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Neutron scattering study of thermally excited density fluctuations in a dense classical fluid
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Collective density fluctuations in ' Ar gas at 456 atm pressure and 295 K have been studied by thermal
neutron scattering using time-of-flight techniques. Well-defined collective modes are observed for wave-vector
transfers k 5 0.1 A ' which become strongly damped at larger k. The data have been compared in detail
with predictions of the generalized Enskog equation. Although extrapolation of the predictions to k = 0
gives the correct transport coeAicients to better than S%%uo accuracy, the generalized Enskog equation does not
properly predict the wave-vector dependence of the scattering law.

I. INTRODUCTION

The central aim of inelastic light and coherent
neutron scattering experiments on fluids is to
provide detailed microscopic information about
the dynamical behavior of thermal fluctuations
in many-body systems. These experiments, when

properly performed and analyzed, can directly
measure the spectral distribution of the density-
density correlation function over a wide range of
wave vectors and frequencies. ' A principal ad-
vantage associated with measuring this time cor-
relation function (TCF) is the fact that its time,
wave vector, density, and temperature dependence
provide a sensitive measure of microscopic pro-
perties which cannot be observed from measure-
ments of transport coefficients.

In recent years, numerous workers have con-
tributed to a general formal theory of TCFs which
describes the nonequilibrium behavior of many-
body systems in terms of spectral distributions
at fixed wave vector. ' The development of this
formal theory has been paralleled by the appli-
cation of modern many-body techniques which
attempt to calculate TCFs at a molecular level. '
Computer experiments have also been used to
numerically calculate TCFs of interest for finite
model fluids. ~ The enormous growth in under-
standing of the microscopic properties of TCFs
has opened new and interesting questions which
relate to the importance of potential and many-
body effects governing their wave-vector and
frequency dependence.

The TCF of interest in this paper is the density-
density correlation function of argon gas at 456
atm and 295 K, whose Fourier transform, the
dynamic structure factor, we have measured by
neutron scattering using a time-of-flight tech-
nique. In this region of temperatures and densi-
ties, the transport coefficients are well described
by a modified version of the Enskog kinetic theo-
ry. ' As we demonstrate below, further modifica-

tions are necessary before the Enskog theory can
be made to agree with the present experiment.
However, recent computer experiments on dense
hard-sphere Quids' indicate that the Enskog theory
quantitatively predicts the behavior of the density-
density correlation function at densities well above
0.47 times that of close packing. Comparison of
these computer results w'ith experimental data
are therefore of some interest.

II. DYNAMIC STRUCTURE FACTOR

A. General considerations

The quantity of interest in inelastic coherent
neutron scattering is the dynamic structure factor
or scattering law'

where

G{r,t) = — (S(r -R, (t)+ R, (0))),X

N is the number of particles in the system, and
R;(t) is the coordinate ot the ith particle at time
I,, which is the space-time Fourier transform of
the density-density correlation function. The
general behavior of this correlation function as
a function of frequency at fixed wave vector is
well known. '

At wave vectors which are small compared to
the inverse of a particle mean free path (we will
assume a class of systems in which the concept
of mean free path is meaningful), the dynamics
of the fluid are dominated by collisions. At these
wave vectors, the system can be described in
terms of a set of dynamical variables which vary
slowly in time compared to the mean collision
time, and slowly in space compared to a mean
free path. In consequence, concepts of continuity
and local equilibrium are valid and, if the system
is far from the critical point, the dynamics of the
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density-density correlation function are governed
by the linearized Navier-Stokes equations.

At intermediate wave vectors, that is, at wave
vectors which are on the order of an inverse mean
free path, the dynamics of the system are con-
trolled by the local structure, short-time free-
particle motion and intermediate-time collisions
with neighbors. For purposes of discussion, we
will call this intermediate-wave-vector regime
in which hydrodynamic concepts begin to lose
meaning the hydrodynamic to kinetic transition
(or simply transition) regime.

At wave vectors which are large compared to
an inverse mean free path, particles rarely under-
go collisions over distances on the order of 1/0
and the dynamic structure factor has the free-
particle form.

B. Relation to kinetic theory of fluids

One of the principal successes of kinetic theory
is that it provides a quantitatively correct de-
scription of the dynamic structure factor at both
small and large wave vectors and frequencies. '
This success is traceable, at least in part, to
the fact that the kinetic-theory approach contains
both the particle coordinates and momenta ex-
plicitly. Therefore, the mechanical features of
a many-body system are explicitly accounted for.

Of central interest in kinetic theory is the phase-
space density function'

correlation function is obtained:

GÃ', )-)')=- '

g)T f g))'g)r, g, r', g', )-)')

=(n(r, t)n(O, O))/n —n. (2.4)

The space, time, and momentum dependence of
the phase-space correlation function are governed
by an exact equation of motion, "
sS(rPP t) P S, t)

„ t
dt) d 3+) dSP )) y (r r) p) p)) t t))

~0

&&S(r', p" p' t') (2.5)

S(&, p, p', z) = i dt dr e"' "' '
0

x S(r, p, p', t)

and is governed by the inital-value equation

[z - (k p)/m]S(»P, P', z)

(2.6)

The function Q(r, p, p', t) is the phase-space memo-
ry function, which is &n general nonlocal in space
and time and contains the effects of the other N —1
particles on a given particle.

The spectral distribution of the phase-space
correlation function can be constructed from the
solution of (2.5). The space-time Fourier-Laplace
transform of the phase-space TCF is defined as

f(r, p, t) =g 5(r -R, (t))5(p P(t)), — (2.2) dp" k, p, p", z S 4, p", p', z +S k, p, p',
where R, (t) and P; ())) are the position and mo-
mentum of the ith particle at time t.

The average of this is proportional to the density
of particles in phase space at coordinate r and
momentum p and is of interest because measurable
TCFs as well as macroscopic fluxes can be con-
structed from it. The time-dependent density
correlation function, of interest in scattering ex-
periments, can be constructed by first calculating
the more fundamental phase space TCF

S (r p, r', p', t t') = &6f&r, p, t)5—f(r', p', t')&,

(2 2)

where

5f(r, p, t) =f(r, p, t) -(f(r, p, t)&

and

&f(r, p, t)& =nf. (P),
where n is the density, the brackets ( & indicate
an average over an equilibrium ensemble, and

f,(P) is the normalized Maxwellian. By integrating
over the momentum variables p and p' the density

(2.7)

where S(k, p, p') is the initial value of (2.6), that
is, the equal time or equilibrium value of
S(k, p, p', t) S(k, p, p'.) has the form

S(k, p, p') =nf (P)5(p -p') +n'Pi (&)f,(P)f,(p'),
where

g (k) = fg'r[g)r) -1]r'"' '

and

is the static pair distribution function.
The phase-space memory function has two parts,

a static time-independent part and a time-depen-
dent many-body (collisional) part:

P(k, p, p', z) =P' (k, p, p')+P' (k, p, p', z),
where the unapproximated static part has the form

0"(k, p, p') = -[(k ~ P)/ ]&(&)f.(P)
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with C(k) the direct correlation function

C(k) =k(k) j[nk(k)+ 1] .
The spectral distribution of the phase-space cor-
relation function is related to the initial-value
solution of (2.V) by

S (k, p, p', &u) = 2Im[S(k, p, p', z)], „,+ . (2.8)

Comparison of Eci. (2.1) with Egs. (2.4$ and (2.6)
shows that S (k, &o) is obtained from S (k, p, p', u&)

by integrating over all values of the momenta p
and p'. Thus the quantity measured in a scattering
experiment can be directly obtained from kinetic
theory. The collisional part of the phase-space
memory function is in general extremely compli-
cated and is of central interest in many-body cal-
culations. It has been evaluated at low densities
for hard-sphere systems and corresponds to a
generalized Enskog theory. " This theory predicts
the conventional Enskog transport coefficients but
does not have the defects of the Enskog equation
at short times. The correct short-time behavior
of the generalized Enskog equation is a conse-
quence of the proper treatment of the time-inde-
pendent mean-field part of the memory function
y(8) (k I )

C. Calculation using kinetic model

The dynamic structure factor can be numerically
obtained from the generalized Enskog equation by
applying the method of kinetic models. The pro-
cedure is lucidly described in Refs. 12 and 13
and will not be discussed here. The kinetic model
used in our analysis is the triple-relaxation-time
(QTRT) model of Ref. 13 rather than the single-
relaxation-time model of Ref. 12. The reason for
this is as follows: The speed of sound and the
coupling of the sound and heat modes at small
wave vectors are implicitly contained in the memo-
ry function. The kinetic-model procedure approxi-
mates the memory function in terms of an expan-
sion in an orthogonalized set of momentum varia-
bles. The coefficients of this expansion, the ma-
trix elements of the memory function, can be
directly related to the thermodynamic and hydro-
dynamic properties of the kinetic-model solution. "
The QTRT model includes matrix elements which
model the small-k behavior of the memory func-
tion to better include viscosity and thermal con-
ductivity effects at the hydrodynamic limit. This
reflects itself in a much more accurate numerical
representation of the TCF near the hydrodynamic
limit. Since some of our data appear close to this
limit, the QTRT model is an obvious choice,

A difficulty in using the hard-sphere generalized
Enskog equation is that it contains the thermo-
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FIG. 1. (a) QTRT model solution of the generalized
Enskog equation for a reasonable choice of the para-
meters wo and g(ro), and the function S(k). (b) Long-
wavelength limit of the collisional matrix elements has
been used (i.e., fluid effectively composed of point
particles, "but retains static structure). (c) Static
structure ignored [i.e., S(k) =1] but wavelength depen-
dence of matrix elements retained (i.e., fluid composed
of finite particles exhibiting no positional correlations).
(d) Neither static structure nor finite size of particles
included.

dynamics for hard spheres rather than realistic
potentials. In addition, the transport coefficients
are sensitive to the choice of a haqd-sphere diam-
eter r, and the pair correlation function at contact
g(r,). A further complication occurs because the
choice of the structure factor S (k) [ = I+nb(k)]
strongly affects both the shape and intensity of
the calculated dynamic structure factor. The ef-
fects of these variables on numerical calculations
of the dynamic structure factor are illustrated in
Figs. 1 and 2. In Fig. 1(a) the full numerical solu-
tion of the generalized Enskog equation is shown
[k=0.10 A ', r, =3.4 A, g(r, ) =1.446, andS(k)
=0.4223]. This solution includes the exact static "

piece of the hard-sphere memory function and an
approximate collisional piece of the memory func-
tion. The approximate collisional piece of the
memory function used is the exact low-density
hard-sphere memory function" scaled to high
densities. This is the Enskog nonlocal collision
term which treats collisions as nonlocal uncorre-
lated events between hard spheres. In Fig. 1(b)
the influence of the nonlocal collisions on the form
of the spectrum is demonstrated. The k=0 limit
of the collisiooal piece of the memory function is
used and the static piece of the memory function
has been retained. The system appears much
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a hard-sphere diameter r, . In Fig. 1(c) the Enskog
collision term is properly included but the pres-
ence of mean-field effects (which are contained
in the static piece of the memory function) are
neglected by setting S(k) = 1 [and hence nC(k) = 0].
In Fig. 1(d) the k= 0 value of the collision integral
is used and the static structure term is not in-
cluded. This corresponds to the classical Boltz-
mann limit of the generalized Enskog theory. In
Fig. 2 sensitivity of the shape of the power spec-
trum to the Enskog parameters is shown at k= 0.10
A '. The solid curves in Fig. 2(a), 2(b), and 2(c)
show the spectrum which is the best fit to our
0.10-A ' data arrived at by fixing x,=3.4 A and
fitting for values of g(ro) and S(k) (see Secs. IV
and V). The dashed curve in Fig. 2(a) shows the
effect of a 10% smaller value of the hard-sphere
diameter r, . The dashed curve in 2(b) shows the
effect of a 10% larger value of g(x,) and the dashed
curve in 2(c) shows the effect of a 10% smaller
value of S(k). The result of varying all three
parameters is discussed in detail in Sec.V.

III. EXPERIMENT

A. General considerations

The raw data in a time-of-Qight inelastic neu-
tron scattering experiment is the scattered inten-
sity at fixed angle as a function of time of arrival
after pulsing of the neutron beam. This function
is related to the symmetrized dynamic structure
factor S(k, ~) by

(c)
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FIG. 2. Sensitivity of the QTHT model solution to 10/0
changes in the hard-sphere diameter xo, the pair corre-
lation function at contact g(ro), and the static structure
factor S(k) (see text).

more "plasma" like and the frequency of the col-
lective mode is somewhat smaller. The lower
frequency is a consequence of the point-particle
treatment of collisions which requires that col-
liding particles instantly transfer momentum at the
same point in space rather than over distances of

I(0, t) =¹co~(k//ilk, .) exp(Pix ~/2)

xs(k, (~)v)(E/) d0 dE/,

where a„„is the coherent scattering length, Ef
the final scattered energy equal to It'k'z/2m, E;
the incident neutron energy equal to II k', /2m,
k&, k; are the final and incident neutron wave

vectors, k=
) kx -k; [, kxa =E/ -E„N is the num-

ber of nuclei illuminated by the incident neutron
beam, dA the solid angle subtended by the detec-
tor, and v)(E&) the detector efficiency at the energy
Ef The energy width of a time channel, dEf is
given by 2E&d t/t where t is the neutron time of
flight from sample to detector and dt the time-
channel width. It is important to note that dEf
is thus proportional to t . This means a Jacobi-
an must be applied to the data before the scat-
tering law is obtained although for modest energy
ranges it is not misleading to view time of flight
data directly.

The present experiment was performed using
the Argonne thermal neutron time-of-flight spec-
trometer. " Spectra were analyzed simultaneously
at 15 scattering angles. The scattering angles
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TABLE I. Detector configuration used in the present
experiment.

Scattering
angle

Angular
resolution

(FTHM)

Solid
angle
(n~sr)

+ 2.4
3.0'
3.6
4.2'
4.8'
5.4'
6.3
7.5'
8.7'

11.7
14.1'
16.5'
18.9
21.3
23.7'

0 30'
0,30
0.30
0.30
0.30'
0.30
0.60
0.60'
0.60'
0.60
0.60'
0.60'
0.60
0.60
0.60

0.9
0.9
0.9
0.9
0.9
0.9
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8

ranged from 2.4 to 23.V', more densely spaced
in the small wave-vector-transfer range where
the dynamic structure factor was expected to vary
most rapidly. At larger wave-vector transfers,
angular increments consistent with the anticipated
variation of the scattering law in the transition
regime were chosen. The detector configuration
is summarized in Table I.

In Fig. 3 we show the loci of measurement in the
k-a plane determined by our choice of scattering
angles and incident neutron energy. The vertical
bar near the origin shows the energy resolution of

the spectrometer, which is about 5/g of the inci-
dent neutron energy. Also shown are dispersion
relations for sound excitations (assuming these
could exist at large wave vectors) propagating at
500 and 1000 m jsec. As can be seen, the present
arrangement 1s adequate for investILgatxon of ex-
citations with speeds around 500 m/ se c, but high-
er neutron energies are required if stiffer excita-
tions are of interest. In this case maintaining
adequate energy and wave-vector-transfer resolu-
tion would entail substantial loss of neutron-beam
intensity, and such measurements could only be
conducted (with suitably designed spectrometers)
at high-flux reactors or advanced pulsed neutron
sources.

The present measurements utilized the mechani-
cal correlation chopper originated by Skold" to
help offset the low counting rate resulting from
the smallness of S(k) at small k [for argon at 456
atm, the compressibility limit S(0) = 0.56]. Use
of the correlation chopper is desirable not only
when the signal to noise ratio is poor, but also
(as in the present case) when the spectrum con-
sists of only one or a few main features or (as in
the present case) when spectra are to be analyzed
in terms of fitted models using only a few para-
meters (Ref. lV contains a more complete discus-
sion of these points).

B. Sample cell and experimental procedure

"Ar has excellent neutron scattering properties
but is a rare isotope and is not practical to work
with in large quantities. It is therefore necessary

6.0
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~ 00
8
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-4.0

i
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FIG. 3. The k-z loci
determined by the incident
energy (4.84 meV) and
scattering angles chosen for
the present experiment. The
error bar at the left is the
F%HM of the spectrometer
resolution function. The
lines emanating from the
origin shower the dispersion
of 500- and 1000-m/sec ex-
citations.
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FIG. 4. High-pressure cell is shown in (a) and the
gas-handling system schematically in (b). The valves
enclosed in boxes are single units which contain either
multiple inlets and/or multiple valve stems.

that the sample cell be cyclable in temperature, in
order to condense the gas into it, that it have
small dead volume in the noncycled external lines
and pressure sensors, and that it be leak tight to
&%-2% changes in hundreds of atmospheres of
pressure for periods of weeks as well as leak
tight under short-term stresses of temperature
cycling. In order to make the ratio of sample to
container scattering favorable for reliable sub-
traction of the container signal from the sample
signal, it is necessary that the container walls be
as thin as possible. It is also desirable that as
much sample be in the beam as is consistent with
minimization of multiple-scattering effects.

The cell, gas handling system, and fittings are
shown schematically in Fig. 4. The cell was de-
signed and constructed by R. Kleb of Argonne
engineering staff from 6061-T6 aluminum alloy.
High-pressure lines were attached to the target by
first hard-soldering stainless-steel capillary
tubes of the type used in manufacturing hypoder-
mic needles to cone shaped stainless-steel plugs
which were then inserted into threaded glands.
These glands were screwed into a threaded open-
ing in the pressure cell so that the plug formed
a metal to metal seal to the cell. The cell was
fabricated from seamless 6061-T6 tubes of 0.48-
cm o.d. and 0.071-cm wall thickness. The walls
in the section of each tube illuminated by the neu-
tron beam were machined down to a thickness of
0.05 cm and each tube was epoxied into insertion
holes in the upper and lower support blocks. The
walls at each end of the tubes were 'left at full
thickness to minimize Qexing the brittle epoxy
seals, and each end of the tube and insertion hole
was etched with acid to provide a rough surface
for the epoxy. The two 0.64-cm diam. tie rods
were added to reduce the axial stress on the tubes

when they were pressurized. The tie rods were
arranged so the high-pressure tubes could be
elastically preloaded by hand-tightening nuts on
the lower ends of the rods. All surfaces of the
cell were masked from neutrons with Cd sheet
so that only the thinned tube section was exposed
to the incident beam through a 10 m x 0.64-cm
slit. A string counter was used to check the uni-
formity of the beam intensity across its width and
additional Cd shielding was used to minimize scat-
tering from vacuum cans, beam windows, etc.

After careful checking of the cell and gas han-
dling system for high-pressure micro-leaks, the
"Ar sample was loaded by cooling the cell over
a 6-h period to 83.8 K while allowing "Ar to con-
dense into the cell. The pressure in the sample
bottle was monitored with a quartz Bourdon tube
gauge in order to be certain that plugs were not
being formed in the capillary tube. The cell was
then sealed from the sample bottle and Bourdon
tube and brought up to room temperature over a
5-h period. The pressure in the loaded cell was
monitored throughout the experiment with a
0-.30000 psi strain-gauge transducer, which was
chosen because of its small dead volume and flexi-
bility for remote mounting. No average loss in
pressure was observed during the two-week mea-
surement period although the pressure was ob-
served to fluctuate +1.5 atm with changes in room
temperature. At the end of the two-week period
the argon was condensed back into the storage
bottle and the cell was pressurized with 2.5-atm
'He in order to experimentally measure container
shielding effects. The efficiencies of the 15 detec-
tor groups and of the beam monitors were cali-
brated using a 1-mm slab of vanadium as a stan-
dard scatterer, the vanadium incoherent scat-
tering cross section assumed to be 5.13 b.

IV. CORRECTIONS TO THE DATA

A. General considerations

The measured time-of-Qight data were reduced
to a fully corrected constant wave-vector-transfer
representation of the scattering function S(k, +)
as described by Copley et al." BrieQy, the steps
involved are removal of container scattering,
conversion to S(k, &u), normalization via vanadium
reference method, interpola'. ion to constant k,
evaluation of multiple-scattering effects, and
correction for instrumental resolution. Several
points of particular importance in the present
case are discussed in detail below.

8. Container correction

In an actual neutron scattering measurement,
the observed signal contains scattering from the
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substance of interest (sample) and from the con-
tainer which surrounds the sample. In practice,
therefore, it is necessary to measure the signal
'from both filled and empty container in order to
eliminate the container scattering. Since a neu-
tron traversing either sample or container materi-
al has a finite probability of being scattered or
absorbed, the scattering from the walls of the
container is attenuated by the presence of material
in it and the measured intensity from the empty
container must be corrected for shielding before
it is subtracted from the filled container signal.

Small-angle quasielastic scattering measure-
ments are made particularly difficult by uncertain-
ties associated with subtracting the resolution-
broadened elastic container scattering from the
quasielastic sample signal. In the present experi-
ment, the (ill) and (200) aluminum crystal planes
Bragg scatter neutrons at 116 and 180'with re-
spect to their incident direction. Many of these
neutrons can in turn be Bragg scattered again
into the forward direction. This results in intense
scattering at small angles which varies strongly

with the scattering angle. High-strength aluminum
alloys are prepared by cold working and preci-
pitation hardening. In consequence, the microsco-
pic grain structure vari'es unpredictably from
section to section of the same piece of alloyed
material and so of course does the Bragg scat-
tering. In order to minimize the magnitude of the
necessary shielding correction to the empty data,
scattering from the container was measured with
2.5 atm of 'He in it. This simulated the removal
of neutrons due to the presence of a sample medi-
um in the container. In addition, the container
scattered was measured as a function of 'He pres-
sure in order to estimate the importance of multi-
ple Bragg processes. Adjustments to the self-
shielding corrections were done using these data
and the fully corrected "empty" container signal
was subtracted from the filled container signal.
Even with this care, analysis of the container
subtraction indicates the presence of extreme
shielding effects at the elastic position of the two
smallest scattering angles of 2.4 and 3.0'. These
shielding effects seem not to be explainable in
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terms of multiple Bragg scattering. The elastic
data from these scattering angles were therefore
rejected because there was no reliable way to
estimate further corrections from measurements
or from sum rule arguments. The container cor-
rection was not severe at wave-vector transfers
of 0.1 A ' or larger.

In Fig. 5 we show several typical time-of-Qight
spectra after remova1: of container scattering.
Figure 6 shows our data converted to S(k, &u) at
constant angle for all 15 scattering angles.

C. Multiple-scattering effects

The multiple-scattering correction was per-
formed using the Monte Carlo computer code of
Copley. " It was necessary to modify the code for
a target in which two vertical tubes are partially
illuminated by the incident neutron beam. The
code was used to calculate single- and multiple-
scattering events on a nonlinear grid of wave-
vector transfers from 0.06 to 4.5 A ' and energy
transfers from +3meV around the 4.84-meV
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scattering is in all cases extremely broad and
featureless. It should be noted that the calculated
multiple-scattering correction is greater than the
actual effect since the model structure factor goes
to about 0.4 at k= 0 instead of the thermodynami-
cally determined value of 0.56. Our multiple-
scattering calculation thus overestimates the ratio
of multiple to single scattering by underestimating
the structure factor at small k with respect to
large k. In any case, it was not necessary to
correct the measured data for multiple-scattering
effects because the multiple scattering is broad,
featureless, and small compared to first scat-
tering.

FIG. 7. Structure factor used in multiple-scattering
calculations. The region of interest in the multiple-
scattering correction is identified by the box in the lower
left corner. Dashed curve, small-k estimate of struc-
ture factor used in calculation up to 1.4 A . Solid curve,
Percus- Yevick prediction for S(jg) assuming 3.3-A par-
ticles.

incident energy. The dynamic structure factor used
in the multiple-scattering correction was calcu-
lated using the QTRT kinetic model and the struc-
ture factor above 1.4 A. ' was calculated using the
Percus- Yevick hard-sphere structure factor."
Because the Percus- Yevick equations do not give
the correct value of the structure factor at small
k, the Percus- Yevick expressions were used with
an artificially small packing fraction as an inter-
polation scheme to properly estimate the small-4'
behavior of the structure factor. The resulting
structure factor is shown in Fig. V. The results
of the multiple scattering calculations for two
typical angles are shown in Fig. 8. The multiple

D. Interpolation to constant k

The data were interpolated to a constant wave-
vector-transfer representation by cubic spline
interpolation. No effort was made to smooth the
spline function because of the high statistical
accuracy of the measured data. A three-dimen-
sional representation of the resulting constant
wave-vector-transfer scattering law is shown in
Fig. 9.

The data, of Fig. 9 are corrected for all experi-
mental effects other than instrumental resolution,
and it is this representation of the data with which
theoretical models should be compared. " In order
to obtain a representation of the dynamic struc-
ture factor of "Ar at 456 atm and 295 K free from
resolution broadening, we have utilized a mod-
eling procedure described below. In spite of the
excellent fits to the data obtained, it must be
recognized that questions of uniqueness of solu-
tions and of building in of assumptions always
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FIG. 8. Estimates of
multiple-scattering effects
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scattering angles. Squares,
single scattering; circles,
multiple scattering;
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remain in any fitting procedure, and for this rea-
son Fig. 9 should be considered the most reliable
representation of our experimental results.
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E. Resolution correction

A measurement of the symmetrized scattering
function S (k, v) yields in general a convolution
of the true dynamic structure factor S,(k, ~) with
the normalized resolution function of the spec-
trometer,

-4

r zz
/~XP

-2 -I 0 I
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2
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4

FIG. 9. Dynamic structure factor, corrected for all
effects except instrumental resolution. The importance
of resolution effects in the data can be assessed by com-
paring this representation with Fig. 11.

S (k, (o) — dk'
~

d(o' R(k, k', cv, ar')S, (k', u)').
4

The resolution of a hybrid time-of-flight spec-
trometer as used in this experiment has contribu-
tions which are constant in time-of-flight, constant
in energy transfer, and variable in wave vector
and energy transfer. Although it is usually ar-
gued, by invoking the central limit theorem, that
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FIG. 10. Four typical kinetic-model fits to the measured data at different fixed values of the wave-vector transfer.
Circles, measured data points; crosses, resolution-broadened kinetic-model fits; solid curve, best fit to the mea-
sured spectra for fixed xo= 3.4 A. The quality of fit as measured by X is summarized in Table II. The fitted para-
meters g(ro) and S(k) are plotted vs wave vector in Figs. 12(a) and 12(b).
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the resolution function tends to a Gaussian shape,
there are in fact significant non-Gaussian cor-
rections to the shape. These effects can be quite
severe at small wave-vector and energy transfers
where the k dependence of the scattering law is
strong. Attempts to test model scattering laws
against resolution-affected data using simplified
versions of the resolution function should be care-
fully checked for consistency.

The resolution function used to test model scat-
tering functions in the present case was derived
from the measured symmetrized vanadium S(k, &o).

It was assumed that the resolution has no explicit
dependence on wave-vector transfer. Further-
more, the resolution width was assumed to be
constant in time of flight rather than energy. The
consistency of these assumptions was examined
by fitting the triple relaxation kinetic model" to
constant wave-vector-transfer data for the vanadi-
um-derived resolution function and for Gaussian
functions with widths constant in both time and
energy. All fits led to essentially the same ki-
netic-model parameters. The best fit, as mea-
sured by the least-squares sum, was obtained
for the vanadium-derived function. The worst fit
was obtained for the Gaussian function with width
constant in energy transfer. In addition, the com-
bined consistency of the data and the resolution
assumptions were tested by performing fits to
only the neutron energy gain or loss portion of
the measured spectra. The fit to energy gain data
alone resulted in a collective excitation at 0.1 A '
with a speed of 580 m/sec, the fit to energy-loss
data alone resulted in a 5VO-m/sec excitation
speed, and the fit to the entire spectrum resulted
in a propagation speed of 5VO m/sec. Differences
in the intensity at the position of the collective

08.
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FIG. 12. (a) Kinetic-model structure factor $@).
(b) Pair correlation function at contact g(ro) arrived at
by fixing hard-sphere diameter ra= 3.4 A and fitting for
a minimum value of X2 at each wave vector. (c) True
structure factor (related to intensity rather than as a
kinetic equation shape parameter) arrived at using best
fits to data to estimate the scattering law at energy
transfers not reached by our measurement.

mode for the separate fits to energy-gain and loss
data differed by about 5%. The fit to the full spec-
trum resulted in an intensity at the collective
mode position which was consistent with the par-
tial fits. Some typical fits to the data are shown

in Fig. 10 for the case where the hard-sphere
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diameter x, has been fixed at 3.4 A and S(k) and

g(r, ) have been treated as fitting parameters. The
slight asymmetry in the smaller-k data is due to
the strong k dependence of the scattering law at
the smallest wave-vector transfers.

At these small angles, the positive and negative
frequencies tend to be averaged differently by the
true four-dimensional resolution of the spectrom-
eter. There are additional contributions to this
asymmetry from the neglected k and u dependence
of the resolution function. It is known, however,
that these errors are to a large extent equal and
opposite for positive and negative frequencies, "
and as described above do not appear to important-
ly influence the fitting results. However, con-
clusions drawn from the smallest-k data must
still be viewed with caution. Nevertheless, we
present below some interesting results arrived at
from different kinetic-model fits to these data.
In I"ig. 11 we show' a three-dimensional plot of
the resolution-corrected dynamic structure factor
arrived at by fixing the hard-sphere diameter at
r, = 3.4 A and treating S(k) and g(ro) as fitting
parameters. This plot shows the qualitative fea-
tures of the true power spectrum of thermally
excited density fluctuations as measured by
thermal neutron scattering.

V. RESULTS AND DISCUSSION

The validity of the generalized Enskog equation
was carefully examined by computing the dynamic
structure factor using the QTRT kinetic model
to numerically calculate the power spectrum of
thermally excited density fluctuations for the set
of parameters r„g(r,), and S(k). The kinetic-
model spectra were then normalized to the inten-
sity of the measured data, folded with the spec-
trometer resolution, and compared to the mea-
sured data. The procedure was performed by
fixing the value of ro and allowing S(k) and g(ro)
to vary until the quantity X' defined as

$ &XP Stheory 2
3= ix=„,„, .. . ),

was minimized. Here S&" is the i'" element of the
measured dynamic structure factor, S,'""'" the i'"
element of the resolution-broadened model dyna-
mic structure factor, AS,'"~ the statistical uncer-
tainty in S,'"', N the number of data points, and f
the 'number of fitting parameters. The data at
each fixed value of the wave-vector transfer were
fitted independently.

A value r, = 3.4 A was initially chosen and values
of g(r, ) and S(k) were arrived at by fitting for the
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ory using parameters de-
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TABLE II. Values of X (defined in text) for fits to
neutron spectra with t'p=2. 6 and 3.4 A, g(rp), and & (0)
used as fitting parameters.

x'(ro=& e ~) '{rp =3.4 A)

0.10
0.12
0.14
0.16
0.18
0.20
0.22
0.24
0.26
0.28
0.30
0.32
0.34
0.36
0.38

4.863
4.084
3.915
4.007
3.443
3.958
3.797
3.68 7
3.445
3.486
3.536
3.125
2.951
2.498
2.284

5.005
5.094
4.784
3.863
4.072
5.014
5.445
4.992
4.882
4.501
4.063
3.699
3.561
2.943
2.631

minimum X' from 0.10 to 0.38 A ' at increments
of 0.02 A ' (see Fig. 3). The fits at 0.10, 0.12,
0.14, and 0.16 A ' resulted in values of g(r, ) and

S(k) which were constant within estimated uncer-
tainties of the measuring procedure. Above 0.18
A ' the values of g(r, ) were found to increase

monotonically and the values of S(k) to decrease
monotonically. The k dependence of these param-
eters for x, fixed at 3.4 A is shown inv Fig. 12.
The extreme flatness of the structure factor at
these wave vectors contradicts initial results of
a computer experiment presently in progress in
our group. " The reason for the discrepancy is as
yet unresolved. The absolute value of the struc-
ture factor at k=0 determined from classical
compressibility measurements is S(0)=0.56. The
estimate obtained from our neutron scattering
measurement is 0.58+ 0.01. Figure 13 shows the
effect of the k-dependent parameters on the shape
of the QTRT power spectrum. The dashed curves
show the shape of the normalized spectrum when
0=0.10-A ' kinetic-model parameters are used to
calculate the line shape at k=0.20, 0.26, 0.32, and
0.38 A '. The solid curves are the spectra found
by least-squares fitting the kinetic-model param-
eters to the data. The k=0.10 A ' parameters
reproduce almost perfectly spectra at 0.20 A '
although the k= 0.20-A ' model parameters differ
from the k=0.10-A ' values by about 5/z. This
indicates that the dependence of the power spec-
trum predicted by the generalized Enskog equation
is qualitatively correct. At k= 0.26, 0.32, and
0.38 A ' the best-fit spectral shapes become in-
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creasingly different from the spectral shapes
generated using the k=0.10-A ' Enskog param-
eters. The differences in the spectral shapes
indicate a stiffer" response function at the higher
wave-vector transfers.

The Enskog theory was also tested by fitting
with progressively smaller values of the hard-
sphere diameter. The fit to the data was found to
improve at all but one value of wave-vector trans-
fer until a hard-sphere diameter of 2.6 A was
reached. Table II shows the value of X' for k-
independent fits to the data with x, fixed at 3.4 and
2.6 A. The spectral shapes for 3.4- and 2.6-A
particles are shown in Fig. 13. The full curves
are the spectral shapes for 2.6-A particles and
the dashed curves for 3.4-A particles.

The shapes of our best estimate of the dynamic
structure factor of argon gas at 456 atm and 295
K are compared with the power spectra predicted
by the Enskog theory using parameters derived
from the best fit to the k=0.10-A ' data for two
values of x, in Fig. 14. The solid curves are those

obtained from the best fits using 2.6-A particles
and the dashed curves are the best fits using
3.4-A particles. The qualitative differences indi-
cate that the high-temperature gas exhibits great-
er structure in the power spectrum than the
Enskog theory is capable of producing. In Fig. 15
we show a qualitative comparison of the actual
k dependence of the spectral shape and the k de-
pendence predicted from the k =0,.10-A ', ro
= 3.4-A fit.

In Table III, the calculated thermal conductivity
and shear viscosity of argon at 456 atm and 295
K for best fits with different hard-sphere diame-
ters are shown. The transport coefficients were
arrived at by averaging the fitted values of g(r, )
from the four smallest wave vectors and using the
QTRT expressions for the transport coefficients.
The transport coefficients as measured by classi-
cal techniques' are listed for comparison. Note
that the thermal conductivity and viscosity must
be scaled by n = (39.948/35. 988)' ' and n ', re-
spectively, in order to correct for the isotopic

TABLE IG. Comparison of classically measured transport coefficients with those derived
from Enskog equation fits to neutron data.

Bulk transport coefficients

Speed of sound:

Shear viscosity:

Thermal conductivity:

QTRT transport coefficients

C""=541m
. p

C36 =570 m
qnat =4 64x
q, s~ =4.89x

=4.41x
A.

36 =4.65x

sec ~

sec
10 gcm sec ~

10 4 gcm ~sec ~

10 erg cm sec
103 ergcm ~sec ~ K

where

p

A, =A, p[ 1/g (rp) +4.8f +12.2784f g(rp)]
v7 =esp [1/g(rp) +3.2f +12.336f g(rp)]
co ——vo(j.-n&(0)+ 3 [&+ 4'(xo)]2@~2

A, p
= 75k~ v p/64rpe~~

q» = 5mv p/16 rp2Mvr

v p
——~z T/m (thermal velocity)

f = nor p/6 (packing fraction)

Values of transport coefficients for different fits
g(rp) (10 4

g cm ~sec ~) A. (103 ergcm ~sec"~ K )

3.4
3.3
3.2
3.1
3.05
3.0
2.9
2.8
2.7
2.6 .

2.5

1.426
1.550
1.650
l.794
1.866
1.945
2.121
2.318
2.542
2.798
3.092

5.022
4.874
4.725
4.578
4.505
4.432
4.286
4.141
3.996
3.853
3.709

4.992
4.845
4.697
4.551
4.478
4.406
4.260
4.116
3.972
3..829
3.686
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mass difference between natural argon and "Ar.
The QTRT fit using r, = 3.3 A provides the best
overall agreement with the mass-scaled measured
transport coefficients. The thermal conductivity
estimated from the neutron spectra for fits using
r, =3.3 A is some 4%%up higher than the scaled trans-
port coefficient while the shear viscosities are
essentially in perfect agreement. The fits using
r, = 3.2 A agree within 3% for the shear viscosity
and within 1% for the thermal conductivity. The
position of the sound peak at 0.10 A ' indicates
a sound velocity of 570+ 20 m/sec and the ratio
of the specific heats C~/C„estimated using the
fitted small-k Enskog parameters and evaluating
them at k=0 is 2.35+ 0.05. The measured spe-
cific-heat ratio is C~/C„= 2.51. The small-k
Enskog parameter estimates of the transport and
thermodynamic properties of the system are thus
substantially consistent with those measured by
classical procedures.

UI. SUMMARY

%e have measured the power spectrum of ther-
mally excited density fluctuations of the high-
temperature dense ga,s "Ar. %e find substantial
consistency with some qualitative features of the
generalized Enskog description although quantita-

tive differences remain. The present measure-
ment is a demonstration of the potential offered
by neutron scattering techniques for measuring
the dynamic structure of simple fluids sufficiently
precisely to allow quantitative tests of theories in
the hydrodynamic-to-kinetic transition regime.

It should be noted that there exists a wide class
of simple systems the thermodynamic, transport,
and neutron scattering properties of which are
closely related to those of monatomic fluids. Such
systems as binary monatomic mixtures and dia-
tomic fluids offer the possibility of carefully and
systematically identifying discrepancies in the
dynamical behavior of reasonably similar simple
systems. Combining these measurements with
computer molecular dynamics studies should
hopefully provide a more complete picture of sim-
ple fluids, which must ultimately form the basis
of our knowledge of the liquid state.
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work has received from A. Hahman and G. F.
Mazenko as well as the ingenuity and technical
assistance of R. Kleb and G. Ostrowski. This work
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Department of Energy.
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