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Starting from the Lennard-Jones interatomic potential, a modified cell theory has been used to describe
the solid-liquid phase transition in argon. The cell-size variations may be evaluated by a self-consistent
condition. %ith the inclusion of cell-size variations, the transition temperature, the solid and liquid densities,
and the liquid-phase radial-distribution functions have been calculated. These ab initio results are in
satisfactory agreement with molecular-dynamics calculations as well as experimental data on argon.

I. INTRODUCTION

The melting of solids and the freezing of liquids
are very common phenomena of fundamental im-
portance. It is somewhat surprising that the solid-
liquid phase transition is still poorly understood
at present from the point of view of first prin-
ciples. The literature is also somewhat sparse,
and it is often necessary to rely on molecular
dynamics or Monte Carlo computer experiments
for quantitative results. ' '

Recently, Barker and Henderson' have pointed
out that apart from the Monte Carlo calculations,
most current theories of melting have either used
different models for solid and fluid phases or used
the known melting properties of hard spheres to
predict those of more realistic systems. Barker
and Henderson have also emphasized that our
theoretical understanding of the melting transi-
tion would require a unified description of the
solid and the Quid as well as the phase transition.
Whereas the physics of the liquid state has been
very extensively studied and has been comprehen-
sively reviewed, "' the derivation of such a
unified description may not be easy. Among the
current theories of the liquid state, a perturba-
tion theory approach to the melting transition
would rely heavily on the computer simulation
results for phase transitions in hard-sphere sys-
tems, whereas the integral equation approaches
have had difficulties with the various approxima-
tions involved in these calculations.

In our present work, the melting transition of
a simple Lennard-Jones system has been studied
by a modified cell theory. The cell theory, origi-
nated by Lennard-Jones and Devonshire, has been
reviewed in great detail by Barker and Hirsch-
felder gt g)." ' It is well known that the solid
states of the rare gases have the face-centered
cubic (fcc) structure. In the cell model for the
liquid state, each particle was located in the po-

tential well of its own Wigner-Seitz (WS) cell of
the fcc structure. The WS cell is a regular do-
decahedron, " The cell model is currently out of
favor because it is unrealistic to have highly
regular dodoechedrons of identical sizes in any
fluid which is known to possess certain degrees of
randomness. 6n the other hand, the cell model
does use quite similar descriptions for both the
liquid and the solid state. In recent years, Barker
and others' have developed self-consistent cell
theories and these theories have been applied to
hard-sphere systems with good results. In our
present work, a more simplified self-consistent
condition has been used. We have allowed for
random variations in distorted dodoecahedron cells
of various sizes and a self-consistent condition is
imposed on these variations. Because of its
simplicity, it is possible to study the melting
transitions in systems with realistic interatomic
potentials such as Lennard-Jones systems or
argon. In Sec. II, the general formulation of the
problem and the self-consistent condition have
been given. In Sec. III, the single-particle poten-
tials and partition functions have been evaluated.
We have calculated the potentials in the WS cell
and have then taken the angular average by lattice-
harmonics procedures, thus avoiding the smearing
approximation" "about the replacement of the
dodecahedron by a sphere of uncertain size. The
melting transition was derived from the modified
cell model in Sec. IV and was then compared with
the experimental data. In Sec. V, the radial dis-
tribution function g(R) was evaluated for the
liquid phase and was then compared with the mole-
cular -dynamic s calculations and experimental
data. The main features are then discussed in
Sec. VI.

The Lennard-Jones interatomic potential v(R)
is given by

v(R) = 4e [(v/R)" —(o/R)'I,
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II. GENERAL FORMULATION

For a system of N classical particles, the po-
tential energy of the system in U(%, ~ ~ 5„)=g v, , ,
where v, &

=v(R, , ), R,.&=R,. —5, , and the summation
is over i&j =1 to N. The classical partition func-
tion g„ is

Z„= (k'/2~m kT) ''q„, -
(2)

where Q„ is the configurational integral or con-
figurational partition function

where & is the interatomic distance, g and q are
the Lennard-Jones diameter and well depth, re-
spectively. For argon, the standard choice"" is
o =3.4x 10 ' cm and e/k =120'K, where k is the
Boltzmann constant. Following the standard con-
ventions of Hirschfelder and others, "we will use
the mass of an argon atom m =6.63x10 '3

g as the
mass unit, o =3.4x10 ' cm as the distance unit,
g =1.657x10 ' erg as the energy unit, and
1.680 g/cm' as the density unit. In these units,
the interactomic potential is

v(R)=4(R "-R ').
We will also use the reduced temperature T*
=kT/e inplaceof the temperature T in 'K. In our
units, we may replac. e kv.

' by T*. (8)

The cell for particle i may be defined as the poly-
hedron enclosed by the bisecting planes. We may
approximate this cell by a WS cell of regular
octahedron with volume n', /&2.where n,. is the
average (over j = 1—12) value of a, , ,

o'&=(a;;&)=(R;g&;=(I&;-&;I&,. (9)

The center of the WS cell may be defined as the
center of mass (5,.&,, of the 12 nearest neighbors.
The position of particle i relative to the WS cell
center is then

(10)

with NN distance a is a regular dodecahedron of
volume a'/W2. If the most probable position of
particle i was defined as the origin, then the
neighbors j, ~ j„were fixed at (za/M2, +a/f2, 0),
(+a/W2, 0, +a/~2, and (0, +a/v 2, ya/~2. The con-
figuration partition function is then evaluated by
allowing particle i to move away from origin.
However, since liquid structures are not perfectly
regular, it is necessary to consider the WS cells
as distorted dodecahedrons of various sizes. We
will consider the system of N particles at some
particular instant. Let us denote the nearest
neighbors of particle i as j = 1, 2, . . . , 12. Then the
NN distances are

q, = . e '"*&,

The Helmholtz free energy is given by

A = kTlnZ„= ,' -Vln (k'/2- m—mkT')+Nf,

where f may be regarded as the configurational
free energy per particle

(3) For the system with N particles, the number of
WS cells with volume between n /&2and (a+do. )'j
&2will be defined as Np(o. ) do, where p(o. ) is the
normalized probability. The density p of the sys-
tem is well approximated by using the average cell
parameter o „=f o p(n }dn,

p = W2/o. '„.
f = -(kTlnQ~) /N.

In order to evaluate the many-body integral Q„ I

it is convenient to approximate the many-body po-
tential U as a sum of single-body potentials

The probability function p(n) may be approxi-
mated by a Gaussian function with root-mean-
square (rms) deviation n':

p(o. ) =(2wo. ") '~'e x[p(n —n„—)'/2o. "], (I 2)

U(R, "R„}=/v, (R,).
5

The simplest choice for the single-particle po-
tential p,- is

(6)

v, = —g1
(7)

The single-particle potential will now be evalu-
ated. We will focus our attention on the most
important contributions from the nearest neighbors
(NN) of particle i. (Contributions from other
neighbors will be discussed in the next section. )
In the original Lennard-Jones and Devonshire
cell theory, the fcc structure was used with iden-
tical nearest-neighbor distances a. The WS cell

where o "=f (o, —n„)'p(n) da, the integration
limits being ~ =0 to ~.

From (9) and (10), a self-consistent condition
may be established for z' by examining the popu-
lation distributions and rms deviations of 0, , r, ,
and n, . From (10), the rms deviations of r,. and

5,. are expected to be very similar since (R~&,. is
an average of 12 positions with much smaller
rms deviations. From (9), the distance R, &

is
from the difference between two radius vectors,
whereas ~,. is the average of twelve &,-,. dis-
tances. Conventional probability theory gives

(13}

where (r') is the canonical average value of r',
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6n" = (r') (r')~(n) dn. (14)

We may define (r') as the canonical average value
of r' for WS cell of fixed volume ns/v 2, then we
have the self -consistent condition

0.4

/

0.2-

In Sec. III we will evaluate (r') as a function of
~ and T*. For any given ~„, then the rms devia-
tion n' and the probability function p(n) may be
calculated from (12) and (14). As a result of (6),
the configurational partition function Q„may be
written as a product of single-cell configurational
partition functions Q, :

0
0

-kT/n Q(

lnQ„= Pr p(n) lnQ, (n) dn, (15)

where Q, is a function of the cell parameter n.
This is a modification of the original cell theory
where only one cell size is considered:

I

l, 2

lnQ„=N InQ~(n„) .

III. SINGLE-PARTICLE FUNCTIONS

(16)
FIG. 2. r'=((r ) )' (top figure) and —kT lnQ& (bot-

tom figure) vs cell parameter for fixed cell size. Solid
lines, T*=0.6; dashed lines, T*=0.7; dotted lines, T*
= 0.786.

%e may write V,. = V,'+V,". , where V,'. and V,". are
the NN contributions and the contributions from
other particles, respectively. The potential V,".

is only slightly dependent on the detailed structure
of the N particle system, thus the structure may
be approximated by the regular fcc lattice with
NN distance ~. Thus we gei

2V" = 6v(M2n) + 24v( Sn) + 12v(2n) + 24v(&5n)

+8v(W6n) +48v(&7~) + 6v(v 8n) + ~ ~ ~,

with the particles farther away than &Bn replaced
by a uniform fluid of density &2n '.

We will now evaluate V'(x, y, z) inside a WS cell
of regular octahedron with volume of n'/~2and

+ ~ ~ ~
105 J (18)

where V„V„V„.. . are function of ~ only and
x =x/r, y =y/r, and Z=z/r are the direction
cosines. We have evaluated V' along the [100],
[110], and [111]axis, and then we use

with center at the origin. It is convenient to re-
tain only the isotropic part of V'(x, y, z); that is,
we average V'(x, y, z) to obtain V'(r). The WS cell
has cubic symmetry, hence the lattice har-
monics" "may be used for the spherical-har-
monics expansion of V'(x, y, z):

V'(x, y, z) =V, +V,(X'+y'+z'-3)
+V,[X y z +,—,(x +y'+z ——,)

0- I

I

I

I

I

I

I

V'(r) =0.286V'(x = r, y =0, z =0)

+0.457V'(x =r/v 2, y =r/W2, z =0)

+0.257V'(x=r/W&, y =r//8, z =r//F),

(19)

-IO I

0 O. I 0.2 0 O. I 0.2 0.3 0.4

FIG. 1. Cell potential V vs r/n. Left: solid line,
+=1; dashed line, +=1.1. Bight: solid line, +=1.2;
dashed line, +=1.3; dotted line, o. =1.4.

where the coefficients are chosen such that the
V4 and V, terms average to zero. The cell po-
tential V is the sum of V' and V" given by (19)
and (17).

The cell potential V(r) is shown in Fig. 1 for
the regular dodecahedral WS cell at several dif-
ferent values of cell parameter ~. Our results
are in general agreement with previous calcula-
tions. " From our cell potential V(r), it is then
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possible to calculate the single-cell partition func-
tion Q, (n) at any fixed temperature T*:

q, (~)=f4'~'e """""dr, (20)
Q
0.1—

where the V(r) is for a WS cell with cell para-
meter g. . For cell models with fixed cell sizes,
we have

0
0-

f(n) = -kT inq, (~).

In addition, we have

In Fig. 2, we have shown y'= ((~')}'~' and
kT In@,-(the configurational free energy per, par-

ticle for fixed cell size) as a function of cell para-
meter ~ for T*=0.6, 0.7, and 0.786. The curves
are quite similar to each other and there is no
phase transition.

FIG. 3. Cell-parameter variation e' (top figure) and
configurational free energy f (bottom figure) vs average
cell parameter ez. Solid lines, T*=0.6; dashed lines,
T*=O.V; dotted lines, T~=0.786.

IV. MELTING TRANSITION

Taking into account the variations in cell sizes,
we may evaluate the configurational free energy
per particle f = (-kT 1nq„)jN from (12) and (15)
using the results for Q, from Sec. III (Fig. 2). The
rms deviation ~' in cell parameter may be deter-
mined from the self-consistent condition (15). Our
results for f as a function of average cell para-
meter ~„are shown in the lower diagram of Fig.
3 for several temperatures. The most stable con-
figuration corresponds to the free-energy mini-
mum. For T" =0.7 (dashed curve), we note that
the minimum is rather flat between ~„.=1.12 and
~„=1.17. As a result of the flatness of this mini-
mum region, there is an abrupt shift of the mini-
mum toward small &„at slightly lower tempera-
tures (solid curve) and also an abrupt shift toward
large o„at slightly higher temperatures (dotted
curve). This rather abrupt, although still con-
tinuous, change in average cell size occurred near
T*=0.7 and may be identified with the melting
transition. The low-temperature phase, with
average cell parameter &„=1.13 and density p
= v 2o„' =0.98 (at the minimum of the solid curve
indicated by an arrow}, may be identified with
solid argon. The high-temperature phase, with '

o„=1.17 and p =~2o„'= 0.88 (at the minimum of
the dotted curve indicated by an arrow), may be
identified with the liquid phase. There is an
abrupt volume expansion (-10%) accompanying the
melting transition.

Our calculated melting temperature T*= 0.7,
and the solid and liquid densities, p =0,98 and

V. RADIAL DISTRIBUTION FUNCTION OF LIQUID ARGON

Let us consider the NN radial distribution func-
tion g, (11,o) for a system with fixed cell size of
volume o'/~2, where ff is the NN distance. If
the 12 nearest neighbors mere replaced by a uni-
form spherical distribution at a constant distance
~ from the center, then the rms deviation P in
NN distances will be rlIS for y «o if the center
particle is displaced by distance r from the cell
center. The result for regular dodecahedral co-
ordination of nearest neighbors is also very simi-
lar. In the Gaussian approximation, the distribu-
tion function g, is then given by

2. 2

4.ft'g, (R, ~) = »e-'"- & ~" y(2v)'~'P (23)

Where P'= —,'x" = —,'(z') and r' is shown as a function
of in top diagram of Fig. 2. It is also necessary

0.88, are consistent with experimental values'
for argon at low pressure, T*= 0.70, p = 0.96 and
0.84, and are also consistent with molecular-
dynamics values for Lennard- Jones systems, T*
= 0.67, p = 0.96 and 0.86.

%e note that the phase transition does not occur
if the self-consistent condition is omitted and all
cells are assumed to be of uniform size. From the
lower diagram of Fig. 2, the minimum of
-kTlng, vs + is much sharper and the change of
the position of minimum is rather gradual. Thus
the Lennard-Jones and Devonshire cell model is
usually identified with the disordered solid. "
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The distribution functions g3, g~, and g, have been
calculated and have also been shown in Fig. 4.

In the bottom diagram of Fig. 4, the solid line
is the calculated radial distribution function
g(R) =g, (R) + ~ ~ ~ +g,(R). Our calculated g(R) may
be compared with the molecular-dynamics cal-
culations of Verlet" which is shown as the dotted
line. (Verlet's result is quite similar to other
molecular-dynamics calculations' and is also
quite similar to x-ray and neturon-diffraction ex-
perimental data" "on liquid argon. ) There is
reasonably good agreement.

0
I 1,5

R

FIG. 4. Radial distribution g{R) vs R in the liquid
state, T*=0.786. Top, from left to right: g~, g2,
g5 for the first five neighboring shells. Bottom: solid
line, g{R)=g&+g2+ ~ ~ +g&, dotted line, molecular-dy-
namics results of Verlet, Ref. 20.

to take into account the variation in cell sizes,
thus we get

g, (R) = P(o. )g, (R, o.)«, (24)

with p(o) given by (12). For the liquid state, we

have o,„=1.17, and the distribution function g, (R)
from (24) is shown at the top left of Fig. 4.

In the fcc lattice, there are six second-nearest
neighbors at distance W2o, (two NN distances at
bond angle of 90'). If the bond angle is fixed at
90, then the second NN distribution function

g, (R) is given by

—,'g, (R) = —,'.g, (RA%/(W2'. (25)

It is also necessa, ry to take into account the bond
angle variations. If we have three nearest neigh-
bors forming an equilateral triangle, then the
bond angle is 60 with rms deviation of 10' from
the NN distribution function g, (R). Using the bond
angle 90' with rms of 15' for second-nearest
neighbors, the distribution function g, (R) has been
calculated and has been shown in the top diagram
of Fig. 4.

In the fcc lattice, the third, fourth, and fifth
neighbors are located at Wo, , 2o, and vYo, and
there are 24, 12, and 24 particles, respectively.

VI. DISCUSSION

The original I.ennard-Jones and Devonshire cell
model has assumed WS cells of identical shape
(regular dodecahedron) and size. In order to de-
scribe the liquid-solid phase transitions, how-
ever, it is necessary to introduce disordered
structures. In our present work, we have used a
self-consistent condition for the distribution of
cell sizes. From this cell-size distribution, it
is then possible to describe the solid-liquid transi-
tion in a very simple way. From Fig. 1, the
structures with smaller cells (o -1.1) have lower
energies, whereas the structures with larger cells
(o -1.2) have larger free volumes. Hence the
former structure is more favorable at lower tem-
peratures while the latter is preferred at higher
temperatures. Near the transition temperature,
the free energy versus cell parameter curve has
a rather flat minimum (Fig. 3) and therefore this
transition is rather abrupt. Our results are in
satisfactory agreement with molecular-dynamics
calculations as well as experimental data on
argon. The transition in our model is abrupt al-
though still continuous and is not quite as sharp
as a first-order phase transition.

We have also shown that the modified cell model
can describe the radial distribution function g(R)
of the liquid state reasonably well. In addition,
it is possible to explain why the most prominent
peaks of g(R) near R - 1.1 for liquids and solids
are quite similar despite the approximately 10%%u~

volume expansion on melting. As compared to
the solid phase, there is more variation of cell
sizes in the liquid phase. Since small cells tend
to contribute sharper peaks to g(R), the radial
distribution function peak from nearest neighbors
are shifted toward smaller distances.

It is somewhat arbitrary to describe the liquid
state by a distorted fcc lattice. Therefore, there
is deviation between our radial distribution func-
tion g(R) and the molecular dynamics data. In
particular, the deviation near g =1.5 suggests that
the fcc lattice approximation underestimates the
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particle density in the second coordination shell.
In summary, a modified cell theory can describe

the melting transition as well as the liquid struc-
ture in reasonable agreement with molecular-dy-
namics calculations and experimental data on
argon.
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