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Comparison of a semiclassical stochastic-master-equation approach
to laser fluctuations with the Scully-Lamb theory
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The analogy of a laser with an autocatalytic chemical reaction is used to write down a macroscopic
stochastic master equation of the birth-and-death type for the photon probability function in a semiclassical
laser formalism. This equation may be solved exactly in the steady state using a generating function. This
leads to a prescription for calculating all the higher-order moments of the photon number as well as
providing a unique truncation of the hierarchy of moment equations at any given order. Further, the variance
is given by a Poisson distribution, in agreement with the strong-signal Scully-Lamb theory. This master
equation is also shown to lead to an exact Fokker-Planck equation by using a modified Kramers-Moyal
expansion. A comparison between our results and the (microscopic) Scully-Lamb theory shows that the two
approaches give the same results at large photon number.

I. INTRODUCTION

It is well known" that a typical laser exhibits
a second-order phase transition at a cr itical
value of the population inversion. Below thresh-
old, the laser light in the cavity is chaotic and
has a Planck distribution. Above threshold, the
light becomes increasingly coherent until the
so-called "strong-signal" regime is reached,
where the photon number is very large and the
light is totally coherent having a Poisson distribu-
tion. The photon statistics above threshold have
been derived using the quantum Scully-Lamb
master equation' as well as a c-number Fokker-
Planck equation. " However, there does not
appear to be at present a semiclassical treatment
of laser fluctuations. One reason for this is that
in a semiclassical theory, the photon number is
always large (the photons being in coherent states)
so that any semiclassical calculation would give
results for the laser fluctuations and statistics
only' in the strong-signal region. Further, the
semiclassical treatment neglects spontaneous
emission (which serves as a noise source) below
threshold. It would appear, however, that in the
strong-signal regime, the results of a semi-
classical calculation are exact and we shall con-
sider the laser statistics in this region.

The semiclassical equations are equations for
averaged quantities and neglect fluctuations. In
order to include classically the effects of fluctua-
tions, we introduce a macroscopic probability
function P(n, t), which gives the probability of
finding n photons in the cavity at time t. The
equation for P is stochastic and has the gain-loss
form effectively treating the laser as a birth-and-
death process. Such methods have been extensive-
ly used in the theory of fluctuations in nonlinear

I

chemical reactions. ~' Our treatment will. lead to
a simple prescription for calculating all the
higher moments of the energy density n (this
being the classical analog of the photon number)
as well as a simple truncation scheme for the
Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY)
hierarchy of moment equations at any given order.
This is one of the chief advantages of the birth-
and-death approach to fluctuation theory: If a
steady-state solution of the master equation ean-
be found from a generating function, then all the
moments may be calculated in closed form. Fur-
ther, in nonlinear systems such as the laser, the
nonlinearity manifests itself in the transition
probabilities appearing in the macroscopic master
equation, a feature that is absent in microscopic
theories. The moments of n obtained by this
present method are compared with the correspond-
ing Seully-Lamb results and found to agree for
large photon numbers, this being the first time
that such a comparison between a macroscopic
stochastic formulation and the corresponding
microscopic theory has been made.

It will be seen that an exact comparison between
the hierarchy obtained from the stochastic master
equation and the corresponding Scully-Lamb
hierarchy is not possible because one cannot
derive a general expression for the 0th moment
(even though we do present a detailed analysis
based on the first three moments of n) Amore.
exact comparison is afforded by the transforma-
tion to a nonlinear Fokker-Planck equation in the
continuous variable limit. Usually, this has been
done using a Kramers-Moyal expansion. ' Phys-
ically, the discrete variables occurring in the
master equation are divided by a large charac-
ter istic parameter, e.g. , the volume V of the
system. Then, the nth term is of O(V "'') and
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II. LASER MASTER EQUATION

We begin with the single-mode semiclassical
laser equations which have the form"'

p» ——(i&@ —I')p„igb *d,-
b*= (uo —«)b*+ig*p»,

d = (d, —d)/T + 2i(gb*p» g*bp„),—
(2)

(8)

where d =N, -N, is the population difference in
the atomic levels, d, being the equilibrium value,
T and i" ' are atomic relaxation times, cbeing
the cavity half-width. p» is proportional to the
atomic dipole moment, and b, b~ are complex
field amplitudes. In a fully quantum description,
these would be photon destruction and creation
operators and n =b*b would be the photon number
in the mode under consideration. However, in a
semiclassical theory, n is the energy density in

may be neglected in the thermodynamic limit.
However, the volume dependence of the higher-
order derivatives is frequently not known, this
point having first been raised by Van Kampen, '
who developed an approach which assumed the
distribution function to be Gaussian in the thermo-
dynamic limit and, moreover, that the stochastic
value was distributed about its deterministic
mean value. This assumption, however, breaks
down near a critical point where it has been
demonstrated' that the master equation predicts

. large fluctuations that drive the system away
from its deterministic path. Further, the non-
linear Fokker-Planck equation has been shown'
to be an exact asymptotic representation of the
master equation, predicting the same behavior
for the fluctuations as obtained from the master
equation.

In Sec. II, we present a derivation of the laser
master equation whose steady-state solution is
found in Sec. III. In Sec. IV we derive the hierar-
chy of moment equations for this case as wel. l as
a prescription for truncating this hierarchy at
any given order, followed by similar calculations
based on the Scully-Lamb microscopic theory in
Sec. V, where the results of the two approaches
are compared. It will be seen that the omission
of spontaneous emission in the semiclassical
theory does not affect the results far above thresh-
old, where stimulated processes play the domi-
nant role. Finally we derive an exact Fokker-
Planck equation in Sec. VI by expanding' the
probability distribution in terms of a Poisson
distribution. This equation is found to be equiva-
lent with the corresponding Fokker-Planck equa-
tion derived from the Scully-Lamb theory up to a
normalization constant.

the cavity field. We now eliminate the atomic
variables adiabatically by setting p» = 0= d. This
yields a rate equation diagonal in the energy
density n. The approximation used is reasonable,
since the motion of the atoms in the cavity is
generally unaffected by the photons. We then
obtain the familiar result

d = do(1 —4g 'Tn/I'),

which from (2) leads to

n=k, n-k n,
where

k, = -2z + 2g 'Td, /I',

k, =-8g~d /I'.
Further, it has been shown that'

k, =A. —C, k2 =B.

(4)

(6a)

(61)

(7)

A. +X 2X, (8)

which has the rate equation

dX—=k AX-k X
dt

the variables in the above referring to the con-
centrations of the corresponding quantities ap-
pearing in (8). The analogy with the semiclassical

Here, A. , C, and B are the Scully-Lamb param
eters' and are, respectively, the linear gain,
cavity loss, and saturation parameters. The
subthreshold region is characterized by A. && C
and above threshold we have A && C. We shall
consider the Scully-Lamb theory in greater detail
in Sec. V. The identification (7) will be used to
provide a connection between our results and the
fully quantum (microscopic) theory of Scully and
Lamb, this being the principle object of this work.

$t is possible to make a chemical analog to a
single-mode laser. This has been done by McNeil
and Walls" who proposed a simple autocatalytic
reaction to represent stimulated emission. The
reaction was allowed to be reversible thus giving
rise to the nonlinearity, which corresponds to the
atom-field interaction in laser theory. They also
introduced reactions corresponding to spontaneous
emission and losses, thereby obtaining a com-
plete analogy with the quantum laser model close
to threshold. It must be stressed here, however,
that our model, being semiclassical, wil. l not
include spontaneous emission terms. In this
important respect, it differS from the McNeil-
Walls model. Accordingly, let us consider the
autocatalytic reaction (corresponding to stimu-
lated emission)
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laser model is complete with'the identification

kA. k, , k k, , X n. (10)
(19)

The master equation corresponding to (9) has the
form4'

dP((xj, t) = g W((X -~;,]-(XD)P((X;-t;,], t)
P

—g W((X )-(X;+u ..))P((X ) t) (11)

and thus we find

(n) =(A- C)/B,

and

((5n)') = (n~) —(n)~

s2@ (s~l 2 sp
2

— + =n-
Bs2 I Bs i

&
Os

(20)

(21)

Here, the 5"s are transition probabilities given
in general by

W((X; —t;,] -(X ])= k [I (X; —t;.) . (12)

Further, p. =0, +1 in this case, since we are
dealing with a one-photon process. We then find,
for the case under consideration,

=k,A. (X —1)P(X—1, t) —k,AXP(X, t)

III. STEADY-STATE SOLUTION OF THE MASTER

EQUATION; STATISTICS

We now seek a generating function solution to
(13) of the form

E(s, t) = P s~P(X, t).
X~ p

(14)

+k+(X+ 1)P(X+1,t) —k+(X —1)P(X, t) .

(13)
The first two terms in (13) are seen to represent
the probability flow between the "levels" X—1
and X, k,A(X-1) corresponding to the transition
rate for absorbtion. The second and third terms
represent the probability flow between the levels
X and X+ 1. Equation (13) is Mar kovian and has
the gain-loss structure.

Equation (20) is simply the first-order Scully-
Lamb result and (21) shows the photon distribu-
tion to be Poisson. This may be checked by re-
turning to (17), which may be cast in the form

X X
s&&&& -&x& ~ s ()

Comparing this with (14) we find

(22)

n =no, C =-k~/n, for all t=0. (23)

This condition states that a finite number n, of
photons must be assumed to be present in the
cavity at initial times to start the lasing. Then,
(9) may readily be integrated to give

a Poisson distribution. Thus, with this simple
semiclassical approach, we have rederived the
strong-signal-kcully-I, amb results for the high
photon numbers under consideration here. How-
ever, Eq. (13) and the Scully-Lamb theory are
certainly not expected to be equivalent every-
where. Slightly above threshold when the photon
number is not yet compatible w&th a coherent
state, the two approaches lead to different re-
sults. This will become apparent in Sec. IV. We
close this section by obtaining a solution to (9),
subject to the initial condition

Multiplying (13) by s and summing over X we

readily obtain the differential equation

eZ &' sp s'p'}—=s(s —1) I W—-k
Bt ( ~s 'Bs'j ' (15)

n=(n)[1+((n)/no)e '""] ',
where we have used (20). We see that

n(t -~) = (n) = (A —C)/B,

(24)

(25)

where W=k,A. In the steady state, (15) reduces
to

~2E 8' &E
Bs2 k &s

admitting of the solution

E(s) = exp[(W/k, )(s —1)].
Further, it may be readily seen from (14) that

in agreement with (20).

IV. MOMENT EQUATIONS: STOCHASTIC MASTER

EQUATION

The stochastic equation (13) may be written in
the form

SP(n, t)
t

= (A —C)[(n —l)P (n —1)—nP (n)]

s-" j.
(18)

+B[n(n+ 1)P(n + 1) —n(n —l)P(n)] .
(25)
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Multiplying both sides by n" and summing over n
we find (n") = Q (n)'S;,», (34a)

) = ((4 —C) g P(n)[n(n+1)» —n»"]
~t

+B P P(n)[n(n —1)"'—(n —1)n '], (27)

S~ „being the Stirling numbers

n

S...=-(nl) ' Q (-)" '(l)&'
1=P

(34b)

=(A —C+B) k(n)+ (n" ')
~t 2I

k(k-l)(k-k), ,
)3f

k k-1-B kn '+- n

k(k —l)(k —2)
'3f (28)

In particular, we find for the first and second
moments,

s(n) = -B(n') + (A. —C +B )(n), (29)

and,

where we have made the simple changes of vari-
ables n- n+ 1 and n n —1 in the first and third
terms on the right-hand side of (26). Expanding
(27) by the binomial theorem we readily obtain

We have thus obtained a factorization scheme
which provides a truncation of the hierarchy (27)
at any given order, comp'atible with a Poisson
distribution. The equations (33c) and (33d) may
be shown to satisfy (29) and (30) in the steady
state.

As we have indicated earlier, Eq. (26) and the
general Sculiy-Lamb equation (which we shall
introduce in Sec. V) are not the same. The
Scully-Lamb equation describes intermediate as .

well as high photon numbers and gives Poisson
statistics only far above threshold, ' while the
truncation (33) gives a Poisson distribution at
each step of the hierarchy (28). An exact calcula-
tion of the second and third moments for the
Scully-Lamb case yields a possible truncation
which agrees with (33) only at very large photon
numbers (A » C), differing results being obtained
at intermediate photon numbers. This is explored
in greater detail in the next section.

8 n2

8t
= -2B(n') + (2A. —2C+ 3B)(n~) + (4 —C+B)(n) .

(30)

In order to suitably truncate these equations, we
return to our analysis of Sec. III, in which it was
seen that all the higher moments could be calcu-
lated from the generating function (14). In par-
ticular, (n) and (n') are given by (18) and (19).
It may be seen that

V. MOMENT EQUATIONS: SCULLY-LAMB RESULTS

In the Scully-Lamb theory, the atoms and the
light field are both described quantum-mechan-
ically, cavity losses due to damping being intro-
duced phenomenologically as nonthermal res-
ervoirs. A microscopic master equation is ob-
tained for the coarse-grained density operator,
the atoms being eliminated adiabatically. This
equation is'

$3+
= (n') —3(n') + 2(n),

which using (19) gives

(n') =(n)'+3(n)'+(n) .

(3 1)

(32)

1+—(n+1)) (m+1)k„„

l
+A 1+ —n np„, „,

(n') = (n) '+ 10(n)'+ 25(n)' + 15(n)'+ (n),

(n~) =(n)~+6(n)'+7(n)'+(n),

(n') = (n)'+3(n)'+(n),

(n') ={n)'+(n) .

(33a)

(33b)

(33c)

(33d)

This procedure demonstrates ho.v any moment
(n") may be expressed in terms of the factorized
moments (n)» for the solution (17). We write
down the first five:

—Cnp„„+ C(n+ 1)p„„„,„, (35)

where we restrict ourselves to the diagonal rate
equation, the constants A. , C, B having been de-
fined earlier. We now expand this equation to
first order in B/A. and, analogous to the pro-
cedure used in deriving (28), we may write down
an equation" for (n»):

In general we have —B((n ")+ 2(n" ) +(n'))], (36)
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which leads to

s(n& = -8(n') + (A —C —28)(n) +A —8,
8 2

8$
= -28(n') + {2A —2C —58)(n')

(37)

&"'&=lac/i ' Bc/i 8 '8 Bc (43)

Equations {42) and (43) do not satisfy Eqs. (37)
and (38) in contrast to the preceding case. This
discrepancy has been observed in a numerical.
calculation" in which a different truncation,

+ (3A + C —48)(n) +A B.—
In the classical limit we assume (n'&-(n)' in (37),
which leads to the solution (20) for (n). However,
we cannot~ I general, q

assume all the higher
moments to be factorabl. e, and a suitable trunca-
tion must be found.

Ne return, therefore, to the full Scully-Lamb
equation {35)whose general solution is'

n+A /8
g 1

BC ~+Z S I'
%'lth

k) ( )k t 1 ) ( $&1/0

2 -I)
has been used. It may be seen from the above
that the truncation of the hierarchy (36) does not
give Poisson. statistics except for large n. This
is because at intermediate photon numbers, the
Scully-Lamb solutions correspond to a mixture
of coherent and chaotic light. This difference in
the two approaches is further elucidated by a
calcuiation of (n')s„ for the Scully-Lamb case
using (44). We have from (37) in the steady state

(n& =A'/BC, (40) A. -B A. -C —28
(n') = — + (n) (45)

for strong signals (A » C), Z being a normaliza-
tion constant. We now consider the third moment, A.= —+ (n)', (46)

g2 n+A /8
&"'&=~ '~"'

BC (n, A/8)l

(n+A/8) l

+3li-, i In+-ii .
Consider the term

"~'iiB) (.",'A/8). ABC

1
(n+A/8) l

'

(41)

where we have used (20). Now, the prescription
(44) gives

(n'& = (2(n')" - (n) )', (47)

We now neglect A/8 compared to (n)' (a typical
set of numerical values gives A/8 = 300, (n) = 5. 0)
which reduces (48) to

(n'&si = 3(n)'+ 2(n&' —4(A/8)(n) .

Comparing this with our result (33c) we find

&n'&sL = 3(n'&st-k ~

which using (46) becomes

(n') s~ = 8(A/8 + (n)')' 2 —(n&' —4(n& (A/8 + (n)')

+ 2{n&(A /8 + (n) ')" . (48)

t'A'
&" &=iiBc ' &Bc 'Bc' iiB Bc

-8 -3BIBC) -'8 i&BC/i (42)

and a similar calculation gives

This may be written as

(A2 R+A/8 1 A2 ) A 2

3Z ' ~ (n+A/8 —1)l ABC aC) a

='i(B) Bc
The remaining terms in (n') are similarly treated
giving final. l.y

A similar calculation gives

{n4)sz = 185 921(n4&s~ock ~ (51)

The difference in the hierarchies (28) and (36)
thus appears first at the third and fourth moments
for intermediate photon numbers.

Let us now consider the Scully-Lamb moments
in the strong-signal limit. Using (40), the moment
equations (42) and (43) may be cast in the form

(n'& = (n)'+ 3(n)'+ (n) + 3(C/A)'(n)s

—(C/A)'(n)' -3(C/A)(n)' —3(C/A)(n)',

(52)
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{n') ={n)'+{n)+(C/A)' {n)' —2(C/A){n)'. (53)

(54)

Far above threshold, we have A&& C and Eqs.
(52) and (53) reduce to our Poisson equations
(33c)-(33d). In fact, we may generalize this pro-
cedure by noting that the distribution function (39)
may be written in the form

{n)~+&/s ( {n)n+A/B
Pn

(n+A/B)! l (n+A/B)! j
where (40) has been used. Let N be the number
of photons in the cavity far above threshold (!V

need not be the total number of photons), i.e.,
N»{n), {n) being the threshold photon number.
Then we have

25

z 20
V
o l5

IO

5

LO Gi (NP
FIG. 2. A similar plot for the third moments, these

being given by Eqs. (33c) and (45) (with the same values
of A/B).

N+A/B = N+(C /A) n{) =14,

so that

(55)
classical quantities as the photon number becomes
larger.

-&nr&{ )E
(56)

This is, of course, the Poisson result as has
been obtained from the solution (17) of our master
equation. Thus we see that at very large photon
numbers, the agreement between the fully quantum
microscopic theory of Scully and I amb and our
macroscopic semiclassical theory is exact, this
being the first time that such a comparison has
been made for a stochastic description of the
type developed in Sec. II.

The above results are further illustrated by the
graphs of the second, third, and fourth moments
for the two theories shown in Figs. 1-3. In each
figure, the semiclassical. quantity is plotted
together with the corresponding moment obtained
from the Scully-Lamb hierarchy (36) for different
values of A/B The disc. ontinuity in the Scully-Lamb
moments occurs at threshold where {n) -A/B.
High above threshold the Scul'1y-I amb moments
are seen to merge with the corresponding semi-

0'gn

P(n, t) = df; f(f, t) . - (57)

We substitute this into the master equation (26)
and integrate by parts, assuming f and its deriv-
atives to vanish on the boundaries. As an ex-
ample, we shall consider in detail the term

Q = (n —1)P(n —1),
which, using (57), becomes

-& gn-&.

&&
= (~ - & & J A „~,/(K, &&

-0 gn- j.
=n(n -1) df, f(&, t) .

(58)

(59)

VI. COMPARISON OF THE FOKKER-PLANCK EQUATIONS

As mentioned in Sec. I, the Fokker-Planck
equation is obtained from the discrete master
equation by effecting the transition to continuous
variables. In order to derive a Fokker-Planck
equation from the semiclassical master equation
(26), we expand' the probability P(n, t) in a
Poisson distribution,

25.
A,"z 20.
~o

l5

Io

(0)

We now integrate this by parts, obtaining

A,

v'0
O

()2o
0 2 4 6 8

L. O G gN)Io
FIG. 1. Logarithmic plot of the second moment (n )

of the photon number vs the average photon number (n)
for (a) the semiclassical result [Eq. (33d)] and the
corresponding Scully-Lamb expression fEg. (46)] for
(b) A/B =106, (c) A/B =50000, (d)A/B =1600, (e)

A/B =100.

to

4 6

LO G gN)

FIG. 3. Plot of the fourth moments for the same
values of A/B.
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BP(n, t) 1
~t 2

[d —C-t)(n(*)np)t n. n.)
Integrating by parts again, we find

&f- 2&—- 2f+ 2—+f, . (60)
e t" Bf Bf B2f

nt eg eg eg'

The remaining terms in (26) are similarly treated,
giving finally

Bf B 82—= - —[(A —C -Bg)fg]+, [(A —C -Bq)fq~.Bt Bf Qf2

(61)

We now make contact with the coherent-state
formal. ism" by setting

Q2+

Q

This equation does not involve a series truncation
of the type encountered in conventional Kramers-
Moyal type approaches. Also, the expansion (68)
in terms of coherent states is convenient since
the Scully-Lamb equation (35) may be written in
operator form. ' Further, (69) is valid in the
strong-signal region, since we have assumed the
photons to be in coherent states. The solution to
(69) is given by

so that

(62)
a-c a

P(n) =N'exp n*n ——(n*n)'
~ .

A. 2A ] ' (70)

0 8 9—=a ' +a*'

and

B
t'

B B~
). dt 1

We then find from (61),

(63b)

A comparison of Eqs. (64) and (69), or alterna-
tively, of solutions (65) and (70), shows them to
be identical up to a normalization constant. As
mentioned earlier, the Fokker-Planck equation
constitutes a,n exact asymptotic representation of
the discrete master equation, so that our original
Markovian equation (26) is, indeed, completely
equivalent to the Scully-Lamb equation at large
numbers.

A-C
f(n) =X exp n*n ——(n*n)'

~ .
A. A. i ' (65)

Starting from (65) and using the normalization

d*nf(n)=l=nf dnf(n), (66)

we readily find R = (2/w)(B/))A)" far above thresh-
old, where we assume the quadratic term in the
exponent of (65) to be the dominant one. The
variance calculated from (65) is

((iln)') =nf dn(n —(n))'n(n)t(n), (67)

which may be shown to be Poisson far above
threshold.

Let us briefly return to the Scully-Lamb theory
and consider Eq. (35) expanded to first order in
A/B. By expanding p(t) in coherent states, "

Bf B Bmf
[(A-C Bi ni') n-f] +cc. +2A

~t ~a* ~A*~Q

(64)

The steady-state solution to (64) is

VII. DISCUSSION

We have shown in this work that a macroscopic
master equation of the form (26) gives an adequate
description of the laser far above threshold, the
results being compatible with the strong-signal.
Scully-Lamb theory. It has been shown that the
Scully-Lamb steady-state solution, as well as
the higher-order moments, tend to the semi-
classical values obtained from (26) at large photon
numbers. The comparison between the two theo-
ries becomes far clearer at the level of the
Fokker-Planck equations, which are seen to be
the same in both cases (up to a normalization
constant) and which, moreover, are exact asymp-
totic representations of the master equations.
Further, it has been pointed out that the master
equation approach of Sec. II is the only formula-
tion that is rigorously valid near a critical point,
so that we have here a very simple method which
may be applied to a rigorous macroscopic treat-
ment of systems in which a microscopic formula-
tion is not possible.
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