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Temperature effects in photodetection

Annabella Selloni
Laboratoire de Physique Theorique, Fcole Polytechnique Federale Lausanne, CH-1006 Lausanne, Switzerland

P. Schwendimann
Institut fur Theoretische Physik, Universitat Bern, CH-3012 Bern, Switzerland

A. Quattropani
Laboratoire de Physique Theorique, Ecole Polytechnique Federale Lausanne, CH-1006 Lausanne, Switzerland

H. P. Baltes
Zentrale Forschung und Entwicklung, Landis 4 Gyr Zug AG, CH-6301 Zug, Switzerland

(Received 6 March 1978)

We present a theoretical study of photodetection with coupling of the photosensitive atoms to a reservoir.
We investigate the efFects of nonzero detector temperature, where the initial thermal-equilibrium occupation
of the atomic levels and the thermalization of the radiation field interfere with the measurement of the
photon statistics. We derive formulas exhibiting the temperature dependence of the field dynamics, the
relationship between field and atomic moments, and the photocounting probability. We present examples
illustrating how the coherence properties of the incoming field are affected by the detection process in the
presence of thermal noise.

I. INTRODUCTION

Widespread interest in developing photoelectric
detection techniques ha, s led to numerous theoret-
ical as well as experimental investigations of the
relationship between the photocounting data and
the statistics of the incident radiation. ' ' In. par-
ticular, , the quantum treatment of the detection of
electrom3gentic fields, initiated by Glauber' and
Kelley and Kleiner, ' has been largely developed
during the last decade."' " Qne interesting
aspect that has so f3r received little comment is
the influence of the "detector temperature": How
does the initial equilibrium occupation of the de-
tector levels and the corresponding thermaliza-
tion of the radiation field interfere with the mea-
surement of photon statistics'? How does the in-
itial state of the detector affect the field attenua-
tion' ' and the relationship between field and pho-
toncurrent statistics? These problems are stud-
ied in the present paper.

Conventional perturbation theory' ""neglects
virtual transitions and requires a reservoirlike
behavior of the field since the field attenuation is
not adequately described. More powerful pro-
cedures such as the Heisenberg equation of mo-
tion" and the master equation' fully account for
the field attenuation, but require the atomic sys-
tem to act Bs a reservoir. Temperature effects
can hardly be studied in the framework of these
theories. We therefore apply the open-system de-
tector scheme introduced in our previous paper"
(referred to as Paper I in the following), where

not only the field attenuation, but also the relaxa-
tion of the photosensitive atoms is adequately ac-
counted for. Besides incorporating the previous
theories, the model of Paper I is well suited for
developing a theory of photodetection for any "de-
tector temperature" fixed by the initial state of the
detector characterized by the number of excited
atoms.

The theory of photodetection presented in Paper
I was based on the assumption that the photosen-
sitive atoms are initially in. their ground state.
This choice is equivalent to fixing the detector
temperature at zero. In this paper, nonzero de-
tector temperature is introduced as a parameter
which measures the number of excited atoms in
the initial state of the detector. We have in mind
here an effective temperature describing not only
thermal effects, but also any source of atomic ex-
citation. Being maintained by interaction of the
photosensitive atoms with a reservoir, the initial
number of excited atoms corresponds to the "in.-
trinsic dark current" of the detector. The fluctua-
tion of this number constitutes the "intrinsic
noise. " Since zero detector temperature cannot
be achieved experimentally, it is of interest to
know how this intrinsic noise interferes with the
detection process.

We refer to Paper I as for the description of our
detection scheme and a more comprehensive dis-
cussion of the different detector models and list
of references. Our main objective here is to es-
tablish the relations between atomic and field
moments, as such relations are known" to deter-
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mine the transfer of the statistical state of the in-
coming field to the detector signal. The derivation
of the relationship in question is technically invol-
ved if we use the master-equation technique of
Paper I. In the present publication we rather fol-
low a different approach based on Langevin equa-
tions. We apply the Langevin approach to the
monomode pointlike Dicke model" with atoms un-
dergoing relaxation due to interaction with exter-
nal reservoirs. The resulting equations corres-
pond to the well-known" Langevin equations de-
scribing the monomode laser without field losses.
The equations for the average of atomic and field
variables as derived from the Langevin equations
agree with those obtained from the corresponding
master equation. This link between the two de-
scriptions is well-known from the laser litera-
ture. " Our model turns out to be formally identi-
cal to that of a laser working under the unusual
condition of very small amplification. Therefore
we do not reproduce the well-known description
of the field here, but rather exploit the relation
between atomic and field variables.

In Sec. II we derive the relations between atomic
and field moments. These relations are basic to
the derivation of the photocounting probability
presented in Sec. III. Specific applications of the
counting probability are discussed in Sec. IV.

II. LANGEVIN EQUATIONS OF MOTION

A. Field equation

each atom has its own reservoir and the various
reservoirs, though identical, are independent;
(ii) the forces on a single atom are Gaussian 6-
correlated random functions with

&(,"')„=o, &k „"'(t) h."'(t')) = 2D„,8(t —t'), (2 4)

( ~ ~ )s denoting the average over the reservoir
state; and (iii) the values of the constants D,„ in
Eq. (2.4) can be determined by applying the fluc-
tuation-dissipation theorem to the equations of
motion without atom-field coupling terms: the
properties of the reservoir are not affected by
the X-coupling.

In particular, we have

(2.5)

&f„(t)f„.(t'))s = y(1 —o.')&(t —t') . (2.7)

Here o, =—-tanh(-, P&) is the expectation va, lue of the
population difference operator s„. and q is the en-
ergy spacing between the two levels of each atom
and P= (ksT) '. In contrast to laser theory no field
losses are assumed here.

By a well-known procedure, "namely, the lin-
earization of the atomic Langevin equation (2.3)
around the stationary solution, from Eqs. (2.1)-
(2.3), we can derive a closed-form equation of
motion for the field variables. This equation exhi-
bits the damping and the fluctuations of the field
produced by the coupling to the atoms, viz. ,

We consider the monomode pointlike Dicke mo-
del at resonance with the atoms coupled to exter-
nal reservoirs at temperature 7+0. In Paper I
we discussed why this model is an appropriate
description of a photodector.

The reservoirs are responsible for .the atomic
relaxation and for the stochastic forces occuring
in the Langevin equations of motion, ""viz. ,

a, = -&at+gt,

where

and

-i/2 Wgt= —zXV
t

-w(0 t~
)y (tI) d-tI

(2.8)

(2.9)

(2.10)

d =-iyV '"g s, iyV '"=—S, (2 1)
Equation (2.8) is obtained introducing the same ap-
proximations as in I, namely,

s,. = -y s,. + 2i X V ' ~' s„a+f, , .(2.2)
X(N/V)"' «y (2.11)

s „.= 2y(s„. —zaJ+iXV '~'(a' s,. —s',.a)+f„,
(2.3) g»y'. (2.12)

with a' denoting e.m. field operators and s',. and
s3 atom ic operators referring to atom i. The
dipolar coupling constant X does not depend on the
volume V. By $"'-=P;,f, ,f„.twe denote the sto-
chastic forces on the ith atom, The description
of a deadtime effect, namely, the deadtime rela-
ted to the extraction of excited atoms, is included
in the atomic relaxation. constant y.

We make the usual hypotheses, namely, (i) the
forces on different atoms are uncorrelated, i.e. ,

With S„substituted by its stationary value &No'p,

Eq. (2.8) is thus equivalent to a linearization of the
equation of motion for the field operators a„a+,.

The equation of motion for the moments of the
field reads

dt
—&a~a ), =-2«m&a' a"), + 2«m'n&a' 'a '),

where n is the thermal equilibrium expectation
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value for a'a and ( ~ ~ ) denotes the average over
the states of the total system (atoms, e.m. field,
and reservoirs). For zero temperature Eq. (2.13)
reduces to the equation of motion (26) in I.

Introducing Glauber's coherent- state represen. t-
ation, the solution of Eq. (2. 13) takes the form

(a'"a )»=m!n» d'n Wo(n)L
Jet)'
nt

(2.14)

where W,(n) —= W, ,(n) is the statistical field dis-
tribution at time t= 0 and L denotes the Laguerre
polynomial of order m In.Eq. (2.14)n, =»»(I —e» ~")
and ( n, (' =

( n ('e ' '"". For t »»» ', Eq. (2.14) re-
duces to the thermal equilibrium value, i.e. ,

(a' a )» = m!n
t»K -1

Thus ~ ' measures the thermalization time for the
field. We recall that the temperature enters Eqs.
(2.13) and (2.14) not only through F7, but also
through the attenuation constant w ~-cr0. We also
recall that the temperature entering n an.d ~ is

fixed by the reservoirs, which are not necessarily
thermal baths.

((S')"(S )"), -=»!
JgfJ 2 il ~ ~ ~ SJP

(S +.
»

S+,z
' ' ' S . „S.„~ ~ ~ S .

» )» .

(2.15)

For technical convenience we evaluate (2.15) using
the equation for s',. in its integral form

t
s' =Z'. ~2izv'" - ""s. ,a', dtf, t i, t 3i, t' t'

(2. 16)
S.+ S

Separating s',. into a free and an interacting part
as indicated in (2.16), for the first moment
(S'S' ), =Z,.(sts,.)» we obtain

B. Connection between atomic and field dynamics

In order to relate the photon and the photoelec-
ron statistics, let us consider the moments of the
atomic variables

t t
(s'.s.), = (II»),»2+iXV't' e ""''(s'. ,s, , a, , ) —2iXV'»' e "" ''(a', ,s„,s, ,)

0 0
(2.17)

4X'V ' e -r(t-t ) -y(t-t" )r +e (a.'sz». » sz», »
~ a»").

We have now to determine the form of the correla-
tion functions (s', ,s„,a, , ), (a', ,s„,s, ,), and
(a', ,s„, s„. ,„a, ). For the latter expression, in
agreement with the linearization leading Eq. (2.8)
we obtain

(s',.s,.), = z(l+ oJ+N 'g(a'a —»»)»

. and thus

(2.20)

The substitution of (2. 18) and (2.19) in (2.17) leads
to

( + 2/ +a, ,s, , s„, .a,„)=&o, (a,,a,„). (2.18) (S'S ), ——(1+oz)—:(Nz), —Nz, = f(a a n)»,

In order to evaluate (s', ,s„,a, ,) or, equivalently,
(a', ,s„, s, ,) we must take into account the fol-
lowing two conditions. (i) For t = t' we must sat-
isfy the relations

(S~»sz»a)» = —z (S;a)» ~

(2.21)

where N2 denotes the excited-atom-number op-
erator, N, „=z»V(1+ a,) = (—nero) is the average
number of excited atoms at thermal equilibrium,
and

(a's„.s,.),= - z (a's,.), ,
K = 0o(—oo) = &y (2.22)

which can be derived using the well-known. prop-
erties of the atomic spin operators (s', ,.) =-,'-,

(s,'.s„.)=--,'(s',.), etc. (ii) For ~!t —t'
~ »y ', s„. ,„

an. d s', , are uncorrelated, i.e. , they have their
stationary (t, t' »y ') values averaged over the
atomic and reservoir states; in this limit s3
becomes 2cr0 and s', , becomes +iXV ' '00a'„ to
lowest order. We can satisfy both conditions by
as sumlng

(a»,szt »»)
s——z (a»s»)e

(2.19)

I ~t2g e 2Kt

Fl(1 —$0e

(2.23)

In (2.20) memory effects are neglected in agree
ment with the condition t» y '. The higher-order
factorial moments (N,'"'), =(S S ), are evaluated
in the same way. In terms of the coherent state
representation for the field variables, we finally
obtain



18 TEMPERATURE EFFECTS IN PHOTODETECTION 2237

with W, (o.) denoting the initial field distribution
as introduced in Eq. (2.14).

III. PHOTOCOUNTING PROBABILITY

N„(to, to+ v) = 2y (N, ),dt. (3.1)
to

The corresponding factorial moments, a,s shown
in Paper I are given by

N „'"'(tO, t0+ T)

to+a
= (2y)" dt ~ ~ ~

to+7'

dt„'(N, , (N, , —1) ~ ~ ~

(N, ,„—v+ 1)).
(3.2)

)

The integral in Eq. (3.2) is evaluated by general-
izing the relation (2.24) to different times. As al-
ready discussed in I, the Markovian property of
the field and atomic process is essential for this
generalization.

By straightforward integration of (2.23) we ob-
tain N„'"' in terms of the initial field distribution
W, (a), viz. ,

N("'(7) = v! u" d n Wo(n)L„
qfn~2

The essential observable in a photocounting ex-
periment is the number N, of excited atoms. We
calculate the photocounting probability from the
fa.ctoria, l moments of the number of photocounts in
the time interval to&t &to+ T whose average value
is defined as

t p+7'

p(„'" '( ) -f e' tp, ( )e"
) (3.6)

but with temperature-dependent attenuation factor
epe,

We remark that N„"' is the leading term of
Eq. (3.3) for ()7~o.'~ /u)»1, i.e. , in the limit of
large signal-to-noise ratio. Thus from Eq. (3.3)
we obtain the deviation from the noiseless detec-
tion procedure to a,ll orders of noise-to-signa. l
ra.tio, viz. ,

N„'"'= d'n 8', o. g" a '"

u (( ux 1+v', +0
}II o.'I ((})I o.'! )

From (3.3), we now construct the generating func-
tion

q(x, ~) = g —,( x)"N„"'(7)

=(I+xu) d a W, (a) exp—-1 2 Xgfa(2
1+xu

(3.7)

N, (n) =—N, ( a) N—,(n = 0),
where by N, (n) we stress the dependence of the
number operator N, on the field amplitude. N, (o.)
is the occupation number operator biased with re-
spect to zero incoming field; it may be interpreted
as the noise-free occupation number operator.
Proceeding as before we obtain. the well-known
expression"

}!=1 —exp(-2}t~), (3.3)

where we have chosen to= 0, where v is given by
(2.9), and

u = 2y7N2 „-gn (3.4)

N„(7.) = u+ }!(a'a), . (3.5)

Thus u can be interpreted as the average number
of photocounts due to the thermal noise. We note
that u is made up of two terms: the first term is
due to the stationary flow of excitations froID the
atomic system to the reservoir while the second
represents the thermal emission of the atoms in-
side the cavity.

In order to connect the result (3.3) with the
usual formula for the moments, we consider the
integrated moments of

with N, „=--nop denoting the number of excited
atoms in thermal equilibrium. We observe tha. t
u is always positive because of y»~p. The average
number of photocounts (v=1) reads

which finally leads to the photocounting probability

p(e, e}= fe'e tp, (e) „., exp ——
u" 7!!o. ['

1+u "" 1+u

'(-:(',".
)) (3.8)

We point out that this result has been derived
without imposing any restriction. on 7. The form-
ula. (3.8) can be directly applied to experimental
counting r ates provided that the time interval 7

used in the experiment has been judiciously chosen
small compared with the coherence time 7., of the
in. tensity fluctuation. In order to account for cor-
relation effects in the case 7. ~ v., the experimenta, l
data must previously be processed in the spirit of
Refs. 18 and 19.

We note that Eq. (3.8) is analogous to Eq. (43)
in I, but with the Poisson, distribution substituted
by the convolution of a Poisson with a Gaussian.
distribution of width u. Indeed, in the limit of
zero temperature, u - 0 a,nd
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tt
~
~ (2'

P(n, T) — d a W,(n), e " (3.9)
tion, 2aor « I, R„=—(q/qo)"q„reduces to

R =1 —2vn+p yKO (n/iQoi ). (4.3)
which is the result of I. For zero field intensity
(o. = 0), from (3.8) we obtain the photocounting
probability of the dark current,

p(n, ~) = u"/(1+u)"", (3.10)

IV. APPLICATIONS

which corresponds to the statistics of a thermal
field with mean occupation number

In order to get more insight into the physical
meaning of (3.8), let us assume that the incoming
field is a coherent field with an initial distribution
W, ( )o= 6"'{n—o.',). In this case (3.8) reduces to
the well-known" photocounting distribution for the
superposition of a coherent field and a Gaussian
field. We thus arrive at the following interpreta-
tion of the detection. process at finite temperature:
the detector acts as a source of an. intrinsic
Gaussian field, which is coherently superimposed
to the incoming field. The mean number of pho-
tons of the intrinsic field is given by Eq. (3.4) and
depends on the number of thermal photons n, on
the corresponding unsaturated inversion 0, and on
the decay constants of the atoms-reservoir and
atoms-field interactions. Of course the model
becomes meaningless in the limit v, -o. In this
case the system is initially in a highly excited
state and, as is known from laser theory, "a
linear theory is invalid.

B. Chaotic radiation

We continue with Gaussian distributed fields
characterized by

W, ( )o=(mX) 'exp( —
~

n ~'/X) .

The corresponding factorial moments read

N„'"' = v! (u+ qX)"

leading to

q, = (1+u/r!X)".

For qX»u, n«1, and 2K''«1, we find

R„=1 —2vn+ vyxo'(n/X) .

(4.4)

(4.5)

{4.6)

(4.7)

C. Superposition of coherent and chaotic radiation

Let us now finally consider the superposition of
a coherent field of intensity

~

o'. , ~

' with Gaussian
radiation of intensity X, as described by

'The temperature effect manifests itself in R„
through n, the photon number at thermal equili-
brium. For example, the measurement of the in-
tensity (v= 1) of a CO, laser beam (wavelength
10.6 pm) with the detector at room temperature
is found to be affected by a relative error of about
2 0 ~

Let us now consider a number of specific statis-
tical distributions for the incoming field. For for-
mal simplicity we restrict our discussion to the
factorial moments N„'" '(w) as given by Fq. (3.3).
We compare the cases of zero and nonzero detec-
tor temperature in terms of the ratio R„

N„'" '(7 , n)/N„'"'—(T";n = 0). We consider also the
ratio q, =N~" '(T)/N~"'(T) which is a measure of
the deviation from a zero-noise detector. The
ratios q„and R„are related by q„/R„= (qa/q)",
where g, is the attenuation constant at zero tem-
perature. Particularly simple results are found
in the case of low temperature, i.e. , n «1, and
small attenuation, i.e. , 2~,v. «1.

W, (n ) = (vX) ' exp(-
~

o. —n, ~'/X) .

/

/

/
Rp

Ri

/

I

(4.8)

A. Coherent radiation

Let us begin with a coherent incident field of
intensity I uo I' leading to

q„= v! (u/q i o., i')"1.„(-q i n, i '/u) .
For large intensity 7! Io.', I'»u we have

q, =—1+ &(u/7! I o., I') .

(4.1)

(4.2)

For low temperature, g«1, and small attenua-

0
0 .5

FIG. 1. Relative factorial moments &f y +p +6 plotted
against the average thermal photon number n with 2'y7'= 10
(2~0~) = 10 for Gaussian field with 9L= 10 (dashed) or
+=10 (dot-dashed), coherent field with ~&0~ =10 (full),
and their superpositions (same full curves).
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Rp

R, Q6 r
j

I
Q2 /~

/

~ 5

0
.5

0
0 .5

FIG. 2. Same as Fig, 1, but 2p7'=10(2&07) =10 for
Gaussian fields with 95 =100 (dashed) or @5=10 (dot-
dashed) and coherent field with leo~ = 10 or superpo-
sition field (full).

FIG. 4. Relative factorial moments Q&, Q2, Q&, for
2&~=10{2ic07')=1: Gaussian fields with %=100 (dashed)
or K =10 (dot-dashed) and coherent field with ~&0~ = 105
or superpositions (full).

For this distribution we obtain

In the limit q i no i

'» gX» u we obtain

Q„=1+v'(3I/i o., i')+ v'(u/pi n, ').
Thus for n«1 and 2vo7'«1, R„reduces to

(4.10)

+v'(3I/io. , i') —2vn +v'ylI, '(n/io. , i').
(4.11)

R6

R2

, 5

0
0

FIG. 3. Same as Fig. 2, but 2p7'=10 {2&07')=1.

D. Numerical examples and discussion

In Figs. 1-4 we compare the temperature effects
on the factorial moments for Gaussian, coherent,

and mixed incident radiation. 'To this end we plot
the moment ratios A„(Fig. 1-3) and Q„(Fig. 4)
given by Egs. (4.1)-(4.11) as functions of n. We
recall that 8„ is defined with respect to the limit
of zero temperature, whereas Q„ is defined with
respect to noiseless detection, but accounting for
the temperature dependence of the attenuation fac-
tor q = 1 —exp( 2&T)-

The figures are organized as follows. A fixed
value of the damping parameter 2lc07 is chosen for
each. figure, viz. 2~,7'=10 for Fig. 1, 2~,v=1 for
Fig. 2, and 2&,7= 0.1 for Figs. 3 arid 4. In agree-
ment with the model condition y» vo, the atomic
relaxation parameter 2yv' is always chosen ten
times larger than 2&,7'. Each figure shows three
plots of the moment ratios corresponding to the
order v= 1, v= 2, and v= 6, respectively.

Each plot displays curves corresponding to dif-
ferent incident fields, namely the Gaussian fields
with X = 10, 100, and 1000, the coherent field
with in, i'= 10', and the superposition of the co-
herent field with

i uoi
'= 10' and the Gaussian

fields with X= 10, 100, and 1000. The coherent
field and the superposition fields lead to closely
similar results which cannot be distinguished in
the plots. The physical realization of the above
fields is discussed in, e.g. , Ref.18.

Figures 1-3 illustrate how the photoelectron
moments are increasingly affected with inc reasirig
temperature (measured by n) and order v.

From Fig. 4 we learn that the deviations from
ideal (noiseless) detection are negligible in the
case of coherent or superposition sources with

i n, i'a 10'. This result is due to the very large
signal-to-noise ratio occuring for reasonable tem-
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peratures. In this case we are entitled to use the
classical formula for the photocounting probabil-
ity, provided that we insert the appropriate (tem-
perature dependent) attenuation factor q. Apprec-
iable deviations from the ideal moments, however, '

occur in the case of Gaussian fields with X & 100.
In the low-temperature limit rT/X«1, the corres
ponding curves show the linear behavior of the
relative deviation Q„—1 ~ vn.

To conclude, we recall that three interrelated
parameters are essential in our analysis of tern-
perature effects in photodetection. These are the
temperature dependent attenuation factor g, the
average noise intensity u, and the average ther-
mal photon number E measuring the effective tem-
perature. The general result (3.3) presents the
deviatioos from noiseless detection in terms of
polynomials of u.

In the case of very large signal-to-noise ratio,
the effects of the intrinsic thermal noise are es-
sentially described by the temperature dependence
of the attenuation constant g. Allowing for the
temperature correction of 7j, we can interpret
counting experiments in terms of the usual form-
ula. The resulting counting statistics is, however,
modified in the case of smaller signal-to-noise
ratio, where the dependence of both g and u is es-
sential. The corresponding experiments have to
be interpreted in terms of the complete expression
(3.3)

We finally remark that the thermal effects in
photodetection are likewise important in the case
of low temperatures (n«1) in the case of extreme-
ly small signal-to-noise ratio as can be inferred
from the third term on right-hand side of Eqs.
(4.3), (4.7), and (4.11), i;e. , for ~n, ~'«n or Z «n
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