = draff(r)e '"'" .

The probability of having a thermodynamic fluc-
tuation described by 5p, 5E, and v is proportional
to e' 4'&, where 6$ is the corresponding entropy
deviation; for small deviations, 5S will be taken
to second order. Per unit volume,

Taking s and p as variables,

1 p 2 1KS 2Ops= —5z ——5p-- —5s'-- —s5p2 .T T 2' 2 T (2)

c~= T&s/BT~~ is the specific heat at constant pres-
sure and K, = p '8p/Bp~, istheadiabatic compres-
sibility. The first term in (2) corresponds to the
transformation of internal energy into macro-
scopic kinetic and potential energies:

5e = -(-,'pm''+ E'/Sn) . (3)

The electric field E is given by Poisson's equation
divE=4me5p. The second term (2) does not con-
tribute after integration, because of particle num-
ber conservation.

Vfe obtain for the total entropy deviation

2TV - " 2V ~~0
"

cp O' T es

(4)

The electric field term, which is crucial for the
stability of the system, ' introduces a coupling be
tween entropy and pressure. We deduce from (4)
the correlation functions of the entropy with the
entropy, the pressure, and the velocity:

-Vk~ 4me' 1 ep ep
'

(6sf5p R)= O' T es ~p8p
~

(5sfv ~) = 0,
with

Vka r~ 4~82 1 ep
(5sf5s f) = —+

T S
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Obviously, these formulas, obtained for thermo-
dynamic fluctuations, are valid only at small k.
The correlation functions in p, T, v variables
can be found in Ref. 3.

and P~:

a= —D~ 1 ——BP Qp

p ss ps+ p

p+ pdlvv = 0,
mps, v=-V5p+ peE+ qbv+ (f+-,q)Vdivv

p TB,6, = XdivV5T,

(9)

(10)

(11)

where A. is the thermal conductivity.
By taking the Fourier transform for the space

variable and the Laplace transform for the time
variable, and solving the resulting system of three
linear equations, we obtain 5s(k, &u) as a linear
function of the deviations at the initial time t=0,
5s-„, 6p~, and v-„; by multiplying by 6s -„and taking
the average on the initial time fluctuations, with
the help of the formulas that we have obtained in
the preceding paragraph, we get the entropy cor-
relation func tion

2. Hydrodynamic limit of the correlation functions

Solution of the hydrodynamic-flow equations gives
the behavior of the different correlation functions
in the small k and v limit. The strong-coupling
assumption allows us to consider the plasma fre-
quency as sufficiently small (compared to the col-
lision frequency).

The linearized equations of conservation of par-
ticle number, momentum, and energy are

k2 BP 1
P = i&a 1+- — — bfP-

2Pl c02 Bp 2

where

Dr=a/pcp and b=(g+'—g)/ppgp.

in the neutral fluid case the poles would have been

ep 1/2
o. =-D,u and P -s ——,u

m ~p

with a damping term of the sound mode which we
have not written.

There are two differences between the neutral
and Coulomb cases. First, the sound mode goes
into a plasmon mode in the OCP case, which is
not surprising. Secondly and more unexpectedly,
the the~mal diffusion mode introduces a coefficient
which is no longer simply D~, but a modified quan-
tity. We shall see nevertheless that the Kubo
formulas for the thermal conductivity are un-
changed because the change in the thermal dif-
fusion coefficient is exactly compensated by the
change in the static fluctuations of entropy. %hen
k goes to zero, the thermal diffusion mode re-
mains only in o'„(o',

&
and o', -„ tend to zero):

(5s(k, &,~) 5s(-k, f = 0))

= 0'~8(5s&,5s f)+ (T~&(5p&,5s
&,)+ (7~~ '(v&,5s j) . (12)

The o functions exhibit poles for z —= -i~ = o., P,

o„~ 1/(e —n) .

On the other hand, from (5), we obtain

Thus finally we find that

Z(d
~ . 1 zn NkB&lim lim —, [-iu&(5s(k, ~)5s "„)—(5s-„6s .„)]= lim lim ——, (6s~6s ~) =

a)~0 k'~0 ~p I-0 (18)

Introducing the entropy current through the rela-
tion ~,5s+divj, =O, we obtain the Kubo formula

dt jets k=O& t ss k=0& ~=0
B 0

where j„is the longitudinal component of j,. The

entropy current is related to the energy and par-
ticle currents j, and j by

pe~. = f, -(e+p/p)3 . (20)

To conclude the discussion of the thermal con-
ductivity, we note that as k-0 the dynamics elim-
inate the coupling between entropy and pressure,
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IP . COpg= lim lim, i++-
~-0)( () eg(k (())

(21)

which the static fluctuations had introduced.
A similar analysis in p, T, v variables leads

to the Kubo formulas for the viscosity coefficients
[Ref. 3, Eqs. (36) and (55)]:

parts of the Kubo current:

A(k, f) = i{m/k) &, j (k, f) .

As we have seen the Kubo formulas are not mod-
ified for the OCP; but the currents must be care-
fully defined because of the long range of the
Coulomb potential.

SZ P QPOf+
3 p = lim lim, He

u~p f(~o c((k, (())
(22) 8. Kubo currents

1. Specific difficulties of the Coulomb case

e,{k, f) = (k'/») {i,(k, f) j'(k, o)),
e, (k, f}= (k'/x) {I,(k, f) I+(k, 0)) .

After some transformations, we find

p
2N

df {A,(k=0, t)-A;(k=O, t=0)), (25)

where ~', =k'/Pm; c, and c, are the Laplace trans-
form . of the transverse and longitudinal current
correlation functions; Be indicates the real part.

If we simply replace the potential v(r) by e'/r
(or

~1k r4~e2V'
k/()

to take account of the background) in the usual
formulas giving the Kubo currents, ambiguities
and divergences appear. As an example, consider
the case of the entropy current; the usual defin-
ition of the energy density for a system of par-
ticles interacting by a potential v(r)

g+-q= dt(A)(k=O, t)A((k=0, f=0)),
0

(26)

A, and A. , being the transverse and longitudinal

e(r)=~ —mv', .+— v(r, ,) 6(r —r, )
i 2 2 jAi

leads to a longitudinal entropy current
~ „

(29)

+ —Qksf ~(r ~)}, (30)

f„,(r) =v(r)5„—r (v)rr, r~ .

In calculating the initial time value of the Kubo
integrant X(0) [A.= fo' df X(f)], we find that this
quantity diverges when the volume goes to infinity
essentially because the integral f„drf ~(r) is
diverging at large distances.

Moreover, the term rv'(r)r, rz is not well de-
fined. In fact, in the case of a 1.ong- range poten-
tial, it is necessary to consider the system to be
periodically repeated in space in order to remove
the bondary problems at the walls of the box which

where v'(r)=dv/dr, r=r/r, and k=k/k. When k
goes to zero

ppTj, (k=0 f)= Z v. k —mv', — e+-Ls & i of of 2 f
p

contains the system, and there are several ways
to construct a periodic function with rv (r)r, r~

Finally, let us remark that when k is small, we
can substitute 1 for (1 —e '~')/ik ~ r in the expres-
sion of pTj, (k, f) only if the potential range d is
small compared to I.= V't3 Indeed because of
rv'(r), the largest values of r are of the order
of d; the smallest value of k being of the order
of L ', it is necessary that d/L should be small
compared to 1. In the Coulomb case the condition
is no longer satisfied.

These remarks have led us to consider again
the problem at its beginning, i.e., at the definition
of the energy density e(r)

2. Entropy current

We take E'/8)) for the potential-energy density,
E being the electric field of the charged particles
and of the background. We must, of course, sub-
tract the infinite self-energy, which is a single
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sum over the particles:

1 E2
e(r) = m—v25(r —r, )+. ——~„„(r), (32)

divE =4me 5 r —ri —p

By taking the Fourier transform, we obtain

4 e'
e(k)= ge' "' —eee, ——Z —.E„- k' (k —k')e ' ee)

k~ AP, k k"(k —k')' (34)

The longitudinal energy current, defined by, 3. Eubo currents for the viscosities

ls

(k) = k .j,(k) = -ik ' 8,c(k) (35) In the same way, we obtain the current A
=i a,mk 'j(k, f) by calculating the accelerations
from the energy,

3 (k)= e v; '(k me
i

1 1~ 1 ~4ge
g(k =0)=

2 i 2 ~qi V

with

eee'(k' k' (k —k) (-,))k"(k —k' '

=0 k'=0

(36) A direct calculation leads to

A„(k)= ge' '
'(mkee, e+

+—P—Q ee„(k') e"' 3),2 &~i ~ ~

(42)

where w, is defined by
= (4we'/k')(k/k), k' = k .

By taking the limit k-O, we obtain finally for the
energy current the same expression as in the gen-
eral case (30), but with the following function
f„(3(r):

f.,(r) =—g „(5.,—k'.k,')e-"' .
kWO

4~e2 (k
(k -k')'

=(4~e2/k2)k, k'=O, k.
By taking the limit A-O,

1
A, (k 0) = Q mv) v;t)k~+ kp'83(r, —

q)

(43)

When the volume goes to infinity, the discrete
sum becomes an integral over k',

with

—k PV(E)ef(i) (44)

f.))(r) (e'/x)(6 ~+ r, rp), (38)
f'q(r) =—Q „(5 8

—2k'kg)e '""
Rt&

(45)

. which coincides with (31). This expression is
valid only for distances such that r«V' ', where
the discrete character of the sum over k' in (38)
does not appear. Finally, divergences are re-
moved beca,use

(4o)

We have subtracted the mean value k PV," cor-
responding to the momentum flow through the
surface bounding the system and occurring as a
source term in the momentum-conservation equa-
tion; it affects only the component k=O. On the
other hand, pV is a function of the internal energy
E; and the particle number ¹ in statistical en-
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sembles where these quantities are not fixed their
fluctuations must be taken into account. We intro-
duce the momentum flow tensor 7 ~ by A =k~v' ~

v ~= Pmv, vo+ g-f'„8(r, ,) —6 ~pU . (46)

We deduce from (25) and (26) the longitudinal vis-
cosity in the form

f+ 2n=U dt &~ (t)~ (o))
4 p

0

(no summation over c() (47)

and for the transverse one

function of time using the molecular-dynamics
method, which has already proved very success-
ful in the study of collective modes in the strongly
coupled OCP.' The system is assumed to be iso-
lated (the total energy and the number of particles
are constant and the velocity of the center of mass
is taken equal to zero). The N pa, rticles are en-
closed in a periodically repeating cubic box.
Therefore the expressions for the Kubo currents
are precisely those we have obtained in Sec. D.
We need the position and the velocity of every
particle as a function of time. The trajectory of
each of the N particles (and all of its images) are
computed by deerlet's algorithm':

p
k, kk

dt (r ~(t)v„~(0))
0

r, (t+ at) = -r, (t —tkt)+ 2r, (t)

+ t).t '[F,.(t)/m]+ o(~t'), (54)

kf @(k=..(0~„(k))
0

(no summation over n and p; n 0 p) (49)

1 —f dt(k, ~=(t)k„,(0))k„kg„k, .
0

(50)

By taking k=(sin8, 0, cos 8) and averaging over
8, we obtain

I= l + 3 q =p, (f+——,q)+ —„p+—,', q .

From which, we deduce,

& = 3(&+'.n)+ 'I—-
(51)

(no summation over o and p; (). 0 p) . (48)

We have taken into account the space isotropy. We
also introduce

V, (t+ nt) =V,(t —rkt)+ 24t[F,(t)/m]+ o(tkt'),
(55)

where F,.(t) =m(dV, /dt)(t) =m(d'r, (t)/dt') is the
force acting on i owing to all particles j 4 i and
their images. The time step ht must be (i) suf-
ficiently small to ensure good conservation of the
total energy and momentum of the system. (ii)
Sufficiently large to limit the accumulation of the
round-off errors in computations and yield the
longest trajectories in phase space. A reasonable
choice is 4t= —,'0&, where w is the time charac-
terizing the evolution of the par'ticles. For weak
coupling r AU=)t-F&u~' (where U is the thermal
rms velocity), and for very strong coupling,
v' - 2g(o~'. Thus

b,t =—,'Ov 1 &o~' if l" &40,

4t =0.3+~' if I'&40 .

=
9U

dt &~..(t)~8((0)&
0

(52)

A direct calculation of v' yields

= 2(E, —(E,))+E, —(E~), (53)

where E~ and E~ are the kinetic and potential en-
ergies. This result, which can be generalized for
all homogeneous potentials, simply expresses the
bulk viscosity t; as a function of the energy fluc-
tuations.

III. NUMERICAL METHOD

A. Molecular dynamics applied to the OCP

gle have computed the Kubo currents appearing
in the different autocorrelation functions as a

B. Ewald sums

The computation of the forces and Kubo currents
for a periodic system introduces slowly converg-

. ing sums over definite sets of images. These
must be treated by the familiar technique of Ewald
sums. To calculate the forces, ' it is easiest first
to express the potential E~ and then to differentiate
F, = -V; E~. The calculation of Kubo currents is
complicated by the presence of angular terms.
The detailed calculation is explained in the Appen-
dlX.

We write the currents as
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TABLE II. Relaxation time defined for tw&«1, in units
of (dz ~, of the autocorrelation functions of g, g, &.

(5V) 1.0 10.0 100.0

and the potential energy is

2

Eq= Q k SD(r)~),
i~ jlf

0.9

1.2

0.9

1.3

2.4

2.0

where V =I.' is the volume of one cell

S~(r) = , [k —P(k X)X],
wA.

(59)

IV. RESULTS

We now discuss our results, first qualitatively,
then quantitatively.

&&~f &=[&~&&) —&&i)K~a&o) -&E~)l) 4. (60)

The Kubo currents are computed at times nest
where n and ht are given in Table I. The auto-
correlation functions are estimated. as usual
from

1
E(f)= (C(t)C(0)) =— C(t+ r)C(7)d7''

T p

=—Q C(i, + i)C(i),
1

M; ~

(61)

We find for S~(r) the formula (A3) of the Appendix
which depends on a dimensionless convergence
parameter o. . We choose n=5.6, which allows us
to restrict ourselves in the first sum over X. to
the A, vector which minimizes

I Ir;,/I + A. II, i.e.,
to the image of particle j which is closest to i.
The error thus introduced is of the order of 10 '.
We calculate the second sum in (A3) by changing
the sums on i and j with the sum on X.' We cal-
culate the bulk viscosity from the formula (53)
where E=E„+E&is constant

A. Qualitative results

. The autocorrelation functions decrease rapidly
and exhibit in some cases oscillations with fre-
quencies &o~ or 2&d~. At short times (ter~«1), we
can approximate each autocorrelation function by
a Gaussian C(t) = C(0) exp(-f'/r~). The corres
ponding relaxation times are given in Table Q.
Here we see that 7'happ 7'yp~ Ty. The relaxation
times are of the same order of magnitude for g
and X, but are iwo times smaller for g.

The autocorrelation functions for q (Fig. 2) do
not exhibit any clear oscillations for t+&&20 at
X'= 1, 10, 100. At F =100 we observe a "long tail."
At F = 10 the decrease is significantly faster,
which accounts in part for the minimum in g as
function of I'.

The autocorrelation functions for f (Fig. 3) ex-
hibit very pronounced oscillations at a frequency
near 2(d~.

The autocorrelation functions for X. (Fig. 4) ex-
hibit pronounced oscillations at I'= 10 and 100,
roughly at the plasma frequency. The function
decreases slowly at I'= 1 and this contributes to
the relatively high value of X at lower coupling.

with t = i, nh, t.

TABLE I. + is the number of particles in each cell.
&t is the time step in units of ~~ . n is the Kubo cur-
rents computed at times &t. +run is the number of runs.
&0 is the number of steps for each run. T is the evolution
time of one run, in units of &

S arun

100.4 250 0.3

128 0 04 6

10.4 -250 0.03 8

4 10000 400

10000 300

1 800 540

6 g2

FIG. 2. Autocorrelation functions for the transverse
viscosity g.
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0=coo.~ 00.+

s i,&x R
r'=I

.5

8 '6

FIG. 3. Autocorrelation functions for the bulk viscos-
ity f.

FIG. 4. Autocorrelation functions for the thermal
conductivity A, .

B. Quantitative results

We study the variation of the transport coef-
ficients in units which are independent of tempera-
ture. Then their variation as a function of I' is pro-
portional to their variation as a function of 1/T,
at fixed density p. We choose the following units:
m&~prp' for the viscosities: g=m~~pr', g*,
g =rn(d~pv', f*. k~(d~pr', for the thermal conduc-
tivity: X = k~&u~pr', X~

g* and X~ exhibit pronounced minima as func-
tions of 1 (and hence of T). At low temperatures
(high I') g~ and X* decrease with T, as in the
case of simple neutral liquids. At higher temper-
atures (small 1), they increase with T as in the
case of gases. For q* and ~~ the minimum is
around 1"=10. g is always very small compared
to q. g/q is less than 2/o at the three r 'values
which we have investigated. g increases as func-
tion of T. The values of q*(I), g~(r), and X~(r)
are given in Table III.

strongly with 1". We have therefore fitted these
quantities to the following formulas:

q~ (r)/qp(0) = I'~'/(2. 5r —2.2),

p~(r)/gp(o) = r'~'/(0. 11r+ 1.5),

~~(r)/xp(0) = (0.23I'+ 3.4)/I" ~', .

(62)

(63)

(64)

Then we express rip(0), fr~(0), and Ap(0) in
terms of equilibrium distribution functions:

qp(0) =(1/3r)[1 -', rf, (r)]

gp(0) = (1/18r) [1—xvk, /2c„(r)],

(65)

(66)

where C„(r) is the specific heat at constant vol-
ume, and I„ is an integral involving the pair dis-
tribution function:

C. Interpolation of transport coefficients

Our intention now is to give an idea of the vari-
ation of the transport coefficients as functions
of j." for 1 & I'& 155.

First we note that the integrals of the normali-
zed autocorrelation functions do not vary

These quantities can be easily computed using
the static properties of the OCP. ' The results
agree very well with the MD values of the auto-
correlation functions at t= 0.

The correlation of Xg(0) is more complicated
because it involves the three-particle distribution
function:

TABLE III. A, (0), q(0), C(0) are the values of the autocorrelation functions at time t =0; the
units are &~~~ ~0 for A(0) and m~ p"0 for $0) and 0(0).

q(0) g(0) x10 3 g x10 3

1 0 0 870+009 2 90+0 6 0 340+0 03 1 040+0 21 4 3 +0 2 2 6 +0 6 2 5x10
10.4 0.350 + 0.02 0.66+ 0.16 0.068 + 0.07 0.085 + 0.017 1.5 + 0.1 1.8 + 0.5 2.0 x10 2

100 4 0.338~0 006 0 88+0 17 0 041+0 04 0.18 ~0.03 0.27+0.02 0.21~0 06 1 2x10 3
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TABLE IV. -g~(0), Kz(0) [respectively, ~p(0)] are given
in units of m(dz p&0 (respectively &pI. p&0 }. p{~) &{l}
)respectively, A(l )l are given in units of m~ppro (respec-
tively~ kgco~pJ() },

We give in Table 1V the values of qf(0), &P(0),
and Xg,~(0) and the corresponding values of q*(I')
f*(I'), and X*(I') taken, respectively, from (62),
(63), and (64) at various I'.

nr(0)
& (0) &(~)
x]0 3 x10 ~z p(0} ~sp(l") y. CONCLUSION

1 036
2 0.20
4 0.12

10 0.069
20 0.054
40 0.046
70 0.043

1Cj0 0.042
120 0.042

1.2
0.2
0.12
0.096
0 ~

1-
0.12
0.15
0.17
0.19

4 4
3.6
2.6
1.5
1.0
0.6
0.4
0.3
0,2

2.7
3.0
2.7
1.8
1.2
0.64
0.36
0.24
0.15

0.95 +0.08
0.75 +0.15
0.68 +0.20
0.49 + 0.35

3.4
2.0
1.5
0.88

XP(0) = —+ 41'I', + I ', + ~S(q)
7T 0 q

'(Sv)' """'"'""' xx

(6V)

where q= kro, x=r/ro, S(q) is the static structure
factor, and u, (x, x') is the Ursell function for three
particles.

The evaluation of this expression on a cubic
lattice shows that the contribution of the structure-
dependent terms vanishes. We therefore compute
the values of Xg(0) only for I' less than 10. Indeed
for I'& 10, the computationa, l errors are multi-
plied by I' and become larger than Xg(0) itself.
For small I', we compute the three-particle term
using the superposition approximation'":

We have shown that the presence of a macro-
scopic electric field in the hydrodynamic equations
does not change the Kubo formulas for the trans-
port coefficients. Nevertheless, the different
currents must be defined with some care, on ac-
count of the long range of the Coulomb potential.

The results, obtained for the viscosities f and

g confirm the predictions of Vieillefosse and Han-
sen', the ratio f/q is always less than 2x10 ',
g exhibits a pronounced minimum as a function of
T, but the precise position of this minimum can-
not be predicted from our limited numerical data.
Especially at small I", these are in better agree-
ment with the results obtained by the kinetic
theory of Wallenborn and Baus~ (Fig. 5). The
bulk viscosity f increases as a function of tem-
perature.

The thermal conductivity, like g, exhibits a
minimum as a function of temperature, but the
variation with T is weaker.

As an illustration, we give in Table V the ab-
solute values of dynamic and kinematic viscos-
ities, and thermal conductivity for white dwarfs
and a hydrogen plasma under typical laser im-
plosion conditions.

Finally, from our data we find that for a hydro-
gen plasma at 7 = 10' K and p= 5 & 10" ions/cm',
the ionic thermal conductivity is X, = 2 x 10'
Wm 'K '. Under these conditions the electron

5 4 3 2
~P (0)= —+—r'(I+Z+Z)+ I'I-

3r 2

(69) .6

u(q) =

q $ q — Q q —~3 q %' q + gp q
0

dq (S(q) —1)[u(q) + so(q)],

, g(x)- 1 sinqxdxx2
X qx

(VO)

(Vl)

(V2)
0

~1
~1

~Pg
4 ~ ~eEy

io io j0
, g(x) —1 sinqx cosqx

x (qx)' (qx)'
(V3)

where g(x) is the radial pair distribution function.

FIG. 5. Comparison between different results for the
reduced transverse viscosity q~; VH (Bef. 3): dashed
line, WB {Ref.4): dash-dot line, present calcuation:
circles for the exact values and cross for the fit.
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TABLE V. Values of dynamic and kinematic viscosities, and thermal conductivity for white
dwarfs (WD) and a hydrogen plasma under typical laser implosion conditions (LI).

g(kg~ s ) q/pm (m ~ ) A, (Q'm K ) A, /k p(m s

%D 3 x107 1.5 x1035
LI 2 x106 6 x1032

2 x10'
1.7

x1p ~

1 Vx10 6
7 x105
4 x104

7X10 4

4x10 2

gas is highly degenerate and a simple calculation
in the framework of the Lorentz gas model" leads
to an electronic thermal conductivity A., = 2 x 10"
m 'K ', which is considerably larger than the
ionic conductivity.
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APPENDIX

Calculation of S~(r) by the Ewald method:

e2 tlat)t' p

S,(r )=, [k —P(k ~ ~)~].

z, p are in units of L(V = L'):

chosen to be

'1)(p) =
~ „)1"( & n'p')

'L2&

1 +oo

dt e-'t""-'
r(-,'n) ..+

1
'0( P ) =

Z (k

( at2P2

g7t e-&p/2-&

S„(r)= g g(r+7) erfc(n ~jr+ X~~)

If we choose the same convergence function
I'(p, n'p') as for the Coulomb potential, diver-
gences appear because of the angular integrations.
To eliminate these divergences, we must choose
q( p) = I'(—,', n'p') which corresponds to a potential

Hence, we have

CR P4 -22q(p)= ~ due" u
O

1 —q(p) = erfc(np) —(2p /vnw)e

The second term in (A1) is rapidly convergent:

S,(r)= d pu(p) g(p+r)

u)(p)=Q 5(p —7) —1

g(p) = —[(2 —P)k+ Pp(k p)].
2p

We split Sz( r) into two parts by introducing a
convergence function g."

kr(r)= Jpp(rr)p(kp rr) (rp)r)r

dpgg p g p+r 1-q p+r, Al

The convergence function g( p) for a potential r " is

2m llr+ X ft
e

vw

-(&-P) —', k. (A2)

The first term is transformed by using Parseval's
theorem

k ( )= rJ pprr(p)f(prr)= J kk'rr(k')(r(k')

f(p+r)=n(p+r)g(p+r)

u)(k') = Q 5(k' —A. ), &„=+1,+2, . . . (n=1, 2, 3),
g'WO

and we obtain after a lengthy but straightforward
calculation

r
,)

exp(-w k /n —2iwk '1) w k
(2 ) 1

w k (, )k,
mk' Q

where f (k') is rapidly convergent and
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S~,(r)= Q f(X).
K/0

Finally we have S~(r) = S~,(r)+ S~,(r),

r+ ~ - r+ ~ er&&(+ llr+ All) 2n
Sg(') . 2

('-P)"'P
llr+XII

"
Ilr+XII llr-+XII '~F

~ exp(-wX /n' —2iwX ~ r)+~ 2
)I.& 0 mX

~-e llr+X ll
'

3 p

(k x)x . (A3)
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