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We review the merits and shortcomings of the Born-Oppenheimer separation and suggest a nonadiabatic

approach to molecular spectra using the generator-coordinate method. The adiabatic approximation and the
new scheme are worked out in parallel for diatomic molecules.

I. INTRODUCTION

The Born-Oppenheimer (BO) separation is un-
doubtedly one of the cornerstones of theoretical
molecular and solid-state physics. It has become
so familiar that we actually think of a molecule as
some semirigid nuclear frame supporting an elec-
tronic cloud. Apart from separating motions of
light and heavy particles, the BO paper' has had
the remarkable side effect of splitting physicists
and chemists into "theoreticians" and "experi-
mentalists. " The former (e. g. , quantum chem-
ists) are mainly interested in the computation of
potential-energy surfaces of electronic Hamilton-
ians, whereas the latter (e. g. , spectroscopists)
try to explain observations in terms of paramet-
rized potentials. While, in the course of more
than 50 years of quantum mechanics, a vast tech-
nology for treating problems in both fields has
been developed, the interaction between them has
been disappointingly small. The reason, appar-
ently, is that so far one has not succeeded in going
beyond the BO approximation for reasonable sized
systems while the most accurately calculated po-
tential-energy surfaces can still not compete with
sufficiently sophisticated par ametrized forms.
However, if one accepts that Schrodinger's equa-
tion gives an accurate description of molecules
and solids the ultimate goal should be to solve it
using quantum mechanics alone rather than to rely
upon a semiclassical model such as the BO
scheme. In view of the growth of computer facil-
ities over the last decades, this would be possible
if one could only force oneself to picture a mole-
cule as an assembly of quantum-mechanical par-
ticles instead of as a system with a double nature.
The present paper is an attempt in this direction.

II. ADIABATIC APPROXIMATION AND THE GENERATOR
COORDINATE METHOD

A. Basic ideas

In their original treatment Born and Oppenheim-
er' expanded the total Hamiltonian around some

nuclear configur ation 80. The eigenvalue prob-
lem was then solved by the usual methods of per-
turbation theory (PT). It turns out that the appro-
priate coupling constant is tc=(mjM)'~ ,4where
m and M are the electron and proton mass, re-
spectively. Up to second order, the nuclear part
of the wave function (wf) can be obtained applying
PT to a differential equation with an effective po-
tential including fourth powers of nuclear dis-
placements. By adding higher-order terms to the
final-state vector, it can be written as a product
of an electronic and a nuclear function. However,
if one proceeds even further (a' in the wf and tc

in energy} the dynamics of the nuclei can no longer
be described on the basis of an average potential
and the product form of the state vectors is lost. 3

Rather than continue along these lines, which
becomes tedious anyway, 3 one can postulate the
product form of the wf from the outset and justify
it by physical intuition. In view of the large mass
difference rn «M, one assumes that the nuclei
move much slower than the electrons such that the
latter see the heavy particles essentially as fixed
force centers. Considering the nuclei as classical
point masses, describing certain time-dependent
paths R =R(t}, one can then introduce the adia-
batic approximation4 which consists of assuming
that the electronic quantum numbers will not
change during this motion. The electronic state
will adapt itself instantaneously to a displacement
of the nuclei. In order to obtain the nuclear part
of the wf one thereafter considers the heavy par-
ticles as quantum-mechanical objects, subject to
the average effect of the quickly-revolving elec-
trons. Their role is to create an effective poten-
tial for the nuclear motion.

The above scheme, commonly referred to as the
adiabatic approximation (AA} makes the approxi-
mate solution of the many-body Schrodinger equa-
tion a more feasible task. However, this is ach-
ieved at the cost of mutilating classical and quan-
tum mechanics. The nuclei play a dual role,
classical in the eyes of the electrons but quantal if
interacting between themselves and with the elec-
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tronic cloud. The adiabatic approximation can
therefore be classified as a "semiclassical" theo-
ry. This statement has been strongly emphasized
by Woolley and Sutcliffe. They pointed out that
most of the primary concepts used in molecular
spectroscopy, traditionally attributed to the AA,
were developed within the framework of the old
quantum theory. Examples are, the potential-
energy surfaces, the separation of the molecular
energies into electronic, vibrational and rotational
contributions, 7 the symmetry classification of
electronic levels in' diatomics, etc. The close
relationship between the AA and semiclassical
approaches is further demonstrated by the Ryd-
berg-Klein-Bees procedure for constructing po-
tential-energy curves. This technique based on
the Bohr-Sommerfeld quantization rule is superior
to more quantal methods (e. g. , fitting spectro-
scopic constants in PT expressions for truncated
power series expansions of potential-energy sur-
faces). Term values can be reproduced differing
from the experimental values by less than the
magnitude of the so-called nonadiabatic correc-
tions. ~ Clearly, this is pushing the model beyond
its limits since the exact electronic eigenvalue will
not give that kind of accuracy. Situations like
these together with more arguments given in Ref.
(5) express the desirability of constructing a theo-
ry free of semiclassical contamination (see also
Refs. 10-14).

Several attempts have been made to go beyond
the AA (for a review see Ref. 15). However, none
of them seems to be feasible for more than two
electron diatomics. The most general approach
is the one suggested by Born'6 based on an expan-
sion of the wf in terms of the complete set of elec-
tronic eigenstates. The coefficients, which are
functions of the nuclear coordinates, must then
obey an infinite set of coupled differential equa-
tions. This method, although formally exact, is
of little practical use. Indeed the application to
H, ' has shown that the Born series, the first
term of which represents the adiabatic wf, is
very slowly convergent. " This means that a
large number of electronic states have to be known
at all internuclear distances. In addition one
should include the electronic continua contribu-
tions which leads to a set of coupled integrodiffer-
ential equations. Thus the Born method, although
useful for a general discussion, is certainly not
at present feasible for many-electron diatomic
or polyatomic molecules. Instead of trying to in-
crease the accuracy of the AA, it seems more
reasonable to drop the idea of separating electron-
ic and nuclear motions from the very beginning.
However, at the same time one should be careful
not to lose the simplifying features of the adia-
batic approach (e. g. , the separation of the energy

in its electronic, vibrational, and rotational
parts). It will also be advisable to make optimal
use of the results already available for the elec-
tronic eigenvalue problem.

An outline for constructing a theory fulfilling
the above requirements has recently been given. "
Inspiration was found in nuclear physics, more
precisely from the description of collective mo-
tion in nuclei. Hery an alternative to the classi-
cal Bohr-Mottelson approach' was suggested by
Griffin, Hill, and Wheeler. '~' They considered
trial functions of the form

The above integral equation, supplemented with a
boundary condition, is known as the Griffin-Hill-
Wheeler (GHW) eigenvalue problem. Its eigen-
values are upper bounds to the exact energies of
H. The success of the method depends critically
upon the way the parameters a are built into the
intrinsic states. However by integrating over the
a range the parameters are no longer present
in the final result. They appear as extra coor-
dinates which serve only to label the basis states
and generate the wf's. Hence the name of the
above variational procedure: generator coordin-
ate method (GCM). In the following sections we
will show that the AA can be formulated as a gen-
erator coordinate method in which "molecular
structures" play the generator coordinate part.
This then suggests a more quantal treatment of
the nuclei which results in a nonproduct type of
wf. The theory is applied in detail to diatomics.

8. Trial functions
1

The molecular Hamiltonian is the sum of three
terms

H=T+I;+V, (2. 1)

where T and t are the nuclear and electronic kin-

where x stands for all particle degrees of freedom
and o'. denotes a set of parameters related to the
collective motion. The wf's 4(x) are linear super-
positions of continuously labelled basis states
X( ~

x)o, frequently termed "intrinsic states", with
weight functions f(o.'). If the latter are determined
from the variational principle they must satisfy
the secular equation
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etic-energy operators and V contains the Coulomb
interaction between all particles. In the limit of
infinite nuclear masses we have

Ho ——lim H=t+V,
N

(2. 2)

where Ho is the electronic Hamiltonian. In order
for Ho to be a meaningful operator on the Hilbert
space of the electrons one has to specify the nu-
clear positions. We denote a nuclear configura-
tion by a set of values a. Since H0 does not con-
tain any derivatives with respect to n it follows
that

[Ho, n] =0. (2. &)

Hence the values a are good quantum numbers for
the elec tronic eigenvalue problem corresponding
to H, (n), i. e. ,

H( n)y„(r l
n }= U„(n )y„(r

l
n ), (2. 4)

q „(~ln) 5(R —n). (2. 5}

These are the so-called fixed nuclei states. They
depend parametrically on the nuclear positions.
In the adiabatic approximation, i. e. , under the
assumption that the n are good quantum numbers
for the total molecular state, the most general
trial functions one can form are linear combina-
tions of (2. 5} for different n values2'

@" (r, ))) ff(a)p(rim)a()) —a)dn

= q „(rIR}f(R) (2. 5)

The explicit integration over the nuclear struc-
tures gives the usual product form. The import-
ant result here is that the intermediate integral
form of 4" shows that the AA is equivalent to a
generator coordinate procedure using fixed nuclei
intrinsic states (2. 5).

An obvious way to generalize 4 if considered
as a product is to add extra terms. This can be
done systematically by writing down the Born ex-
pansion

e'(~, R}=y„(rlR).f(R)+ Z p.(AIR)f.(R) (2 ~)

where n stands for the electronic state labels other
than n. Thus for nuclei at n, the (r, R] represen-
tation of the molecular wf is

by a function C(R ln) which is sharply peaked
around 0. , i. e. , we suggest

4 ™(+R) =
J f(n)~.(~In)C(R ln) dn. (2. 8)

Because of the finite extension in space of @(R
l
n)

the integration over the nuclear configurations now
generates nonproduct trial functions from product
type intrinsic states

(r R ln) =~.(~In)c(R In) (2. 9)

The maxima in the electronic and nuclear part
both occur at n such that these basis functions
describe electrons moving in the average (rather
than instantaneous) field of the nuclei. By super-
imposing them we conserve the adiabatic hypo-
thesis, i.e. , the electronic quantum numbers are
kept constant. However, nonadiabaticity is intro-
duced by modifying the nuclear basis states and
integrating out the "molecular structures" o which
play an intermediate role only.

Whereas the AA is represented by the first
term in the Born expansion, the transition from
the GCM to the AA can be carried out by narrow-
ing 4(R

l
n} to a 5 distribution, i.e. ,

(2. 10)

C. Variational equations

The variational principle applied to the product
form of the adiabatic trial functions leads to the
well-known "Schrodinger equation" for the nuclear
motion

[T+U„(R)+C„(R)]f" (R) =Ef" (R),

where C„(R)= &p„(R) l
T

l p„(R)) is the so-called
adiabatic correction term to the fixed nucleus po-
tential U„(R). One can just as well apply the GC
variational principle to the weight function f" (n}.
This gives a GHW integral equation with kernels

(2. 11)

Thus, the GCM goes over into the AA by fixing the
nuclei in the intrinsic states. Both the Born and
GCM approach contain the AA as a special case
the difference lies in the way nonadiabatic effects
are introduced. In view of the slow convergence
of (2. 7) use of this expansion requires knowledge
of a large number of electronic states. In the
GCM replacing 5(R —n) by C(R

l
n) couples electron

and nuclear motion directly.

where Z stands for summation over the discrete
and integration over the continuous part of the
spectrum. The GCM form of 4'", however, offers
a more direct way to introduce nonadiabaticity.
Indeed, in view of the fact that M, it seems
reasonable to replace the delta distribution 5(R-n)

~".'(n, P) = &v.(n)
l v.(P)»(n —c3),

H."'(n, @=&~.(n) I ~.(P})T'(n}5(n P}—
+ U.[k(n + P)] &"'(n, P)

(2. 12)
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The differential and integral forms are easily
shown to be equivalent. The use of fixed nuclei
intrinsic states is reflected in the appearance of
5- function kernels. Introducing an uncertainty in
the positions of the nuclei spreads out the adia-
ba.tic kernels

&.(c., P) =&v.(n) I~.(P)&&c(n) Ic(f)))

R.(~, I3) =&v.(~) Iv.(P)& &c(~) I~'Ic(P))

+&v.(o') If v.(P)&&c(o') 4(P)&

+ &v.(~)c(~) II'Im. (P)c(P)). (2.13)

(2. 14)

Since the nuclear intrinsic states are sharply
peaked we expect H„and 4„ to be essentially dif-
ferent from zero only when n =—P.

Solution of either (2. 11) or the GHW equation
corresponding to (2. 12) generates a "band" of lev-
els with corre.sponding nuclear wf's and weight
functions. In view of the limit (2. 10) we have

x' cos&cosg cos8sing -sin8 x

y' = -sing cosQ

z ' sin8 cosP sin8 sing cos8 z

(3 1)

not yield eigenfunctions of J' and J, i.e., does not
conserve total angular momentum J. The difficul-
ty stems from the adiabatic correction term C„(R)
being generally not invariant under rotation. It
is therefore preferable to take the rotational in-
variance of H into account from the outset. " For
this purpose one introduces a rotating reference
frame, i.e., a system of axes in which the
nuclei are immobile. For diatomics a conven-
ient choice of this molecule-fixed frame (S')
relative to the laboratory system (S) is to take
the z' axis along the vector R joining the nuclei,
the y' axis perpendicular to e, and e„and the x'
axis such that S' is right-handed when S is. The
transformation of an electronic position vector r
from S to S' is given by

where k stands for a set of vibrational and rota, -
tional quantum numbers. In replacing 6(R- n) by
C(R

I
o. ) one deforms the adiabatic trial space

rather than extending it. Therefore, one can not
say anything about the. relative ma, gnitude of the
GCM and AD eigenvalues. The only conclusion
one can draw is that both are upper bounds to the
exact energies (both methods are variational}.
The nonproduct type of wf's, g~ "(r,R}, are ex-
pected to be of importance in the calculation of
properties other than energy, especially for op-
erators involving nuclear coordinates. In the AA,
such expectation values are first computed as a
function of the internuclear distances. In the
GCM, one associates with each property a cor-
responding kernel which, after a double integra-
tion with the weight function, gives the GCM ex-
pectation value. For an operator P =P(r, R) we
have

P„(6, I3) = &y„(o')C'(o') (P I p„(P)c'(P)),

IG~CM= „,n P„a, „, dad .
(2. 15)

Nonadiabatic effects are expected to be more pro-
nounced in the calculation of these quantities since
adiabatic energies are accurate up to order x4 the
corresponding wf's only up to z2.

where 8, @ are the polar angles of It in S. So far
we have used electronic states defined in S. How-
ever in order to evaluate the adiabatic correction
term one has to transform y„and T to the rotating
frame. It is easily seen that

dt(8, y)q „(r IR) =p„(r'IRe, , )=—9 „(r (3.2)

2 1 a a—sin0-
„sine 88 88

where rp„ is the electronic state in S' and &R(8, Q)
the rotation operator associated with (3. 1). Since
the electronic coordinates r' depend implicitly
upon 8 and P, the differentiations with respect to
nuclear coordinates will give rise to extra terms
if operating on y„(r' R). These additional opera-
tors can be divided into two groups. The members
of the first group commute with the z' component
of the electronic angular momentum /„, while the
second group couples states differing in one unit
of A (common notation for the eigenvalues of l~).
If averaged over the electronic eigenstates (which
are eigenfunctions of I,.) the latter do not contri-
bute. Comparing the remaining term with the ex-
pression for the total angular. momentum

III. DIATOMIC MOLECULES

A. Symmetries of the molecular levels

+ . , ——il,. o cs8—I~sin'8 3

one finds that T should be replaced by

(3. 3)

The variational derivation of the adiabatic ap-
proximation, common in most textbooks, ""does —(I/2p)&s + (I/2pR2)(J2 —I~2 +l2, +l~). (3.4)
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The adiabatic differential operator [the translation-
al motion is assumed to be separated off] can then
be written as

—(I/2P)~s+(I/2pR2)(J2 —A2)+W„(R), (3. 5)

where Z2~ is (3.3) with I, , replaced by A. W„(R)
is the sum of the fixed nuclei potential and the
pure R dependent terms arising from averaging
(3.4) over y„(R). The eigenfunctions of ~2~ are
well known. " They determine the angular part-
of the nuclear eigenvalue problem e'"'d»'~(6)
Bere d ~J~ is the Wigner function as defined e.g. ,
in Ref. 26. 'The radial. equation for the function
g(R)=Rf(R) now takes the form

( -+— —
~ +W„(R))g(B)=Eg(R)1 d2 Z(8+1) —A2

2p dB 2pR
(3 ')

The' electronic eigenstates are traditionally writ-
ten 'A'„„. According to whether A =0, 1, 2, . . .
one has Z, ~,II, . . . states, + denotes the behav-
ior under reflection through a plane containing the
molecular axis and 2S+ jl. stands for the spin mul-
tiplicity. We will study the molecular levels built
on the above electronic states neglecting all cou-
pling between spin and orbital angular momenta.
The final mf's take their most compact form if one
defines the azimuthal angles of all electrons rela-
tive to the one of a particular electron. If we call
this angle g one can factorize e'"' from the elec-
tronic states and the adiabatic functions are

clear ease the electronic states have the additional
gerade (g) or ungerade (u) symmetry depending
on the behavior under inversion of the electron
coordinates alone. The spatial part of total wf
must be symmetric (s) or antisymmetric (a) such
that after combination with a nuclear-spin function
the state changes sign or not ader interchange of
the nuclei depending on whether the latter are fer-
mions or bosons. There is a definite relationship
between the total parity, the sign (+) of the elec-
tronic term and the nuclear permutation symme-
try. If the level is even (odd) and positive (nega-
tive} then it is symmetric, but when it is even
(odd) and negative (positive) it is antisymmetric
under interchange of the nuclei.

The explicit derivation of the above results is
quite tedious and lengthy (explaining why it can be
found in specialized books and articles). It is,
however, of vital importance to prove that total
angular momentum and parity are conserved in
the AA. %e now aim at showing, in a more
unified and didactically appealing way, that the
nonadiabatic QCM shares this property. In
particular the often confusing transformation of
functions and operators to the rotating reference
frame mill be avoided.

Peierls and Yoccoz were the first to demon-
strate that angular-momentum projection can be
achieved by the GCM. They observed that the
orientation of the reference frame in which the
intrinsic state is defined can be used as a gener-
ator coordinate. Consider the energetically de-
generate functions

vn'(~'IR)R 'r(R)au~(~)

DJ' (g) ef»'dJ(e)efA4'
(3. 7}

g(n)x(x) =x[@-'(0)„]-=x(»lg).

One can dispose of the arbitrary directions 0 by
integrating over all possible angles, i. e. ,

where p~" depends on the relative positions of the
particles only and 0 denotes the three angles P,
8, g. We havenotyet taken into account the fact
that for A0 the +A states are degenerate such
that the AA could be performed using any linear
combination of them. The proper coefficients can.
however, easily be found, requiring the final wf's

to be of good parity. The result reads

q'0"(x'IR)R 'g(R)~«(~, y-}

[~:"(~'IR)D:.(~)+ ~"'(~'IR)D:-.(~)] 'g «» (3 8}

for Z and ~, II, . . . states, respectively. Func-
tions defined in S' change sign under inversion of

S according to whether they are + states. 2' In view

of this fact and the properties of spherical harmon-
ics and D functions one can summarize the sym-
metry properties of the molecular levels as fol-
lows" (see Fig. 1). For Z'(Z ) the parity of the
rotational levels is (-) [(-) ']. In the homonu-

~(») =
~l f(n)x(»ln) d@. (3.10)

f«(Q) = g C»D „(0),
E=-J

(3.11)

where the coefficients C~ are the solutions of the
algebra. ic eigenvalue problem

+J'

»'K~ KK'}~»~

~' =(x(0)I»'-. Ix(0)}

'»» =(x(0}I&»K Ix(0)&. (3. 12)

&„& is the familiar angular momentum projection
operator defined by

The resulting GHW integral equation can be solved
by group theoretical methods. 2 The weight func-
tions turn out to be linear combinations of D func-
tions
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FIG. 1. Symmetry prop-
erties of rotational levels
in various species of vi-
brational levels: (a) het-
eronuclear and (b) homo-
nuclear.
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(We left out a constant (2J+ I)/(8II') since in the
following, the equations are frequently valid up to
a normalization factor only. ) It projects from an
arbitrary function. an eigenstate of J' and J, with
eigenvalues J and M. Combining (3.10), (3.11),
and (3.13) the final wf can be written

4s (x) = P CxPss„y(xl0), (3.14)

which is a weighted sum of JM eigenstates.
The above technique is well suited to obtain good

angular-momentum quantum numbers in our GCM
approach to molecules. In A =0 and A4 0 diatomic
electronic states the wf's are

We have restricted the nuclear intrinsic states to
depend on lR-o'. because in the adiabatic lim-
it it should go to 5(R —n) which is an even func-
tion of its argument. It is easily seen that with
this choice the average relative position of the nu-
clei in the intrinsic states X(n) is n, indeed, one
finds (y(n) lRlx(n)) =n. A typical choice could be
(X/w)3~s exp[-X(R- B)2]. In view of the dependence
of the electronic Hamiltonian H(sT) on lr+FTl and
the form of the nuclear intrinsic states we can re-
write these integrals as

(R 8, yo-r ne, 4 R —ne,

f(sY)m(8, P )yo(ne, ) dn,
n yo r a O' R —Z' dB,

y'(Q)[y~(r lcx) + y (s
l
B)]e(lR- c. l) dB.

(3.15a)

(3.15b)

f(&)@(8 y )[P~(s'Ine ) j qr ~(slee*)]

xc'(IR- ne. l)«
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f(cT)st(e. , y, )[X,(ae,)+X,(c.e,)j«. (3 16)

When f(n) is split into a radial and angular part
one can roughly recognize the form of the projec-
tion operators in the above formula. An essential
simplification occurs because of the fact that when

P„E works on an eigenfunction of J, it will give
zero unless the corresponding eigenvalue is K.
The basis functions in (3. 16}are eigenstates of
J,=/, +L, with eigenvalues 0, A, and -A. There-
fore, one can project out only one JM component
for Z states and two for A 40. In the latter case
(3.12) reduces to a 2&&2 secular equation. The
diagonal elements, i.e. , the energies of P„~x&
and P ~X~ ~, turnout to be equal. Therefore, the
resulting eigenstates are always the + combina-
tions of the basis functions. Because of these
additional features of the molecular intrinsic
states, the weight functions are

fr~(&) =& 'g(&)y'~s(~. 0 )

5~s(cT}=~ 'g (ct)[s'""4~(~.) (3. 17)

+ eENA~d& (e )j

The consistency of these results can be tested by

verifying that the parity is (-) "where s is 0 for
a + state and 1 for a —state.

In the homonuclear case, good parity functions
can be generated if the electronic g or u states
are combined with even or odd nuclear parts

eg s(R[n) = 4(]R—Q [)+ g)()R+(y [). (3. 19)

The GCM.wf's will have parity (-)~'~, where p and

P are 0 or 1 for gerade or ungerade functions, re-
spectively. Working out the integrals making use
of the above projection technique one finds that
the terms arising from 4(~R + 5

~
) are identical up

to a sign factor. More specifically the wf's are
proportional to

[1+(—) ""j. (3 2o)

This factor determines whether a, given electronic
state (i. e. , a given s and P) and a total angular
momentum and parity are compatible. At the
same time it tells us which nuclear intrinsic states
to use. It is a mere exercise to reconstruct the

diagrams of Fig. 1 by requiring (3.20) to be non-

vanishing. An interesting situation occurs for

The associated angular-momentum projected wf's

are

Cga = ~8 (ct}P„pXp(a. eg)a da. ,
a

g & P„~X~ ne

+f & -a X-~(&e,)j«n

spin zero nuclei. In this case there are no anti-
symmetric spin states such that 6 basis states
are obligatory. It then follows that (3. 20) is zero
for &~, Z„(&'„,Z~) and even (odd) J values. Such

levels are therefore nonexisting, a well-known

result. 26

This completes our deriva, tion of the inter-rela-
tionship between electronic, nuclear, and final-
state quantum numbers which was established via
projection techniques rather than by manipulation
of rotating reference frames.

B. A doubling

J+A
4E&~ —const (3.21)

where the parentheses denote a, binomial coeffi-
cient. This result (I am not aware of any previous
derivation of (3.21). ) is identical to the one ob-

tained by PT following the AA [J(J +1) for II
states, (J- 1)J(8+1)(J + 2) for & states, etc. j

A doubling, although small, is experimentally
observed. It is a nonadiabatic effect which is in-

corporated in the GCM picture due to the interac-
tion between the JM projections of X~ and X, z.

C. Separation of the molecular energies

One of the great successes of the AA is that the
energy pattern

E =Etrms +Ee& +E u +Erot

which roughly explains the structure of the spec-
tra, can be obtained in a simple way. Expanding
the potential W„(R) around its minimum Rp one ob-
tains, to second order, a harmonic oscillator
equation yielding the approximate spectrum

(3. 22)

In the AA terms with A4 0 are doubly degener-
ate. In reality, however, one finds two levels of

opposite parity close together [see e. g. , (26)j.
This effect is known as A doubling. Van Vleck ~

has shown that the AA fails to explain this phe-
nomenon because of the coupling terms dropped in

performing the transformation to the rotating ref-
erence frame. These operators connect electron-
ic states A with A + 1. Hence in a PT treatment of

A doubling, the effect will be of order 2A. The

energy splitting is therefore estimated to be of the

order (m/M) =v, i. e. , it is most important
for II terms.

In the GCM approach, A doubling is taken into

account automatically via the angular momentum

projection. Indeed the functions P„&X~ and

P~ & X ~ are nonorthogonal and interacting with

respect to the Hamiltonian. The eigenvalues of

the 2~2 secular equation are therefore nondegen-

erate. The dependence of the level splitting upon

the quantum numbers J and A can be calculated
using techniques to be presented in Sec. III C. One

finds
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E„„z—W„(Ro) + (v + o)&() + [Z(J'+ 1)—A2]/21,

~ =[II'"(Eo)/el'", I=VB'o, (3. 23)

~here v =0, I, 2, . . . and J takes on integral val-
ues equal or superior to A.

The decomposition (3.22} results from the as-
sumption'that the electronic, rotational, and nu-
clear vibrational motions are decoupled. This is

reflected in the product type of the corresponding
wave function. The question now arises whether
it is possible to approximately solve the GCM
equation such that the energy can be written as in
(3. 22} without having to actually separate the dy-
namical motions. For this purpose, we evaluate
the energy of the GCM projected states. As an
example we treat Z states. The results are easi-
ly generalized to the A& 0 case. We have

E„~— g p
Po FI&~ Xp g + dad

gQ /pe PM PMo Xp g 0 d d (3.24)

Using the properties of the projection operators, we can rewrite this as

Xp~ 8~8, X,

g& p& @ ~z Xp P&8& de& g a dad
(3.25}

where the P&(8o) are the I egendre polynomials
(we will drop the P subscript for the rotation ang-
le}. In view of the fact that the nuclear basis
states are strongly localized in space, the matrix
elements occurring in the above integrals are
sharply peaked functions of c( —P and will decrease
rapidly as 0 differs from 0 or w. It is therefore
reasonable, in a first approximation, to replace
the overlap matrix element in the denominator of
(3.25) by a product of two Gaussians

e (rl2)o e (s/2)(n o) g (8)}}), (o} p) (3 26}

The Hamiltonian matrix element will behave in ap-
proximately the same way, so that the ratio
K(o. , P, 8) is a slowly varying function. We there-
fore set

K(n, P, 8) =—E(o.o) +K„,„(n, P}+K„,(8)

=E(ao) +,'s[B(c( —o. o)2 +2A—(n—no)

S ) V P J3t Xo ()

~XpsB = (Xo I
H —E(uo)

8Q p

(3.aS)

x (P no) +B(P no)'] ,'o g8', —

(3.27)

where =means n and P are around o. o and 8 is in
the neighborhood of 0 or m.

The constants s, x,A, are easily determined
by expanding the intrinsic states in Taylor series
around 8=0 and o. =P =no. One obtains

sA= ~X H —E(a )
Xo

an ' ao.

o"~ = (Xo IBd E(o(o) I Xo&o

E„E(a,}+f=P (S}}(..(e}b .(}}}d}}. ..
x

I&,I P,(8)&...(8) d8

g(y g(b(y Q ~b@- g Q dQd

X g~ a„,b& — g a dad

(3.29)

Since the integrands in 8 have nonzero values only

around 0 and w, one can insert the asymptotic ex-
pansion of the Legendre polynomials

P~(8) 1 —,'82J(J+ 1). — (3. 30)

This allows us to evaluate the second term in
(3.29) in closed form. The function g(n) has so
far been l.eft arbitrary. If it is varied to mini-
mize the last term in (3.29) one obtains a harmon-
ic oscillator equation for the function
j&„o(o,'—P)g(P)PdP. The approximations made so
far are commonl'y known as the Gaussian overlap
approximation (3.26) and the quadratic approxima-

where ( &o means that the matrix elements have to

be taken at 8=0, o. = p =no. The energy expecta-
tion vat.ue is then a sum of three terms
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tion (3. 27) and (3. 30). The resulting energy spec-
trum under these conditions is

overlap plus quadratic approximation) is therefore
a nonadiabatic zeroth- order problem.

&..g ——&(&p) —&&.g —&&ra~

+ (g + 2)(o +J'(8 + 1)j2I,

ag...=C, I=rjC,

which is the required form. The term &8«„,
~E„t represent, the energy gain due to the varia-
tional treatment of vibrations and rotations. The
vibration frequency v and the moment. of inertia
I depend upon the local structure of the energy
surface around the equilibria n =up and 8=0, m.

For the A4 0 case one has to use the expansion

(3.32)

which gives (2. 23). For a deta, iled calculation of
the moments of inertia we refer to the nuclear
physics literature. 3P

The energy formula (3. 31) has here been derived
as a result of mathematical approximations rather
than through decoupling dynamical motions. It is
important to notice that although the weight func-
tions factorize as a product of a rotational and vi-
brational part the corresponding wave functions do
not. The harmonic GCM approximation (Gaussian

IV. CONCI. USION

We have shown that it is possible to formulate a
theory of molecular spectra without using poten-
tial energy surfaces. The GCM shares the sim-
plifying features of the adiabatic approximation:
it makes use of work on electronic problems (elec-
tronic part of intrinsic states), total parity and
angular momentum are conserved and the separa-
tion of the eigenenergies is obtained through mathe-
matical approximations. It will be hard to convince
both theoreticians and experimentalists to abandon
the potential-energy curve picture, a concept which
has served a useful purpose for over fifty years.
We aim to show that nonadiabaticity is indeed an
important effect in the calculation of molecular
properties and that the GCM is a feasible method
to incorporate them. Work along these lines and
generalization of Sec. III to the polyatomic case is
in progress.
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