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The properties of the two-state approximation are considered from the p'oint of view of atomic collision
theory in the hmit of large and small values of a characteristic collision time T. For large T (the adiabatic
limit) asymptotically exact expressions are obtained for the elastic-scattering phase shifts and for the
nonadiabatic transition probability due to the pseudocrossing of terms. This approximation is carried out
under fairly general assumptions about the Hamiltonian, enabling us to consider such processes as transitions
between X-II terms caused by rotation of an internuclear axis. Such general problems of the adiabatic
approximation as the applicability of adiabatic perturbation theory, the introduction of a dynamical basis,
and the properties of the electronic wave functions in the pseudocrossing region are discussed. For small T
(the sudden-peturbation limit) the evolution operator to zeroth and first order in T is calculated. We
introduce a general and unambiguous definition of an adiabatic basis as a basis of eigenvectors of the
evolution matrix to zeroth order in T.

I. INTRODUCTION

The nonstationary two-level problem presents a
very useful model for the investigation of collisions
of heavy atomic particles and is widely used in
other applications of quantum mechanics. A vast
literature is devoted to this problem (see, e.g. ,
Nikitin' and references therein). Specific forms
of the time dependence of the Hamiltonian have
been considered, as well as general problems of
theory, including various approximate methods.
The latter may be subdivided into those construct-
ed in a mathematically rigorous manner, such as
expansions in certain small parameters describing
the interaction, and those of a semiempirical or
interpolative character. There are also numerical
computations for specific Hamiltonians.

The present work is devoted to a systematic ex-
position of the first approach for the case in which
the expansion parameter is associated with the
characteristic time T of the change in the Hamil-
tonian. If T is small, we have the adiabatic case;
if T 0 we have the limit of a,suddenly switched-
on perturbation. (These two limits are in close
analogy with the quasiclass ical approximation and
perturbation theory )Despite .the fact that a con-
siderable number of articles have been devoted to
these physically extremely important situations
(especially the adiabatic one), as far as we know
there have been no reports of work in which the
indicated approach is developed in a systematic
and sufficiently general form. Moreover, such a
treatment is of interest from the point of view of
getting concrete results of a mathematically rig-
orous character which can be used, for example,
to check numerical computations or to construct
and check various approximations; at a fundamen-

tal level it is,significant that, as indicated by gen-
eral considerations, there exist cases which are
not described by the conventionalmodels, the most
widely used being the Landau-Zener model. Such
an alternative situation is realized, for example,
in the problem of transitions between Z-II terms
crossing in a united atom. This is considered in
detail in a separate paper. ' Problems of this sort
have made it necessary to generalize the existing
theory.

Other fundamental results connected with the
approach used here include the possibility of ob-
taining qualitative physical conclusions, as well as
the possibility of introducing certain new and use-
ful concepts and of sharpening or generalizing
others that are widely used in the literature but
which are not rigorously and uniquely defined.

As already noted above, the literature on the
two-level problem and its applications is substan-
tial, and we have not attempted to review it here.
%e merely refer to the review' and monograph' of
Nikitin and to certain later works in which the bib-
liography has been extended. ~ '

The starting point of the present work is the
Schrddinger equation for the nonstationary two-
level problem in an adiabatic basis

Z, = W (t) exp ~i tsE(t') dt' Z, ,
d

'

(.
dt o

—Z, = —W(t) exp
~

—i tsE(t') dt' Z, ,
0

with the initial condition Z, - 1 and Z, 0 for t
Here, tsE(t) is the splitting of the adiabatic

energy levels (terms), and W(t) is the matrix ele-
ment for the interaction of adiabatic states. A ba-
sis of adiabatic states has the obvious advantage

2089 1978 The American Physical Society



209G DEMKOV, V. N. OSTROVSKII, A WO E. A. SOLOV'EV

that it permits an unambiguous definition as a ba-
sis of eigenvectors of the instantaneous Hamiltoni-
an of the system H(t) at the given fixed time t.
The equations for any two-level system can, of
course, be brought to the form (1) in an arbitrary
basis (although the quantities bE and W will then
have another meaning). The special feature of an
adiabatic basis is revealed if we introduce the
characteristic. time T for change in the Hamilton-
ian H; we may then consider that JI depends only
on the variable r =t/T. The splitting of the adia-
batic terms 4E also depends only on 7', while the
interaction 8' takes the form

W = r V(r}-.

%'e assume that for t-~~ the Hamiltonian has def-
inite limits, and the problem consists in finding
the transition probabilities between the two corre-
sponding adiabatic states.

We note that equations simila, r to (1) also arise
in the stations. ry two-level problem (correspond-
ing to the quantum description of the motion of the
nuclei in atomic collisions) when it is treated in
the quasiclassical approximation (see, e.g. , Refs.
4 and 5).

Section II of the present paper is devoted to the
adiabatic case and Sec. III to the sudden-perturba-
tion limit. Section Ip contains some concluding
remarks.

II. ADIABATIC APPROXIMATION

In the region of small collision velocities of the
atoms e, - analytic expressions can be obtained for
the quantities of interest by asymptotic methods.
This is important because for smallv (v =—T ') the
coefficients (and, hence, the functions Z, and Z, ) in

Eq. (1) oscillate rapidly, and the numerical solu-
tion of these equations by computer becomes a
complicated problem.

In the adiabatic limit, the time dependence of the
functions Z, (t) and Z, (t) is obtained quite easily;
however, the transition probability is not so easily
obtained. The situation is completely analogous to
the well-known problem of over -barrier reflection in
the quasiclassical approximation, where it is com-

. paratively easy to calculate the wave function for
each point in much the sam. e way, but the reflec-
tion coefficient is obtained only in the framework
of the considerably more complicated etalon-equa-
tion method. '

Let us look first at the calculation of the func-
tions Z, (t) and Z, (t). For slow variation in the
Hamiltonian, the population of the initial state
~Z, (t) ~' is always close to unity. ' Since neither
the modulus nor the phase of Z, (t) changes signifi-
cantly during the course of a collision, the rapidly

changing phase factor in Eq. (1) must be attributed
to variation in the functions, (t). Introducing the
new notation

P=Z„Q =Z, exp(( L)((t')dl'),
0

(2)

we obtain equations with smoothly varying coeffici-
ents

= WQ; ——=ihEQ —WP .
dt ' dt

(3

In the system of equations (3), we introduce ex-
plicitly the small parameter v(r =vt):

.',"=WQ,
d'T

v =ihEQ —WP .dQ
dT

(4b)

As noted above, in the zeroth approximations we
must set P(v') =1. Since the small parameter v
stands before the 7-derivative in Eq. (4b), in the
first approximation this term should be dropped;
hence for Q(v') we obtain

() . W . w(v)Q'" -'~ =-'"~E(). (5)

I =1+ I-""' 7 v" = '"' ~ e"

where the functions P'"' and Q'"' are calculated
from the recursion relations

@(n) Yr (n) &r d7-r
aOO

Q'"'( )=. —Q'-"+ P'" "I.1 (GE
i~z(r) I dr

The- normalization in the nth approximation is ful-
filled to terms of higher order.

Returning to the behavior of the functions Z, and
Z„we find in the first approximation the following
result:

' m'(v')
Z, (r) =1 —iv, , dr'+o(v),„~(r' (»)

Z, (r) = exp -it' ~(t') dt'
I

x
( (v +o(v)) .N)(r)

The correction for P(r} is obtained from Eq. (4a)
by using the approximation (5) for Q(r);

T gg2 rl
„LhL(rr j

Further iteration of the system of equations (4a}
and (4b) yields an expansion of the functions P and

Q in powers of v,
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The analogous result for the second channel differs
by a sign.

The iterative expansion constructed above is
nothing more than the result of systematic diagon-
alization of the right-hand side of the system of
Eqs. (1). We may write the two-level system in
the form

where H, is the Hamiltonian in the diabatie basis.
The transition from approximation n to approxima-
tion n + 1 consists in writing the system (9) in a
basis of eigenvectors of the matrix H„: H„X„=A.„X„.
After simple ma, nipulations in the new basis, a.

system of equations (9) is obtained, where the ma-
trix elements of the operator H„„are connected
with those of the operator H„ in the following man-
ner:

(@2 Igr ~2)x/2 (1O)

E2 d /iW i)
2E' d i En+i T

E n )

The components of the eigenvector X„are calcula-
ted in the initial basis in Ivhich Eq. (1) is written.
They correspond exactly to the expansion of the
solutions of Eqs. (3) to nth order. This is seen

The power-law dependence of P and Q on v has a
simple physical interpretation. The quantity ~P(r}

~
.

is the probability of remaining in the initial state
when the interaction between states is suddenly
switched on at the moment f =r/v, and the transi-
tion probability is givenhereby the quantity ~Q(&) ~'.
Qn the other hand, it is well known that sudden
switching on of the interaction leads to a power-
law dependence of the transition probabilities on
the parameters of the problem. The power-law
form of the expansion of P and Q is a reflection of
this fact.

If the interaction always varies adiabatically and
analytically then this approach does not enable us
to obtain the transition probability since Q~"'(v)-0, for 7-+ and for aQ n. We note, however,
that although this approach does not enable us to
find the transition probability, it does not follow
that we obtain no information concerning the final
results of the collision. Thus, if in Eq. (Va) we let
v'-+~, we obtain the elastic scattering phase shift
Q in the first channel to first order,

immediately from the fact, following from (11), that
9'„-v". The diagonal matrix element E„, which for,
n =0 is a diabatic term and for n =1 is an adiabatic
term, could naturally be called (for n & 1) a dynam-
ical (or velocity-dependent) term of nth order. The
notation of a dynamical term was introduced earli-
er in connection with the problem of mixing of hy-
drogenlike levels in collisions of atoms with
charged particles. In that case it turned out to be
quite useful. Here, dynamical terms arise natur-
ally in an arbitrary two-level system. An interest-
ing and universal feature of dynamical terms is the
fact that the distance between them increases with
the growth of n [this follows directlyfromEq. (10}j,
the terms being maximally repelled in the pseu-
docrossing region. The phase shift Q, Eq. (8),
which is a correction to the adiabatic pha, se shift
—f,'AE(t') dt', is associated with just this effective
separation of the terms. The effect of this correc-
tion on the interferenee oscillations of the excita-
tion cross sections is discussed by Ostrovskii and
Kharchenko. "

Since the completion of our work, some addition-
al references have come to our attention. The
transformation (2) and the further expansion in
powers of v was used by Lebeda and Thorson" to
speed up the numerical integration of the system
of differential operators in the adiabatic domain.
A representation for the stationary (quantum)
multilevel problem, analogous to the representa-.
tion of dynamical terms, has been suggested re-
cently by Klar and Fano, "who called it the post-
adiabatic representation.

I.et us return'now to the calculation of the transi-
tion probability. We shall follow Solov'ev" here
(the more general problem of transitions with the
simultaneous pseudocrossing of an arbitrary num-
ber of terms was considered in Refs. 14 and 15).

When v is small, the transition probability is al-
so small; the main contribution comes from the
region of closest approach of the terms (the pseu-
docrossing region). The adiabatic perturbation
theory, in which the function Z, is taken every-
where equal to unity, and which at first glance
seems natural for such a situation, gives an in-
valid result. " We discuss below some reasons
for the nonvalidity of the adiabatic perturbation
theory. The asymptotically exact value of tile
transition probability for small v is obtained by
the 6talon-equation method. This method is ex-
plained in detail, e.g. , in the monograph of Head-
ing' (see also Nikitin' and Landau and Liftshitz").
For our purposes it is more convenient to use a
somewhat different approach, which in essence is
identical with the btalon-equation method.

The exact transition probability amplitude F is
given by the expression
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4.«) g

E = W(t) exp —i b,E(t') dt'
~

~sOO o j
x Z, (t)dt. (12)

For small n the exponential in (12) oscillates rap-
idly, and the transition amplitude is calculated in
a straightforward manner by deforming the inte-
gration contour, and using the method of steepest
descent. The saddle points t, = r, /v are determined
by the equation bE(r, ) =0 and are the same as the
crossing points of the terms. Thus, to obtain the
transition amplitude it is necessary to calculate
Z, only in a small neighborhood of the crossing
point of terms.

gee consider first the pseudocrossing of terms,
i.e., the case when Im t, 40. In the neighborhood
of point v', let

1 (1-y)
+C,

( )
x E( yi-—2y, -x). (18)

The asymptotic behavior of the solution to (17) is
reached for v-0 with fixed difference 7 —7',.
Choosing the coefficients C, and C, such that the
initial condition Z, -1 for I;- —~ is satisfied, and
substituting the solution obtained into Eq. (12), we
obtain, with the method of steepest descent,

dA dB
x—=ye B, x =yeA,

dx dx

where y = v/2(1 + v), A = Z „B= iZ, exp[i J,"~(t) dt].
The solution to the system (1V) is expressed in
terms of confluent hypergeometric functions

A =C, x&S (y, 1+2y, x)r(i+y)
I' 1+2

b,E(r) = n(r r.)"—+ o[(r r.)"—],
a = const. (13)

~~c
[z [

= 2 liners exp (
—i az(t) dt

)Jo ]
(19)

b,E(r) (br'+ 4—H' )"' (14)

av(r) = az-' a )nor m„—a„)d d

f ( ) f (q, ) d1

For complex 7, the electronic Hamiltonian is no
longer self-adjoint, and in the general case when
eigenvalues coincide it is not reducible to diagonal
form, but rather to the Jordan normal form, i.e. ,
H»(r, ) o 0. Taking this situation into account and
using Eq. (13), we see it is not difficult to obtain

iv
2(v. r )

+
i(r —r, )

(16)

To calculate the function Z, to first order in the
neighborhood of point 7„ it suffices to retain only
the pole in Eq. (16). Then, introducing the new
variable

in(r —r )""
v(v+1)

ith the Hamiltonian

(H„(r) H„(r))
(H„(r) H„(r)j

describing the interaction between diabatic states
of a quasimolecule f, (q, r) and f,(q, r) (q is the col-
lection of electron coordinates), the difference of
terms b.E(r) and the matrix element ao(r) are ex-
pressed in terms of H,.„(7) as follows' (bH=H„

H„):

The above considerations enable us to see clearly
the reasons for the nonvalidity of adiabatic pertur-
bation theory; namely, in this theory Z, =1 is sub-
stituted into Eq. (12), while in fact the presence of
the pole in w(v') [see (16)] leads to a drastic change
in Z, in the neighborhood of the saddle point [see
(18)].

Let us look more closely at the reasons for the
occurrence of a pole in the matrix element w(r)
As noted above, for complex 7' the exact electronic
Hamiltoni. an is no longer self-adjoint, and, con-
sequently, it is reducible when the eigenvalues co-
incide to the Jordan normal form, which has only
one eigenvector, i.e. , the electronic wave func-
tions corresponding to these terms are identical,

e,(q, r,) =e,(q, T,), (20)

4', (q, r) =p, (q, 7) ( 4; s.~))")' .

+,(q, r)=0.(q T)
~

&(q r)dq I"' ~j
The wave functions 4', (q, r) and 4', (q, r) satisfy the
orthonormality condition

(in the particular case of v = —' this relation was ob-
2

tained in Ref. 17). We note that this condition
does not enable us to use the standard degenerate
perturbation theory in the neighborhood of 7,.
Condition (20) implies one more feature of the
behavior of the wave functions at the point ~,. Let
us choose the electronic wave functions Q,(q, r)
and Q,(q, 7'), corresponding to the terms E,(r) and

E,(r), to be normalized in some way with respect
to the asymptotic behavior in coordinate space.
Then,

we can write the system of equations (1)as follows: ,'(q, r) dq fe(qr) dq = )=, ', , (2i)
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7'
2 q~7 lq 0 (22)

limit of small v. For the transition probability in
this case we obtain

The normalization is taken on the real axis without
complex conjugation (this can always be done), and
hence can be continued into the complex ~ plane.
At the point 7.„Eq. (20) is satisfied, and at first
glance the condition (21) contradicts the condition
(22}. This contradiction is removed by the condi-
tion

', q, r, dq= ', q, v', dq=0,

which implies that the normalizing coefficient in
the wave functions 4, (q, r) and 4', (q, r) goes to in-
finity at the point v', . This explains the occurrence
of the pole in the matrix element Nj(r) at r,

It is not difficult to convince oneself by direct
calculations that conditions (20) and (23) are satis-
fied for the problem of a particle in the field of
two zero-range potentials. " If we turn to the prob-
lem of transitions due to rotation of an internuclear
axis between terms crossing. in a united atom with
orbital angular momentum / and represent the
electronic wave function in the form

then in the pseudocrossing region the basic time-
dependence is contained in the spherical functions,
since these are functions with angular momentum
projection m on the internuclear axis, the direc-
tion of which changes. The continuation of the
spherical functions into the complex domain of
angles leads to conditions (20) and (23) for the val-
ue of the angles corresponding to the point w, .

In the transition amplitude calculated with adia-
batic perturbation theory only the factor 27jy be-
fore the exponential differs from the exact result
[the exact value of this factor is2sin wy, see (19)].
Thus, there arises a certain formal parameter y
characterizing the applicability of adiabatic per-
turbation theory. For small y the adiabatic-per-
turbation result goes over to the exact result. In
general however, the range of va, riation of y is re-
stricted to 0 &y & -'. For the most interesting

2
cases —the Landau-gener model and the problem
of Z-II transitions with rotation of the internuclear
axis' —y equals, respectively, —,

' and —,'. For these
cases the exact value of the factor before the ex-
ponential is 1 and W2, respectively, and the ad-
iabatic-perturbation value is —,

'
m = 1.05 and -'m

=1.5V; i.e., the discrepancy here is not large.
The case in which the terms cross at real v', is

simpler. Here there are no anomalous effects re-
flected in the conditions (20) and (23), the matrix
element has no pole, and, as a result, the adiabat-
ic perturbation theory gives the exact result in the

~Z ~'=2vv~'(r, )~ dr (24)

(The exponential has been dropped here, because
it has a modulus of unity. )

III. SUDDEN-PERTURBATION APPROXIMATION

t (t}=J w(t }dt', '

(f (. 'AE
Z, =exp~ i (fy'

~
Z„2

(26)

d
Z, = —exp ]

—i

0

S' t' dt'.

d9} ~Z~ t

)
(26)

The variable p varies within finite limits from 0 to
some y„

(27)

where cp0 is independent of T. In the problem of
transitions caused by rotation of the internuclear
axis, y is interpreted as the angle of rotation of
the internuclear axis.

Bearing in mind that in the zeroth approximation
for T-0 the exponential in (26} can be replaced by
unity, we represent these equations in the form

In this section, we consider the limiting case op-
posite to the adiabatic case —the case of small in-
teraction time T (i.e., of large velocities or small
Massey parameters). This limit can be called the
diabatic or nonadiabatic limit. Vfe shall principally
use the term "sudden-perturbation limit, " the jus-
tification for which will be discussed in detail be.-
low.

In real physical systems a decrease in the inter-
action time T ultimately leads to a violation of the
two-state approximation caused by the possibility
of transitions to other states. Here, we consider
the case in which T is still sufficiently large com-
pared with the inverse frequency of transition to
the remaining adiabatic terms that these transi-
tions can be ignored.

In the equations of the two-state approximation
(1) we introduce the new variable y (cf. Refs. 4 and
6)
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Z=HZ, +=a("+V, a("=!

( 10),
(z )Z

(28)

( gE
1 —exp I- 4 d(p')

where V(((&) plays the role of a perturbation. Intro-
ducing the time-evolution matrix S(t, t) for the in-
itial system (1)

z(t') =s(t', t)z(t), (29)

we obtain in the zeroth approximation

( cos (t&(t) sin((&(t) )
!

$ (g oat

(-sin &p(t) cos (p(t) )
(30)

This result canbe considered to be a consequence
of the action on the system of the sudden perturba-
tion. Indeed, formally extending the domain of
variability of y from -~ to+~, we may assume
that for p &0 and y = y, there results a degenerate
two-level system, in which transitions are absent,

er coincide. Then, for small interaction times T,
the picture of the evolution of the system in time is
as follows: The wave' function is notable to change,
a fact which corresponds to its invariability in the
diabatic basis. The change in the Hamiltonian can
be considered to be fast (sudden). To get thetran-
sition amplitude between adiabatic states, we must
expand the invariant wave function in the new
adiabatic basis, which changes as a result of the
change in the Hamiltonian; this leads to Eq. (30).

Let us turn now to the calculation of the correc-
tion to the zeroth approximation. We have, to first
order in the perturbation 0,

s(t t') =s"'(t ti)+s"'(t t') (33)

s((&(t ~) s(o&(t ~)
H, .=0~ (p +0~ (p +(po. (31)

In the interval 0&p & g, the perturbation is sudden-
ly switched on with the constant Hamiltonian H"',
which leads to a mixing of states, where the re-
sult of its action is determined only by the magni-
tude of qo, i.e., by the integral of the interaction
W(t). In particular, in the important Landau-Zener
case it is easy to find directly from (27) that ((&,

=-'m, i.e., the system remains in these states that
are customarily called diabatic. In the more gen-
eral exponential model of Nikitin yo =m ——,

' 8, where
the model parameter 8 is introduced in accordance
with Nikitin. ~ '3

To define the concept of diabatic terms in the
general case is difficult (cf. Refs. 18 and 19), and
they are usually introduced on the basis of quali-
tative considerations specific to each problem.
However, (as already noted in Sec. I) an adiabatic
basis can always be introduced uniquely. Taking
into account the simple results obtained above, we
can suggest a universal and unambiguous definition
of a diabatic basis in terms of states of the adia-
batic basis. We introduce the diabatic states such
that for t- -~ they coincide with the adiabatic
states, and for finite t they coincide with the col-
umns of the matrix S("(t,-~) (we emphasize that
for t +~ the adiabatic and diabatic bases no long-

dt' (S(o&(tr ~)]

x V(t') W(t')S'" (t', —~). (33)

In calculating the last integral in low order with
respect to T-O, we should replace V(t) by thefirst
term of the corresponding expansion V"'(t)

t
hE(t') dt')

(34)

Considering also that W-T ' for T-0 (see Sec. I),
we find that, for small T, S("(~,-~) goes as T.

However, for those cases in which t(E(t) grows
sufficiently fast for t ~, the integral (33), on sub-
stitution of V"'(t) for V(t), becomesdivergentatthe
upper and lower limits, and the quantity S"'(~, -~)
takes on a different order of smallness in T. This
is precisely what happens in the Landau-gener
model, as well as in the model describing Z-II
transitions.

In order to investigate this case under sufficient-
ly general assumptions, we assume a power-law
behavior at large !t! for the splitting t&E(t) and the
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matrix element of the nonadiabatic coupling W(t)

W(t)-T-'cit/Ti ', ~(t)-bit/Ti",
(35)

with some constant coefficients c and b. For T -0
the asymptotic behavior of the integral (33) for
S'"(~,-~) is determined basically by the large ~t

~

and can be written explicitly

S&»(m e))

= dT' exp (--' irr f}siny„cos-( 'rrf)-cosy, )OP

( cos(-,' vg)cosy„exp(-, 'irrg)siny, ),
( )

c f b )» X —1

I+t ~I+u~
'

t +I ' (36)

+dT»sin( —,'vf)tgy, , cosy~&0,

cos yo

rr+dT» sin(-'rrt)tgy, , cosy, &0.
2

(33)

As an illustration, we consider once again two
important examples. The splitting of adiabatic
terms at large ~t~ is linear in the Landau-Zener
model (tr, =1) and quadratic in the problem of the
rotation of the internuclear axis (p, =2). The inter-
action W(t) in both cases" falls off quadratically
with time (X =2). Thus, in the Landau-Zener mod-
el the correction to the zeroth approximation is of
order T' ', while in the problem of rotation of the
axis it is of order T' '. We remark also that if for
1=2 a term goes to finite limits for large ~tt

~
(p

=0), we are dealing with just the case discussed
above, i.n which the next term in the asymptotic
expansion of ~(t} is important.

We have shown that the order of S"' for T-0 de-
pends heavily on the behavior of the terms for ~t

~- . Since the terms of the real problem can have
not only a power-law behavior, we must find the
range of time t that gives the main contribution to the

The latter expression is valid for X —p, &2, while
for X —tj, &2 we must use the expansion of V(t) de-
scribed above. In the intermediate case X —p, =2,
the integral in question can also turn out to be con-
vergent, depending on the subsequent terms in the
expansion of 4E for ~t

~

—~. By direct calculation
we may verify the unitarity of the matrix S~ '+8"'
to terms linear in T~, inclusive.

We give here the same results in the form of the
first terms of the expansion of the nonadiabatic
transition probability and elastic scattering phase
shift in the sudden-perturbation approximation,

siny, + dT cos(-,'rrg) cosy, I',

integral (33) for S"'(~, -~). A simple estimate for
X- p. &2 yields

~t,
~

(X/b)' ' ' 'T"

The run of ~ and W for t-t„determines the be-
havior of S"'. We note that the magnitude of t„ is
determined principally by the splitting of the adia-
batic terms, M(t).

It is possible to note a certain analogy between
the sudden-switching limit considered here and the
work of Golubkov, Dalidchik, and Ivanov, "where it is
shown that for a Hamiltonian of sufficiently gen-
eral form with sudden switching on and off of a
perturbation constant in time the expansion of the
transition amplitudes also contains nonintegral
powers of the interaction time T.

IV. CONCLUSIONS

In conclusion, we will discuss briefly the im-
portance of the limitations assumed in the present
work. A number of results of this article are of a
general nature and are immediately extended to
multilevel systems. This generalizability pertains
especially to the definition given here of nth-order
dynamical terms and diabatic terms, as well as to
the methods of calculating the elastic scattering
phase shift in the adiabatic approximation. How-
ever, the analysis of the other problems is con-
siderably complicated when the two-state approxi-
mation is dropped. In the adiabatic limit there
appears the possibility of directcrossing of several
terms. Physically, this is realized, for example,
for terms undergoing transition to a state of the
united atom with l ~ 2 . Later, in the example of
l =2 we „propose to examine the difficulties arising
here, which are essentially connected with the spe-
cifics of the multilevel problem. "Another case of
the simultaneous crossing of several terms was
considered in the work of one of the authors. "

One more important problem not touched upon in
the present article is the problem of finding the
next terms in the expansion of the transition matrix
in the adiabatic limit and in the sudden-perturba-
tion limit. We note only that even the determina-
tion of the order of these terms in the small pa-
rameter T or g ' is generally a nontrivial prob-
lem, especially in the adiabatic case.
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