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The resonant radiation due to the coherent excitation of the electric dipole moments of the atoms which are
embedded in a host medium with real dielectric constant e has been studied. These dipole moments are
induced by the electric field of a relativistic charge particle moving through the resonant medium. In this

context, coherent excitation refers to the correlation of phases of the dipole moments, which are induced by
a single relativistic charged particle. The phases of dipole moments which are induced by different charged
particles are, of course, uncorrelated. The density K of the embedded atoms in the host medium is assumed

to be sufficiently small so that K)a(ce„)~&1, where a(ce„) is the polarizability of the atoms at the

resonance frequency co, . Under this assumption, the electric field acting upon each atom is approximately

equal to the electric field of the incident relativistic charged particle. This field is analyzed into its frequency

spectrum and the effect of each frequency component on the embedded atoms is determined, Expressions for
the fields, far away from the resonant medium, and the radiated energy are derived for transitions between

bound states. Two cases are considered. In the first case, it is assumed that f = {1—cP') '" is real, where

P = v/c, v being the velocity of the incident charged particle and c the velocity of light. It is shown that if
f & 1, the radiation is emitted in the direction of motion of the incident charged particle. In the second case,
it is assumed that f is imaginary. Since the Cerenkov condition is satisfied, i.e., P~e) I, there is a
primary Cerenkov radiation in the host medium which excites coherently the embedded atoms at their
resonance frequency, In spite of the fact that both the primary and stimulated radiations are emitted in the
direction of the Cerenkov cone, it is shown that it is possible to detect the presence of the latter because of
the finite lifetime of the embedded atoms. Therefore, the possibility arises for the manifestation of their
coherent excitation by relativistic charged particles.

I. INTRODUCTION

This paper is concerned with the radiation due
to the coherent excitation of the electric dipole
moments of the atoms which are embedded in a
host medium with real dielectric constant &.
These dipole moments are induced by the electric
field of a relativistic charged particle moving
through the resonant medium. In this context, co-
herent excitation refers to the correlation of the
phases of the dipole moments which are induced

by a single relativistic charged particle. The
phases of dipole moments which are induced by
different charged particles are, of course, uncor-
related. In a previous paper, ' the generation of
coherent x rays by a relativistic charged particle
moving through a crystal was studied and it was
shown that the coherent radiation is emitted very
close to the Bragg directions. The basic assump-
tion in that paper was that the density K of the
atoms in the crystal is such that K~cr(to)~«1,
where n(to) is the polarizabi1ity of the atoms. In
this case, the electric field acting upon each atom
is approximately equal to the electric field of the
incident relativi. stic charged particle. This as-
sumption is valid for x rays, but it is not, in gen-
eral, true for light frequencies if the density Gt, is
that of the atoms in a. crystal (i.e., X-10"atoms/
cm'). On the other hand, in a resonant medium

the density Bt, of the embedded atoms may be suffi-
ciently small (e.g. , K-10"atoms/cm') so that the
above assumption is valid for light frequencies.
In such a case, the electric field a.cting upon each
embedded atom can be taken approximately equal
to the electric field of the incident relativistic
charged particle. Based upon this assumption
then, the characteristics of the emitted coherent
radiation, namely, the radiation pattern, the be-
havior of the radiation fields in the time domain,
and the radiated energy, for resonance frequencies
in the optical region, will be presented in this
paper. It should be pointed out that extensive
work' "has been done in the past, on the problem
of an incident charged particle in a dielectric me-
dium. This work refers either to the energy loss
per unit length by the charged particle or to the
density effect." The theory which relates the
work in this paper with the work that has been
done in the past is presented in the Appendix. It
is shown there that the coherently radiated energy
and the absorbed energy by the embedded atoms
in the resonant medium, under the influence of the
external electric field of the incident charged par-
ticle, are distinct physical quantities. The total
energy supplied by the incident particle is equal
to the sum of the coherently radiated and absorbed
energies. This paper is concerned with the co-
herently radiated energy while the work that has
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been done in the past is concerned with the ab-
sorbed energy. It is demonstrated in the Appen-
dix that the absorbed energy is identical with the
"energy loss" by the incident particle. The latter
term is commonly used in the literature. Finally,
in the Appendix, the conditions are stated under
which the effective electric field acting upon each
embedded atom can be replaced by the external
field of the incident charged particle. This con-
stitutes the first-order approximation. This ap-
proximation is valid under the condition OI~ n(&u)~

«1 stated above, and also under the condition that
the dimensions of the resonant medium in the di-
rections of the coherently emitted radiation is
small in comparison with the inverse of the ab-
sorption coefficient.

Since this paper is based on the first-order ap-
proximation, it will be assumed in the following
that the dimensions of the resonant medium are
sufficiently small so that negligible absorption
takes place. In addition, it will be assumed that
the resonant medium is in the form of a thin slab,
so that the amount of energy lost by the incident
relativistic charged particle as it moves through
the slab is negligible. The radiation properties of
the embedded atoms will be studied close to a sin-
gle resonance frequency. In the past, multifre-
quency absorption in a dielectric medium has been
considered. '" In frequency regions of a resonant
medium where there is no overlap of the resonant
lines, each one of these lines can be treated inde-
pendently of the others. This paper is confined to
such frequency regions, so that the single-frequen-
cy model studied here is justified.

The following approach to the problem will be
used. The electromagnetic field of the incident
relativistic charged particle will be analyzed into
its frequency spectrum and the effect of each
Fourier component on the embedded atoms will be
determined.

Two cases mill be examined. In the first case,
it will be assumed that P'e&l, where P=v/c, v is
the velocity of the incident charged particle and
c is the velocity of light. The electric field of the
charged particle decreases exponentially for large
distances from its trajectory. Thus the effective
distance from the trajectory of the charged par-
ticle over mhich its electric field is sufficiently
large to induce radiation by the embedded atoms
is approximately equal to I,ff —CPS wher e
=(1-P'e) ' ' and W is the wavelength of the radia-
tion in vacuum, i.e., k=c/e, where &u is the fre-
quency. For example, if &=100 and k=10 ' cm,
then l,ff =10 ' cm, i.e., atoms as far as 10' atom-
ic distances away from the trajectory of the inci-
dent charged particle will be coherently excited
by its electric field (it was assumed that the aver-

age distance between the embedded atoms is of the
order of 10 cm which corresponds to a density of
10"atoms per cm'). It will be shown that if f»1,
the induced radiation is emitted in the direction of
motion of the incident charged particle.

In the second case, it will be assumed that P'e
Since the Cerenkov condition is satisfied,

i.e., Pve», there will be a primary Cerenkov
radiation in the host medium which mill excite
coherently the embedded atoms at their resonance
frequency. As a consequence of this coherent ex-
citation, there mill be a secondary stimulated
resonant radiation which is also emitted in the di-
rection of the Cerenkov cone. Although both the
primary and secondary radiations are emitted in
the same direction, it is possible to detect'the
presence of the secondary radiation because of
the finite lifetime of the embedded atoms. There-
fore, it may be possible to observe the coherent
excitation of the embedded atoms in a resonant
medium by relativistic charged particles moving
through it.

H. THE MODEL

For simplicity, it mill be assumed that the mhole
space is filled with a medium with real dielectric
constant & and the region in which the embedded
atoms are located is a slab of width L, . The z axis
is chosen normal to the tw'o surfaces of the slab
and the origin of the coordinate system is chosen
so that these plane surfaces lie at z=+-,'I, A
charged particle moves with constant velocity v
along the z axis, in the positive direction. The
origin of time is chosen so that at time t =0 the
particle is at @=0. Its electric field, in the fre-
quency domain, is equal to"

(2.1)

(2.2)

The symbols p, &, c, and e have already been
defined, while Q is the charge of the particle.
K,(x) is the modified Bessel function of order
zero, X.,=&@/rPc, and x, y, s are unit vectors along
the x, y, s axis, ' respectively. The position vector
R in Eq. (2.1) has cylindrical coordinates (p, Q, s).

It will be assumed that the amount of energy the
charged particle loses is negligible compared to
its total energy. In a real situation, however, the
particle does lose energy as it travels through the
slab, mostly due to ionization and excitation of the
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atoms in the crystal and also due to bremsstrah-
lung. If coherent emission of radiation is to take
place, "the difference in the times for the incident
charged particle to traverse successive distances
27(X/we should be small compared with the period
2))'/&u of the emitted wave.

Each atom in the slab has an induced dipole mo-
ment equal to

where

G(R, u)=e""/R,

(3.1b)

(3.2)

P;((u) = o.,((u)E(R, , (d), (2.3)

where R,. is the position of the ith atom, E(R;, &u)

is the electric field acting upon it, and o(„(ru) is
the atomic polarizability (for simplicity, the em-
bedded atoms are assumed to be identical). The
expression for o.~(&u) depends on the relation be-
tween the frequency under consideration and the
ionization potentials, divided by 5, of the electrons
bound to each atom. Thus if the frequency compo-
nent associated with the electric field of the inci-
dent cha. rged particle is less than the ionization
potentia, ls, divided by 5, of the electrons in each
atom, then only resonant transitions between
bound states are possible and the atomic polariz-
ability is equal to'9

is the retarded Green's function andR=~R~. Also,
M is the total number of embedded atoms in the
slab. Now, for a very large number of atoms M,
the summation in Eqs. (3.1a) and (3.1b) can be re-
placed by an integral. Moreover; since the radia-
tion field far away from the slab is of interest,
use will be made of the far-field approximation of
the retarded Green's function, which is given by
the expression

G(R R~.~&~/c) (ekRe((d/c)B/R)e ice(tu/c-)EF~R'

A

The unit vector R is in the direction of the point of
observation R. With the help of Eqs. (3.1) and
(3.3) the following expressions are obtained for
the radiation fields:

(2 4)

where

c,((u„)= (m/e)X„'/I„/&(o„. (2.5)

Here, o~(&u„) is the atomic absorption cross section
at resonance, ~„ is the resonance frequency of the
transition, X„=c/&u„, &u&„ is the broadening of the
resonant line, andA» is the spontaneous rate of
radiation between the bound states. In this paper,
only such transitions will be considered.

E„,(R, (d)-X((o)((o/c)'(e' " " /R)

xRxIRxm(v e ((u/c)R, u))],

&„,(R, ~)-~~X((d)((d/c)'(e' " '"/R)
xRx%(W~((d/c)R, (u),

where

Tr(% ~)=f E (R' ~)e '"'R'd'R',

(3.4a)

(3.4b)

(3.5),

III. RADIATION FIELDS X((o)=sto. „((u). (3.5)

It will be assumed that the inequality &)o.„(e„)~
«1. is satisfied, where 5L is the density of the em-
bedded atoms in the slab. In this case, the effec-
tive field E(R;, v) in Eq. (2.3) may be replaced by
the external field Eo(R„(d), since the electric field
at the ith atom which is due to its neighbors is
negligible in comparison to the external electric
field.

Under this assumption, the electromagnetic field
of the induced radiation at the point of observation
R outside the slab is equal to

E(R, &o)=- g a.„(~)Q~x0~

x [G(R-R,;We~/c)E, (R;, (o)],

(3.1a)

Here V is the volume occupied by the embedded
atoms, i.e., by the slab. It may be noted that al-
though the field Eo(R, &u) diverges at p=0, the inte-
gral in Eq. (3.5) is finite. It will be assumed in
the following that P'a&1, so that the parameter 0
in Eq. (2.1) is real and, therefore, the electric
field of the incident charged particle has an expo-
nentially decreasing asymptotic behavior' for
large distances from the trajectory of the parti-
cle. Thus, if the slab extends a few effective
lengths l,«= gPX from the trajectory of the charged
particle, its volume may be considered to be of
infinite extent on the x-y plane without introducing
a significant error in the evaluation of the integral
in Eq. (3.5). When Eq. (2.1) is substituted into Eq.
(3.5), the integration can be performed analytical-
ly and it lea, ds to the relation '
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. 4wQ (Pc/&u)kp+(1/f )i
eP'c' k, k, +(&u/)Pc)'

(3.7)

. 4mQ . I-P'e Pv-c cos8
icos 0

sin(k, -(o/pc) L/2
-', (k. -~/pc)

where k, =k,x+kp. It is appropriate to express
the vector m(%, &o) in spherical coordinates with
components m„, me, and m&. It follows from Eqs.
(3.4a), (3.4b), and the cylindrical symmetry of the
problem that only the me component contributes to
the radiation fields and is given by the relation

the radiation fields at the point of observation
are zero. The equality 7'=-&~t determines the
time of arrival of the electromagnetic wave at the
point of observation if the origin of time is taken
as the instant the charged particle enters the slab.
Hence, if «=,'~t, the electromagnetic wave has
not arrived at the point of observation and, of
course, the radiation fields are zero there.

(ii) If =~&t-7'&~At, then if follows from Eq.
(3.12) that =~L&z &(7'/&t)L and, therefore,

( )
cap„pc

~„'+&+'„1-Pve cos8

x[e ~ ~'+ sinu„r, +(&v„/v„)(1 e'-+"cos~„7',)],
sin(1- pWe cos8)(&u/pc)L/2

—,
' (1—PWe cos 8)&u/P c

(3.8)
where

(3.14)

1-p'e- pve cos8xsin8» F v,1—P2e cos28 (3.9a)

where (8, P) are the spherical coordinates of the
unit vector R in the direction of observation. The
we component vanishes. When Eq. (3.S) is substi-
tuted into Eqs. (3.4a) and (3.4b), their Fourier
transforms with respect to the frequency e pro-
vide the radiation fields in the time domain. In
spherical coordinates, these fields are equal to

1 2Q 547&E„„(R,t) ---~~,(~„)

7'g =7+2~t.1 (3.15)

The equality &=—,'~t determines the time of arrival
of the electromagnetic wave at the point of obser-
vation if the origin of time is taken as the instant
the charged particle leaves the slab. Hence, if
=,'Et&7 & ,'ht, Eqs. -(3.9a), (3.9b), and (3.14) pro-
vide the electromagnetic field, as it reaches the
point of observation at a retarded time, from the
instant the incident charged particle enters the
slab to the instant it exits.

(iii) If v~=,'4t, then it follows from Eq. (3.i2)
that =,L, &z &&L and, therefore,

B „d ~(R, t)=WeE„d e(R, t),

where

L,/2

F(7)= e """cos(o„x8(x)dz',
L,/2

(3.9b)

(3.10)

"24P ~c
e Atd~T

(oz+A(dz 1 —P&E cos8

x [e ~ 'sine„r, -sin&@„~

+ (+(d„/(d„)(cos(d„7 —8 ~ cos(d„& )],

x=v —(1-pate cos8)z /pc. (3.11)

Also 7 = t —We((u/c)R and ~,(co„)=Sur~(co„) is the ab-
sorption coefficient of the slab at the resonance
frequency &u„. Finally, 8(x)=1 if x~0 and 8(x)=0
if @&0. All other components of the radiation
fields vanish. Since x-0 in Eq. (3.10), it follows
that, at all times t, the inequality

( )

where &., 7, and ~t have already been defined by
Eqs. (3.15) and (3.13), respectively. In this case,
Eqs. (3.9a), (3.9b), and (3.16) provide the electro-
magnetic field, as it reaches the point of observa-
tion at a retarded time, after the incident charged
particle leaves the slab.

IV. RADIATION PATTERN AND RADIATED ENERGY
7-(z'/L)t t,

must hold, where

(3.12)
The average amount of energy radiated per unit

time and per unit solid angle is equal to

&t= (1-PWe cos8)L/Pc. (3.13)

Also, s must lie in the interval (-2I., ~L) [cf., the
limits of integration in Eq. (3.10)]. Thus, there
are three cases to distinguish in, the evaluation of
the function E(7'):

(i) If v &=', at, then it follows from Eq. (3.12)
thats -2I„ i.e., s lies outside the interval
(=,L, —,L) and, therefore, E(w)-=0. In this case,

d W (i„de(R, t)B„d@(R,t))R', (4.1)

where the brackets denote a time averaging over
the fast oscillating terms with a period 2m/&u, . In
order to obtain simple expressions for the radiated
energy, it will be a,ssumed that b m„/m„«1, which
is valid for resonant transitions, and also that
~+„~t«1. Physically, the second assumption
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means that the incident cha, rged particle traverses
the slab before the embedded atoms have sufficient
time to decay to their ground state. Then the main
contribution of the radiation comes for times such
that w~=, &t [case (iii) in previous Sec. III]. Substi-
tution of Eqs. (3.9a), (3.9b), and (3.16) into Eq.
(4.1) and the time averaging lead to expression

2
"-"=

ri (d —.zx e '~""-(I-cos(u &t)C (0), (4.2)
df d"R

I
()(n) f=((-t:os[a(1-()v~ xl))f(x)dx;

-1
(4.9)

I-x' I-P'e -P)Je x'
(1.—PW~x)' 1+PM~x (4.10)

The function f(x), being the ratio of two polynom-
ials, can be expressed in terms of partial frac-
tions, i.e., in the form

No= -——-p rq((d„)X „- (4.3)

sin0 1 —P'c -PWe cos0
C(0) =

1 —PW& cos0 1 —P'e cos'0 (4.4)

(4.~)

The gross characteristics of the radiation pattern
are determined by the function 4 (0), while the ex-
pression within square brackets in Eq. (4.5) pro-
vides " fringe structure as the polar angle 8 var-
ies. It follows from Eqs. (4.4) and (4.5) that sig-
nificant radiation occurs only when (PWCA is very
close to unity. In this ca,se, the function 4(0) be-
comes maximum when 8=8, where either

6 = I./P&„.

Also r is greater or equal to zero. It is seen
from Eq. (4.2) that the average radiated power
per unit solid a,ngle decreases exponentially with
time a,nd its decay constant is equal to the life-
time of the embedded atoms (Ior homogeneous
br oadenIng) .

Integration over time of Eq. (4.2) yields the fol-
lowing expression for the number of radiated pho-
tons per unit solid angle:—"d =—iV,[1—cos[5(I -PW~ cos0)]]4)(8), (4 .5)

dN, „. d

(1-P&~x)" (I+PW~x)" ' (4.11)

(i) If 6(I —PW~)«I, then

q (5)=——-ln—1-pW~

+-', (1-25')[y+ In25 —Ci(25))

—~6Si(26)=,'5 sin25+~6(l-cos25), (4.12a)

where the coefficients A„, B„depend on Pve . In
particular, when P&e is very close to unity, these
coefficients are equal to &y=8 &2= 4 &3=p A.4
= =,'(1-pie ) and B,=„B,= =('-)

(I-pate

). When Eq.
(4.11) is substituted into Eq. (4.9), it is rather
easy to show', through partial integrations, that
the function Q(5) can be expressed in terms of the
sine and cosine integrals" Si(z) and Ci(z), respec-
tively, as weU as other elementary functions. The
general expression for Q(5) is too lengthy and will
not be given here. On the other hand, various
cases will be considered when Pve is very close
to unity. The terms proportional to A„ in Eq.
(4.11) are associated with the forward radiation
and the terms proportional to B„with the back-
ward radiation. Hence, the function Q(5) can be
written as the sum of two functions Qz(5) and Q„(t))
associated with the forward and backward radia-
tions, respectively. These functions are given as
follows:

ol

0.„=[l (1 P&~ )]",-

0.„=~-[2(I-K~ )]'"

(4.7a)

(4.7b)

Q (6)= —— 1+ln——1-Pve
8

+ —,', [y+1+In6(l -Pv e ) -Ci(2&)] cos2&

——,'4Si(25) sin26, (4.12b)

lv„,=x,q(5), (4 .9)

Therefore, maximum radiation occurs in the di-
rection of motion of the incident charged particle
(forward ra.diation), but there is also weak radia-
tion in the opposite direction (backward radiation).

Integration oveI' the so11d angle of Eq. (4.5) leads
to the following expression for total number of ra-
diated photons:

where y is Euler's constant (y=0.5VV2 ).
(ii) If 6(1-PWe)«l and 26»I, then

Q, (5)=-'5'[-»5(I-W~ )+-'-y]

-~sm5+-', (y+ In2&)+~6,

Q, (6)= —-', (1—cos2&)[1+In'(I —Pv e )]

+-', ln 2g+-', y cos2g- —,', 7t sin2g.

(4.13a)

(4.13b)
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Q (6)=-—1+in
1 1-Pv@
s 2

(4.14b)

As a numerical example, the following numbers
are chosen: r~(v, ) Ic-m ', it„-10 ' cm, «u„/&u„
-10 ', I-pve -10 '. For a slab of width L-10'
cm and for a &-mA incident beam of electrons,
which corresponds to 10"incident electrons per
second, there wi11 be radiated approximately 10'
photons per second in the forward direction. On
the other hand, for a slab of width I.-1 cm and for
the same incident beam of electrons there will be
radiated 10' photons per second in the forward di-
rection. The backward radiation is insignificant
in either case.

The other case to be considered is when P'c&I.
Since the parameter f in Eg. (2.1) is imaginary,
there will be a primary Cerenkov radiation in the
host medium which wi11 excite coherently the em-
bedded atoms in the slab. Therefore, there will
be a secondary stimulated resonant radiation
emitted by the atoms. The same procedure is
followed and the same assumptions made as before
to calculate this radiation, but it is more conven-
ient to work in the frequency domain. Since the
primary Cerenkov radiation decreases very slow-
ly with the distance from the trajectory of the in-
cident charged particle, the slab must have finite
dimensions in order to obtain a finite secondary
radiation. It will be assumed that the slab has the
shape of a cylinder with radius po from the z 3'xis
and width L, as before, along this axis. After a
rather lengthy calculation, which will not be given,
the following expression is obtained for the energy
radiated by the embedded atoms per unit frequency
interval and per unit solid angle:

d'W„, v~e W„L «o„
dedQ~ "4m' ' p' (&u-u )'+&&o2

= 540

sinXL ' (sin 0 Xpo (4.15)

(4.16)

X= (1-PWecos8)co„/2Pc, (4.17)

and
~
f)= (P'e -1) 'S'. It is seen that the secondary

radiation is also emitted in the Cerenkov cone and
it has a very small angular spread.

Integration of Eq. (4.15) over the solid angle's
leads to the following expression for the number

(iii) If 5(I-P&&)»1, then

1 1 3 1 5 1 1 PvÃ
Qs( 12 (1 -P~e)2 4 1-PvÃ 16 8 2

(4.14a)

of resonant photons radiated by the embedded
atoms per unit frequency interval:

dN„g L, 1 L 1
des ' [t~ p, 3[ g[p, m ((u-(o„)'+Ace„''

if L~)K)p„and

I-~ ~P' — ' (418b)
CRO SL 1T ((d-(d„) +A(d„

L~l&lpo. Finally, one obtains the following ex-
. pressions for the number of radiated photons by
integrating Eqs. (4.18a) and (4.18b) over the fre-
quency domain:

N„, =N, (LI I &I p,)(1 L/—81 & I p,),

if L~)gjp„and

(4.19a)

(4.19b)

~ L-I&In..
As a numerical example, the following numbers

are chosen: r~(&u„)po 0 I,-I/.W„-10', b.ar„/e„-10 ',
For a sample with L&) f)p, and for a 1-mA

incident beam of electrons, which corresponds to
10'6 incident electrons per second, there will be
radiated approximately 10" resonant photons per
second in the direction of the Cerenkov cane. This
is a much larger radiated energy as compared to
that obtained when P'a&1.

V. DISCUSSION

The treatment given above represents a rather
idealized situation. For example, the absorption
that takes p1ace in the shb, w'hen resonant radia-
tion is emitted, was neglected. This is a good ap-
proximation, if the dimensions of the slab in the
direction of the emitted radiation are small in
comparison with the inverse of the absorption co-
efficient at resonance. For example, if the length
of the slab in the direction of the emitted radiation
is equal to —,'0 of the inverse of the absorption co-
efficient, approximately 10% of the emitted radia-
tion will be absorbed. This follows from the fact
that, inside the resonant medium, the emitted ra-
diation decays exponentially with the length of the
slab. Also the slab should not be very large in the
direction that the incident charged particle moves,
if the loss of energy by the particle is to be neg-
ligible. Finally, the scattering that the incident
particle undergoes, due to its interactian with the

'

nuclei, was not taken into consideration. As a re-
sult of it, there should be an additional broaden-
ing of the angular spread of the emitted radiation.

As it may be seen from Egs. (4.8) and (4.19), the
total radiated energy is proportional to the density
of the embedded atoms squared which indicates



2210 D. DIAL ETIS

that the radiation is coherently emitted.
In Secs. III and 1V, the case for which p'&&1 was

considered for resonant frequencies in the visible
region. But the same formalism can be applied
for the generation of x rays by a relativistic
charged particle moving through an amorphous
solid (as. was mentioned in the Introduction, the
case of a crystal has been treated elsewhere' ). If
in the relations obtained in Secs. III and IV, under
the condition that P'@ &1, the host medium is vac-
uum, the atoms in the slab form an amorphous
solid, and the resonant transition is in the x-ray
region, then these relations are valid. . Thus, if
g = (1-P') "' is much greater than unity, the in-
duced x-ray radiation is emitted in the direction
of motion of the incident charged particle. As a
numerical example, the following numbers are
chosen: w((u„)-10' cm ', k„-10 ' cm, b, (u„/(d„"10 '.
For a. slab of width L-10 ' cm and for a, 1-mA in-
cident beam of 50-MeV electrons, which corre-
sponds to f—10 and 10' incident electrons per
second, there will be radiated approximately 10'
x-ray resonant photons per second in the forward
direction.

In Sec. IV, it was shown that when P'e&I, the
primary Cerenkov radiation as well as the second-
ary stimulated radiation are emitted in the same
direction of the Cerenkov cone. The problem
arises then how to detect the presence of the sec-
ondary radiation. This should be possible, for
example, if the time duration of the stimulated ra-
diation was much longer than that of the primary
Cerenkov radiation. The time duration of the
former radiation is determined by the lifetime of
the embedded atoms (it is assumed that the time it
takes the charged particle to traverse the slab is
much shorter than the lifetime). The time dura-
tion of the latter radiation is determined by the
time it takes the incident charged particle to
traverse the slab and by the inverse of the frequen-
cy width within which the dielectric constant e of
the host medium is a real constant and such that
P'e&l. {in the previous sections it was implied that
this width is infinite but in a real situation it is
finite). For all practical purposes, this frequency
width is much larger than the inverse of the life-
time of the embedded atoms. Therefore, the sti-
mulated radiation will last for a much longer time

V'

than the primary Cerenkov radiation and, since it
is emitted in the 0erenkov cone, it can be referr-
ed as "delayed Cerenkov radiation, " the delay de-
termined by the lifetime of the embedded atoms.
The possibility arises then for the manifestation
of their coherent excitation by relativistic charged
particles. The numerical examples given above
indicate that the delayed Cerenkov radiation is
the most intense of aLL cases considered.
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APPENDIX

The purpose of the Appendix is to provide the
theory and the approximations involved in this paper
and to relate the present work with the work that
has been done in the past. As it has already been
stated, this paper is concerned with the radiatiori
due to the coherent excitation of the electric di-
pole moments of the atoms which are embedded in
a host medium with real dielectric constant &.
These dipole moments are induced by the external
electric field of an incident relativistic charged
particle moving through the resonant medium. On
the other hand, most of the work in the past refers
to the energy loss by an incident charged particle
in a dielectric medium. It mill be showri here that
this energy loss is identical to the energy absorbed
by the embedded atoms in the presence of the ex-
ternal electric field of the incident charged pa, rti-
cle. In addition, it will be shown that the total en-
ergy supplied by the external electric field of the
incident charged particle is equal to the energy
absorbed by the embedded atoms and to the energy
radiated coherently by them. It should be pointed
out that the energy absorbed by the atoms close to
a particular resonance frequency may be due to
nonradiative processes or to inhomogeneous
broadening and, therefore, it should be consider-
ed as a distinct physical quantity from the energy
which is coherently radiated close to that reso-
nance frequency. To summarize then, the incident
charged particle supplies energy for both absorp-
tion ancl coherent radiation by the embedded
atoms. In the pa, st, a, deta, iled study'" has been
made of the absorption of energy by a dense reso-
nant medium of infinite extent, under the influence
of an incident charged particle. In this paper,
however, a study is made of the coherent radiation
by a dilute resonant medium of finite extent, under
the influence of an incident charged particle.

For the sake of generality, it will be assumed
that the external field, in the absence of any
atoms embedded in the host medium, is deter-
mined by current sources with current density
Z(5, &u), and is given by the relations

E (R, al)= —. () X 0 XA (R, al) ——J(R, ul)),
2GP& C

(A1)
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xE +.47tyg((d) . (A4)

The susceptibility X~((d) is due to the embedded
atoms in the host medium, and is given by the
Lorentz-Lorentz formula'

X~(+) = 3I~((g )/[I -(4m/3e) stc'~((x) )] . (A5)

Here, K is the density of the embedded atoms in
the volume Vo and n, (e) their polarizability, which
does not have to be limited to one resonance fre-
quency.

The effective electric field at any point R in
space is equal to the external electric fieM
E,(R, ur) and the electric field of the embedded
atoms, i.e.,

E(R, tu)=E, (R, &u)+E„(R, (d).

The electric field of the embedded atoms is deter-
mined by the polarization%(R, (x)) of the volume V,
occupied by them, as follows:

E~(R, (d) = (1/e)0„x0~

x GR-R; & (o c%R, co dR
Fo

-(4m/e)%(R, (o)U(Re V,). (A7

The function U(% V,) is defined to be equal to 1 if
R lies inside the volume U, and 0 if it lies outside
V, . In a linear theory, the polarization w(R, &u) is
assumed to be proportional to the effective field
i.e.,

m(R, (o)=X,((u)E(%, (o), (A8)

for any point R inside the volume V, . Substitution
of E(R, &u), given by Eqs. (A6) and (A7) into the
above equation leads to the following integral equa-
tion for any point R inside the volume V,:

x(xx, ~)=x,(~)(i,(x(, ~)+-'x)„x X)„

x G H, -R;
V'o—x(R, td)} . (A9)

When the polarization m(R, (d) is obtained as a solu-

Bo(R, (o)=0„xXo(R, (o),

where

X (R, v)= —J G(x(-x(';Mam/c)z(x(', td)d'))'. (Ax)c
S

Here, G(R, k) is the retarded Green's function
given by Eq. (3.2) and Xo(5,, (d) is the vector po-
tential which is due to the current density J (R, (d).
The host medium is of infinite extent and the em-
bedded atoms occupy a volume V, with dielectric
constant

tion of the above integral equation, the electric
field which is due only to% (R, &u) (i.e., only to the
embedded atoms) can be derived from Eq. (A7) at
any point R in space. The effective electric field
is obtained then from Eq. (A6} and the magnetic
field is obtained from the relation

B(R, (d)= (c/i(d)tsx E(R, v). (A10)

In another paper, "it has been shown that the elec-
tromagnetic field, namely, the fields E(R, u) and
B(R, ar), obtained from the solution of the integral
equation given above is identical to that obtained
from the solution of Maxwell's equations and
boundary conditions for a sample with the same
volume V, and dielectric constant e» given by Eq.
(A4). The volume outside V, has a real dielectric
constant &, i.e., that of the host medium.

Now consider a volume V which lies inside the
volume- Vo or may be as large as V, . The energy
absorbed by the embedded atoms which lie inside
the volume V is equal to

4E,„,=2
2

Re ~~X~ ~ E 8 + 'd
0

(A12)

One may see from the above equation that in fre-
quency regions where the susceptibility y„((x)} of
the embedded atoms is real, there is no energy
absorbed by them. From the examples that will
follow, it wil1. become evident that 4F.,b» given
by Eq. (A12), is identical to the energy loss by
the incident charged particle. This is the physical
quantity that has been studied extensively in the
past. '"

In addition to the energy absorbed by the em-
bedded atoms, there is energy radiated coherent-
ly by them. This energy is determined by the
Poynting vector of the electromagnetic field of
the embedded atoms, at the surface S of the vol-
ume V and is equal to

c ckd'" 2m 2m0

Re E~R, e xB~R, + ~ n dS.

The unit vector n is normal to the surface S and
is directed from the inside towards the outside of
the volume V. The magnetic field B~(R, (d) of the
embedded atoms is equal to

4E,b, =2 — Re E*R ~ -i~Fr R, ~ d'R.

(A11)

If use is made of Eq. (A8), it follows from Eq.
(A11) that
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B~(R, (d) = B(R, (d) —Bo(R, (d), (A14)

where B(R, (d) and B,(R, &u) are given by Eqs. (A10)
and (A2), respectively. In this paper, a study is
made of this coherently radiated energy by the em-'

bedded atoms in the first-order approximation that
will be defined shortly. As it may be seen from
Eqs. (A12} and (A13) the absorbed and coherently
radiated energy are distinct physical quantities.

The total energy supplied by the external elec-
tric field E,(R, &u) to the embedded atoms inside
the volume V is equal to

shown explicitly.
It is seen from Eqs. (A13) and (A17) that &Z«z

can be expressed either as a surface integral or
a volume integral. The same is true for ~E»,
and ~E,„,. The surface integrals for these physi-
cal quantities are equal to

—~) Re/E*(R, v)x B(R, &u)] n) dS
2m 2m ~0 S

-2 — Re[E*(R,~) J(R, (d)] d'R, (A18)
V

&&,„, =2
2

Re EpH,
0

(A15)
&E,„,= —

2
—&l) Re([Ef(R, &u)xB,(R, u))] n)dS

Now, it will be shown that energy is supplied by
the external field for both the absorbed and the
coherently radiated energy by the embedded atoms
inside the volume V, i.e. ,

hg, =DE +kg„d. (A16)

In order to prove the above relation, use should
be made of the identity

P CO

Re(E„(R, (d) [i(B(R, (d)]) d'R.
&0 K Qv

This identity is derived from Eq. (A13) by a direct
and lengthy computation which will not be given
here. Then Eq. (A16) follows immediately from
Eqs. (A11), (A15), and (A17), and use of Eq. (A6).
Equation (A16) expresses conservation of energy. It
may be noticed that even infrequency regions where
energy is not absorbed, the external field does
supply energy to the embedded atoms for coherent
emission of radiation. For example, at the sur-
face of a, transparent medium the transmitted and
reflected radiations a,re emitted in different direc-
tions than that of the external field E,(R, ~). This
is due to the fact that energy is supplied by the ex-
ternal field for the excitation of the embedded
atoms in the transparent medium, and this energy
is radiated coherently by the embedded atoms in
directions prescribed by Maxwell's equations and
boundary conditions. This explains the laws of
reflection and refraction that occur at the bound-
a,ry of a, transparent medium.

The theory given above applies for a free extern-
al field as well as an external field which is due

to current sources. Actually, Eq. (A16) has al-
ready been shown" to be valid in the case of an
incident plane monochromatic wave. Also, in an-
other paper, "the integral equation (A9) wa. s solv-
ed for a spherical sample. The free externa, l field
was assumed to be a plane wave. In this special
case too, the equivalence mentioned above was

Re E» R, co XB,R, ~ n dS0,5

If the volume V does not contain any current
sources, the volume integra. ls in Eqs. (A18) and
(A19) should be omitted. In many cases, it is
more convenient to evaluate the surface rather
than the volume integrals of the energies given
above. This will be the case with the two exam-
ples that will be presented.

The integral equation (A9) may be solved by an
iterative method. In the first-order approxima-
tion, the polarization%(R, e) is equal to

m(R, (d) = X,((d)E,(R, (d). (A20)

If this expression for %(R, (d) is substituted into
the right-hand side of Eq. (A9), 7](R, ~} is obtained
in the second-order approximation. This proce-
dure ca.n be repeated to obtain the higher-order

. approximations. The. iterative method provides
the solution of Eq. (A9} as a, Taylor series of the
susceptibility y„(v). If ~y~(&u)~ «1, the first-order
approximation is sufficient, and%(R, (d) is given
by Eq. (A20). This expression of %(R, &u) is used
in Eq. (A7) in order to obtain the electric field
due to the embedded atoms. The condition ~X~(v)~
«1 is satisfied if Ot~n, ((u)~«l [cf., Eq. (A5)]. For
a resonant medium, the latter condition is valid.
It is this condition then, which justifies the first-
order approximation used in this paper. This ap-
prox'mation is most appropriate when the em-
bedded atoms occupy a volume V, whose space
configuration is such that Maxwell's equations
and boundary conditions cannot be solved exactly,
so that one must resort to an approximate solu-
tion.

Two examples will be given to demonstrate the
difference between the absorbed and coherently
radiated energy and to illustrate the approxima-
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»', = (&u/Pc)'(1-P'e), (A24)

which lies either on the positive real axis when
P'a&1, or on the negative imaginary axis when
p2e&1. From the asymptotic behavior" of the
modified Bessel function K„(z), it is seen from
Eqs. (A21) —(A24) that for large distances from
the trajectory of the incident charged particle the
external field either decreases exponentially with
the distance p when P'e&1, or it oscillates and de-
creases slowly as p increases when P2e&1.

In the first example, the volume Vp occupied by
the embedded atoms is taken to be the whole space,

tions made in this paper. In both examples, the
external field is that of a charged particle which
moves along the z axis with constant velocity v
through a host medium of infinite extent and real
dielectric constant c. In the frequency domain,
the external electromagnetic field in cylindrical
coordinates is equal to"

Eo (R, (u)=(2Q/epc) X2K&(l&. p)e' "', (A21)

E, (R, (o) = -i(2Q/e(u)y2OK (X p)e'&"~+&' (A22)

J32 (R, &o)=(2Q/c)XOK, (&&. p)e" +&' (A23)

where Q is the charge of the incident particle, c
is the velocity of light, p=2&/c, K,(z) and K, (z) are
the modified Bessel functions of order zero and
one, respectively, and (p, Q, z) are the cylindrical
coordinates of the position vector R. The parame-
ter X, is def ined as the square root of

i.e., the re'sonant medium is of infinite extent.
Maxwell's equations can be solved easily in this
case and the electromagnetic field, in cylindrical
coordinates, at any point R in space is equal to

E,(R, &u) = (2Q/e, Pc)X,K, (X, p)e"" 2'&'

E,(R, QP) = —i (2Q/e, (d)X2Ko(X, p)e'&~ "&',

Be(R, &o)= (2Q/c)». ,K, (»., p)e'&

(A25)

(A26)

(A27)

where c„ the dielectric constant of the resonant
medium, is given by Eq. (A4), and X, is the square
root of

»', = ((u/pc)'(I-e, P'), (A28)

chosen in the fourth quadrant of the complex plane.
It can be shown directly that the polarization
»'(R, &u), obtained from Eqs. (A8), (A25), and (A26),
does satisfy the integral equation (A9).

Now the volume V in Eqs. (A12), (A15), and
(A17) is chosen between the surfaces So and S, of
cylindrical shape and at distances po and p, respec-
tively, from the trajectory of the incident particle
(p2&p). Equation (A16) can be proven easily if use
is made of Eqs. (A13), (A18), (A19), and the fact
that the trajectory of the charged particle, where
the current density is nonzero, lies outside the
volume V. In particular, if the radius po is so
close to the trajectory of the charged particle that
the condition ~X, ~

p2«1 is satisfied, it follows from
Eq. (A18) and from the values" of K,(z) and K, (z)
for a small argument z, that

—62,„,= — . . . Ime, ln
'

+Res, -P le I')Argz,
)

de
d 2 Q M 1123

dz ' v c o e& X& po

+—
2 2 (d Im[(1/e&-P )l&&+PKO(l&. & P) K&(g&+P)]d(o.

2 Q'
(A29)

&&' 1 p Ime&
2 2 P'Re& —1

' (A30)

Moreover, if the radius p of the outer surface S
of the volume V is chosen so large that Bek,p» 1,
the term proportional to the modified Bessel

Here, ~X, ~
a. nd ArgX, are the magnitude and phase

of the complex parameter X, . It is easy to show
from the above equation that in frequency regions
where lme, =0 [i.e., Imp~(&u)=0], the energy ab-
sorbed by the embedded atoms inside the volume
V is equal to zero either when P2e,&1 (i.e., Arg». ,
=0) or when p2e, &0 (i.e., ArgX, ==2'»). On the
other hand, consider frequency regions where
Ime, is greater than zero and the conditions
p Re& I& 1 and ImC y&&ReE'

y are satisfied. Then
Arg». , in Eq. (A29) can be approximated by the ex-
pression

functions in Eq. (A29) vanishes and this equation
becomes equal to

dz ~ vp2c', I e

1.123x 2ln — 'Re&, d~
Ix, lp,

Q2

p2c2 2 Q) 4+ ~ (A31)

In frequency regions where P2 Ree, & 1, the second
term in the above equation should be omitted.
Equation (A31) gives the energy absorbed by the
embedded atoms which occupy the entire space.
It is identical to Eq. (20) in Budini's paper, "and
thus, it can be identified as "the energy loss" of
the incident charged particle. It should be noticed
that the first term in Eq. (A31) is proportional to
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the density of the embedded atoms. Also, both
Eqs. (A29) and (A31) are divergent as p, tends
to zero.

Next, the coherently radiated energy by the
atoms which are embedded in the volume V will
be considered. If the conditions lx, lp, «l and

lk, lp, «1 are satisfied, it follows from Eq. (A13)
that

d 2
Q2

Qz 77

x [XfpK, (X+p)

—X*,pK, (z,*p)]—,(A 32)

where use was made of the values" of K,(e) and

K, (e) for a small argument e. In particular, if
P'e ~ 1, 4v

I y„(~) I
«&, and if the outer surface 8

of the. volume V lies at a distance p which is much
larger than the wavelength" of the emitted radia-
tion but much smaller than the inverse of the ab-
sorption coefficient, i.e. , if also lA., lp»1, lx, lp
»1, and ReA,,p«1, Eq. (A32) reduces to the fol-
lowing approximate expression

(A 33)

The above equation could have been obtained di-
rectly from Eqs. (A20), (A7), and (A13), i.e. ,
from the first-order approximation of the polari-
zation. This indicates that this approximation
is valid at distances p much larger than the wave-
length of radiation and much smaller than the
inverse of the absorption coefficient. It is seeri
from Eqs. (A32) and (A33) that in the expressions
for the coherently radiated energy there is no
divergence involved with the lower limit p, of
the volume V as is the case with the absorbed
energy. In addition, at distances p much larger
than the wavelength and much smaller than the
inverse of the absorption coefficient, the coherently
radiated energy is proportional to the density of
the embedded atoms squared and the distance p
squared. In this example, then, it has been de-
monstrated that the coherently radiated energy and
the absorbed energy by the embedded atoms are
distinct physical quantities. The absorbed energy
has been identified with the "energy loss" by the
incident charged particle, where the latter term is
commonly used in the literature. Finally, it was
indicated under which conditions the first-order
approximation, used in this paper, is valid.

The second example is more realistic. The ex-
ternal field is given by Eqs. (A21)-(A24) and the
host medium is of infinite extent, but the embed-
ded atoms occupy the volume V, of a cylinder with

Bz (R, to) = (2Q/c)B(v)X K,(kp)e' "~~"'

outside the cylinder, where

(A38)

(A39)

K,(X,a)K,(A.,a) —(e,X,/e X,)K,(A,a)K, (X,a)
K,(X,a)I,(X,a)+ (c,X,/e A.,)K,(X,a)I, (X,a)

(A40)

B((o) = 1 1

X,a K,(X,a)I, (A.,a) + (e,X,/&X, )K,(X,a)I, (X,a)
'

(A41)

The parameter s A.„X,have already been defined
and I,(e), I,(e), K, (e), and K,(z) are modified Bes-
sel functions. It can be verified directly that the
polarization r(R, &u), obtained from Eqs. (A8),
(A34), and (A35), satisfies the integral equation
(A9). Moreover, the field outside the cylinder,
namely Eqs. (A37)-(A39) can be obtained from
Eqs. (A6) and (A10). The field E~(R, &o) in
Eq. (A6) is evaluated from Eq. ('A7) for points
R outside the cylinder and for a polarization
v(H, +) which is the solution of the integral equa-
tion (A9).

The volume V in Eqs. (A12), (A15), and (A17)
is chosen between the surfaces S, and S, of
cylindrical shape and at distances p, and a, re-
spectively, from'the trajectory of the incident.
particle (p, &a). Equation (A16) can be proven
easily if use is made of Eqs. (A13), (A18), (A19),
and the fact that the trajectory of the charged
particle lies outside the volume V. In particular,

radius a and of infinite extent along its axis, which
coincides with the z axis of the coordinate system.
The dielectric constant of the resonant medium
inside the cylinder is e„given by Eq. (A4), and
outside the cylinder it is equal to &. The solution
of Maxwell's equation and boundary conditions
leads to the following expressions for the electro-
magnetic field in cylindrical coordinates:

&,, (R, ~) = (2Q/&, Pc)~, [K,(y,p)

-A(tu)I, (X p)]e' "~'"

(A34)

E„(R,&u) = —i(2Q/e, e)X', [K,(X,p)

+A((u)I (X p)]e'"

(A 35)

B~ (H, (u) = (2Q/c)A. ,[K,(A.,p) A((g)I-, (z,p)]e'& "~~'"

(A36)

inside the cylinder, and

E, (R, e) = (2Q/@Pc)B(&u)A, K,(X~. )e' "8"' (A37)

E, ,(H, u) ) = —i(2Q/e(u)B ((u) X',K, (A p) e'&"s'&',
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if p, is so small that the condition
~
X,

~ p, «1 is satisfied, it follows from Eq. (A18) that

(A42)

The function 6(x) is defined to be 8(x) = 1 if x
&0 and 8(x) =0 if x&0. The above equation pro-
vides the energy absorbed by the embedded atoms
in the cylinder. In frequency regions where Im&,
= 0 [i.e. , Imp, (&u) = 0] it can be shown that the in-
tegrand in the above equation vanishes for all four
possible cases where A and X, are real positive
or purely imaginary negative. Thus in these fre-
quency regions there is no energy absorbed by the
embedded atoms. On the other hand, for frequency
regions where the conditions P'Rem, &1, Ime,
«Ree „~X,

~

a» 1,
~
X,

~

a» 1, and Reh.,a» 1 are
satisfied, Budini's" Eq. (20) follows from Eq.
(A42). Physically, the conditions just stated mean
that the radius a of the cylinder occupied by the
embedded atoms must be much larger than the
wavelength of the radiation and also much larger
than the inverse of the absorption coefficient.
Only then the last term in Eq. (A42), proportional
to ~8(&u) ~' and A(&u), vanishes. One concludes
then that Budini's Eq. (20) is valid only for reso-
nant media with dimensions much larger than the
inverse of the absorption coefficient. This was the
case in the first example, where the resonant
medium was of infinite extent, and Eq. (A31)
was derived.

The coherently radiated energy follows from
Eq. (A13) under the conditions p'e & 1,

~
X,

~ p,
«1, ~X, ~p, «1. It is equal to

(A43)

If P'c & 1, the radiated energy vanishes, even when
p' Rem, & I.. This is due to the fact that total re-
flection occurs at the surface of the cylinder. In
the special case, when P'e &1, 4v ~y~(v)

~

«e, and
also when the radius a of the cylinder is much
larger than the wavelength of the radiation and
much smaller than the inverse of the absorption
coefficient, i.e., when

~

A., ~

a» 1,
~
X,

~

a» 1, and
Reh.,a «1, Eq. (A43) simplifies to the approximate
expression

(A44)

This equation could have been obtained from
Eqs. .(A20), (AV), and (A13), i.e. , in the first-order
.approximation. This indicates that the first-order
approximation is valid for resonant media with
dimensions much smaller than the inverse of the
absorption coefficient. This condition is assumed
in this paper in addition to the condition ~x~(&u) ~

«1, which is true for a resonant medium. It is
seen from Eqs. (A43) and (A44) that in the ex-
pressions for the radiated energy there is no lo-
garithmic divergence involved with the lower
limit p0 of the volume V as is the case with the
absorbed energy [cf., Eq. (A42)]. This proves to
be the case also in the examples treated in this
paper [cf., Eqs. (4.5) and (4.15)]. One concludes
from Eq. (A44) that, when the first-order ap-
proximation is valid, the coherently radiated
energy is proportional to the density of the em-
bedded atoms squared and to the radius a of the
resonant medium squared.

In the theory and examples presented above the
only assumption made about the susceptibility of
the embedded atoms was that it should be in mag-
nitude much less than unity. In this case, the
susceptibility is proportional to the atomic polari-
zabiiity n~(v), as may be seen from Eq. (A5)
[cf., also Eq. (3.6)]. In this paper, the atomic
polarizability and, hence, also the susceptibility,
is due to the resonant transitions at a single re-
sonance frequency e„[cf., Eq. (2.4)], while in the
past ~ ' multifr equency absorption possibilities
have been considered. But as it follows from Eq.
(A31) for absorption and Eqs. (A33) and (A44) for
coherent radiation, in frequency regions of a re-
sonant medium where there is no overlap of the
resonant lines, each one of these lines cari be
treated independently of the others. This paper
is confined to such frequency regions, so that
the single-frequency model studied here is justi-
fied.
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