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Multiatom and transit-time effects on photon-correlation measurements
in resonance fluorescence
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An expression is derived for the expected number of photon pairs separated by a time interval r that are
detected in photoelectric correlation measurements of an atomic beam, when due account is taken of the
fluctuations of the number of radiating atoms and of the effect of their finite transit time through the field of
view. The theoretical expression is checked against some recent measurements and good agreement is
obtained.

I. INTRODUCTION

In a recent photoelectric-correlation experi-
ment, ' it was demonstrated that photons emitted
by resonantly excited atoms in an atomic beam ex-
hibit anticor relation or antibunching, as predicted
by quantum electrodynamics. ' ' Although the re-
sults of the measurements were in qualitative
agreement with the theory, quantitative agreement
requires a generabzation of the treatment to in-
clude the effect of a variable number of atoms and
geometric corrections for the finite transit time
through the field viewed by the photodetectors.
The first effect becomes particularly important
in correlation experiments at larger atomic Quxes,
such as those reported by Walther, 4 but it plays a
role even at very low beam currents. The transit-
time corrections depend on the observed time in-
tervals between photoelectric pulse pairs, and in-
crease with increasing time delay. Finally, the
corrections for multiatom effects are expected to
differ according to whether a single detector4 or a
pair of photodetectors' is used in the experiment.
Some discussion of the correction for a variable
number of atoms has also been recently given by
Jakeman et al. '

In the following, we generalize the treatment of
photoelectric -correlation measurements of reson-
ance fluorescence from an atomic beam to include
these effects, and we show that good quantitative
agreement between experiment and theory can be
obtained.

II. CORRECTION FOR MULTIATOM CONTRIBUTIONS

In the experiments we are discussing, photons
emitted by one or more atoms of an atomic beam,
that are excited by a perpendicular, resonant
beam of light from a tunable dye laser, are col-
lected in a direction at right angles to both beams.

Q(r)) = K&io (r).

From Glauber's treatment of the detection prob-
lemo it follows that P(r) is expressible in terms
of the light intensity'

I (r, t) = 8'& '(r, t)„' EI'(r, t)

at the photodetector(s), expressed in photons per
unit area per second, by

&
~ f@fs~dr, dr, (:1'I(r„t)I (r„t+ r):),

J@dr,(I(r„t))
(2)

where r' is the time-ordering operator and E~&'(r, t)
is the positive frequency pa& of the electric field
at r at time t. Here Q.„o.b are dimensionless
quantum efficiencies of the "start" and "stop" de-
tectors, respectively, and the integrals are to be
taken over the exposed surface areas S„Sb of the
detectors, which may be different or one and the
same. It is the presence of the normally ordered
correlation function in Eq. (2) that accounts for the
antibunching. -

In practice, the field E,(r, t) at the detector con-

They are directed by an optical system to fall on
either two og one photodetector(s), depending on
whether or not a beam splitter is used. The time
interval 7' between one photoelectric pulse occur-
ring at time t, the "start" pulse a, and another
pulse occurring at time t+ 7', the "stop" pulse 5,
is digitized with time resolution &s, and the num-
ber of events n(7) corresponding to pulse pairs with
time sepa, ration 7' is recorded over some long per-
iod. If 2 is the number of accepted start pulses in
the course of an experiment, and 6'(r)&vis the'
conditional probability that a start pulse at time
t is followed by a stop pulse at time t+ 7' within
&w, in the steady state, then the expectation of
n(v') is
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tains fluorescent contributions from several dif-
ferent atoms that may be in the field of view, and
from the background or exciting light. Because
the atomic separations are on the order of many
wavelengths, cooperative atomic effects are ex-
pected to be very small and will be neglected. If
N atoms contribute to the field, we therefore
write

(3)

where the sum is to be taken over all the atoms k
= 1, 2, . . .,N that are in the field of view at time t
(we ignore the transit time of the light}, and we
treat the background light e(r, t) from the laser as
a c number. For the moment we regard N as a
fixed number. The corresponding integrated mean
light intensity is then given by

dr, (I„(r„t))
Sg

ttr, I P 4't. 't '(r„ t)+ e",. (r„t))
&S~ &t

x P Et "tt'(r„t)+ e,..(r„t))), (4)

with summation over repeated Cartesian indices i
implied. For:Na4toms, Eq. (1) should be replaced
by

Here N„ is the number of start pulses with N atoms
in the field of view, and 6'~(r) is the corresponding
conditional probability, which is given by an equa-
tion like Eq. (2) with suffix N on the light inten-
sities. (nN(r)) is the expected number of pulse
pairs with time separation T corresponding to N
atoms.

Of the four terms contributing to the integral on

the right of Eq. (4), we expect the two involving
the correlations (E', '"'e,) and (efE',"'")to make
a negligible contribution, as these correlations
will be proportional to phase factors that oscillate
rapidly with changing r, . Second, although we ex-
pect the fields radiated by different atoms to be
partly correlated, we may reasonably ignore terms
of the type (E', "~'8',"")with k&l as small com-
pared with the others. The reason is that the
fluorescence is collected at right angles to the in-
cident laser beam, and different atoms are located

. at random positions that are separated by many
wavelengths in general, so that the cross-correl-
ation is proportional to a rapidly oscillating phase
factor that averages to zero. Finally, if we denote
(E,'. ""'(r„t)E&4'&"(r„t)) by (I„)and

(ef (r„t)e, (r„t)) by (i,), and make the reasonable
assumption that the first term is approximately the
same for every atom in the field of view, and that
neither term varies much with r„ then Eq. (4) re-
duces to

dr, (I (r„t)) = S,(N(I „)+(i,)) .

The intensity correlation function that enters in
the definition of &P„(7) is more complicated. If we
make use of Eq. (3) in the definition of the light in-
tensity I„(r,t), and then form the cross-correl-
ation, we obtain 1.6 different; terms. Of these, eight
terms have unpaired E,.(r, t) or e,.(r, t) factors and
will be discarded, because we expect the cor-
responding surface integrals to make a negligible
contribution by virtue of the rapidly oscillating
phases. Two other terms of the form

(E,''"'(r„t)E,'. '"'(r„t+ 7') e, (r„t+7)e,.(r„. t))

and its complex conjugate, also have rapidly oscil-
lating phases andwill alsobe discarded. Vfe are then
left with the following expression:

dr, dr~(: KI„(r„t)IN(r~, t+ r):)
~S &S)

dr, dr, E,'""' r„t E&
""r»t+7' E&" ' »t+v E&,""'r„t

Sg Sy

+ E,. ' ~' r„t E&" ' r»t+7 e*,. r~, t+v' e& r„t +c.c.
m

+(e*,. (r„t)e*, (r~, t+ r}e,(r~, t+ .r}e,(r„.t)) ~,
.

i
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where we have assumed that correlations involving the fluorescence and the background light may be fac-
tored. In Eq. (7), the sums over k and n, strictly speaking, are to be taken over the N atoms that are in
the field of view at time t, and those over l and rn over the atoms in the field of view at the later time t+ 7.
These are not necessarily the same atoms.

If the fields produced by different atoms are assumed to have correlations that integrate almost to zero
because of the random atomic positions, then the only nonvanishing contributions to Eq. (7) come from
paired fields. Thus, the third term in Eq. (7)

and the fourth term of Eq. (7)

dr~ 1"' r~, ~+ v
48' ~Sy

= NS,S,(I, )(i,),
whereas the second term in Eq. (7)

dr, drb p( E&&"~&b'(r„ t)E&+'&b'(r„ t+ v))(e~ (rb', t+ 7') e,.(r„t)) + c.c.~,
Sp Sy )

(10)

which involves cross-correlation functions of the second order in both the. fluorescent and the background
light. Both correlations are expected to have rapidly oscillating phase factors that depend on positions
r„r, and on 7; In the special case r, =r„ these phase factors cancel up to a constant, but this. can happen
only when we integrate over the same photodetector, and not when two detectors are used. In general,
the first phase factor will vary with the position of the atom, and even with a single detector the contribu-
tion of this term is expected to be small and will be discarded. '

We now turn to the first term in Eq. (7). If the only nonvanishing contributions come from pairings of
fields associated with the same atom, the first term in Eq. (7)

& Sg -' Sy

gr g7r g. — r g g r g+ ~ g(-)(&) r ]+~ g(+)(s)
g

+ &~ r„t 8;+ r„ t E, r„ t+v Ez' '
r~, (+7 )

+ E( )(~ r t E( )(~) r t+g E'+"a' r t+ Y E'+"~' r

dr, drb pgl;~ (r„r„r)I";~' (r„r„r)+ (I " (r„ t))(I ' (r„ t r))+

+ " r„ t I r» t+v 1+3.~ v

where we have neglected field commutators asso-
ciated with fields from different atoms,
I';,. (r„rb, r) is the second-order correlation
tensor of the'field produced by the kth atom, and
A, (x) is the normalized intensity-correlation func-
tion of the fluorescence produced by one atom.
The latter is independent of the position of'the

atom over the range of interest, because the cor-
responding phase' factors cancel, and A, (r) there-
fore does not need to carry the atomic label k.
The form of &,(v') was analyzed in detail in Ref. 3.
Its most interesting feature is that it starts from
the value -1 for 7.=0, and this gives rise to the
photon antibunching.



204 H. J. KIMBLE, M. DAGENAIS, AND L. MANDEL

The product contribution otherwise, so that we may write

in general, involves a phase factor that varies
with position, so long as r, 4r„and therefore
makes a small contribution to the integral. On
the other hand, when r, = rb under the integral,
which is possible when a single photodetector is
used,

and the product becomes real and reduces to

where y(T) is the normalized autocorrelation func-
tion of the fluorescent field. This is independent
of atomic position and of r, to a good approxima-
tion. More generally, the product in Eq. (11) is
well approximated by &I (r,))' ( y (r)(' when the
points r, and r& lie within the same coherence
a,rea on the photocathode, and it makes a small

=6.oS'.n&&,2'Ir( ) I', (»)
where q &1 and I/q is a measure of how many co-
herence areas fall within the cathode area S,. For
a, sufficiently small detector area, S„g=1. 6„ is
unity when the two photocathodes coincide, i.e.,
when a single photodetector is used, and zero
otherwise. We therefore have from Eqs. (11) and
(13) for the first term in Eq. (7)

N(i, g &i,g S.S,
x [6.,)I(N- I) (y(r)('+(N- I) +(I+X,(~))J. (14)

Finally, for the fifth term in Eq. (7) we evidently
have

(15)

When the results of Eqs. (8)-(10), (14), and (15)
are combined with Eqs. (5) and (6) we arrive at

N(l-)(I )[)+)(~))-N() 2() )+~ q)((N ))(l-)((»)I)'(~)l
) (16)

for the expected number of events corresponding
to a. time interval 7'when there are N atoms in the
field of view.

It is worth noting that when N is very large, and
when a single very small area photodetector is
used, so that 6„q=1, then the term with (y (T) (' is
dominant in the numerator in Eq. (16), and the re-
sulting expression reduces to the familiar form
for light obeying thermal statistics. 9 In this many-
atom limit the photons will exhibit bunching rather
than antibunching, as was already suggested by
Carmichael and Walls. '

III. TRANSIT-TIME CORRECTIONS

In practice, the fluorescent light is radiated by
an atom moving- with some velocity v across the
field of view of finite transverse length /, so that
the fluorescence from one atom can only be de-
tected over a limited time. This effect reduces the
contributions of single atoms to the measured
correlation function in Eq. (16). If two photons
with time separation v' from one atom are to be
detected, the atom has to radiate the first photon
in the initial distance l —v~ along its path. The
available size of the field of view is therefore ef-
fectively reduced by the factor 1 —rv/I provided
7'& l/u, and no photon correlations at all can be

contributed by a single atom to the measure-
ment when 7'& I/v or v& I/v. If P(v) is the prob-
ability density of the velocity distribution of the
atoms in the beam, it follows that the term
N &I „)&I») [1+A.,(r) ] in Eq. (16) corresponding to
single-atom correlations should be multiplied by
the correction factor

l/v

$(&) = (1 —&v/I )P(v) d v,
0

(17)

P(u) = 2(v'/v4O) exp( —v'/v', ), (18)

where U, equals 4/3v v times the mean velocity
of the atomic beam. Hence, from Eqs. (17) and
(18),

((r)=2 J (( — ')x'e* dr,

and Eq. (16) has to be modified to become

and the term in y(7;) ' that involves a pair of
atoms should be multiplied by f'(v) ((r) is .close
to unity for v «I/&u), but becomes extremely
small for large 7". Single-atom contributions to the
correlation function are then effectively lost.

For atoms emerging in a beam through a small
aperture from a reservoir in thermal equilibrium,
the velocity distribution has the form
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(e„(r)) =x„era, s, (iv)i g + (i,)

$(7')N(I„) (I,~) [1+A,,(T) J -N(I„) (I,q) + 5,~ g'(r)qN(N —1)(I~,) (I,~) ly(r) I'
')~

N&I,.) + &t.) )' (2o)

IV. AVERAGE OVER THE ATOMIC ENSEMBLE

Eq. (20) applies to the situation in which a definite number N of atoms is in the field of view. In prac-
tice, this number fluctuates from observation to observation. There will be Xo start pulses with no atoms
in the field of view that produce n, (7 ) events in channel v, X, start pulses with 1 atom producing n, (&)

events in the same channel, etc. The apparatus registers only the total number of events

(21)

and the total number of start pulses

0I=- g X„,

(23)

(24)

so that Eq. (20) has to be summed over ¹ Clearly X„ is related to the total number 2 by the conditional
probability p, (N) that there are N atoms in the field when there is a start pulse, so that we may write

)

Z„=Xp, (N) .

p, (N) must be clearly distinguished from the unconditional probability p(N) that there are N atoms in the
field at any one time. From Eqs. (20) and (23) we then have

(n(~)) =X~r g p. (N) R, +r,N

N=o

(NR. R, /&N)2)[](~)+](r)~,(r) 1J+&., ]'(r)rtN(N-1)R. R, iy(r) 12/(N)2~

NR. /&N) + r, j

where we have introduced the mean counting rates
R, , R~ in the two channels contributed by the
fluorescence

R, =n S (N)(Ii ),
R —= n S (N)(I, ),

and the mean background counting rates r„x~
r, =- n, S,(i.),
ro-=nsSa(4) i

(25)

(26)

all of which can be measured directly. It should
be noted that the summation variable N in Eq. (24)
appears both in the numerator and in the denomin-
ator, and that the denominator cannot be treated as
a.constant.

In order to perform the summation we need to
relate the conditional probability P,(N) to the un-
conditional probability p(N). This can be done as
follows: Let P(N, start)5t be the joint probability
that there are N atoms in the field and that a
start pulse occurs at time t within 5t. Then we
obtain p, (N) by dividing the joint probability

p(N, start) 5t = p(N) n, S,5t((i,) +N(I~, ))

=P(N) Vt(r. + NR. /(N)),

and, with the help of Eq. (27), this leads to

( ) ~) rg+(N/(N))Rg
r.+R,

(28)

(29)

I

P(N, start) 5t by the probability that a start pulse
occurs within 5t, which is (R, +r, )5t, or

P(N, start) 6t
(R.+ r,}6t

To arrive at the joint probability P(N, start}5t, we
observe that the event in question may occur in
several mutually exclusive ways, whose proba-
bilities we can add together. There may be N
atoms in the field and the start pulse may be
caused by background light, which has probabil-
ity P(N)n, S,(i,)5t. There may be N atoms in the
field, and the first one may give rise to the start
pulse, which has probability P(N)n, S,(I„)5t, etc.
On adding all the elementary probabilities we find
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When this result is inserted in Eq. (24), we finally obtain

{n(v) )=')(avIr, + )) + ' '
~ I(+& (~)I+ ~ ~ + &. (*(~)el~(~)l' (+ . I, (I)R,R~

'

$(T) — ((bN) ) —(N) a, ((AN)2) —(N) l

which reduces further, with the assumption of a Poissonian form for the atomic distribution p(N), to

{n(r))=@~~I~,+)),+( ' '
~ [&+~,(r)]+&.,('(~)viz(~)l' (31)

This formula. differs from the one quoted in Ref.
1 in several respects, for reasons that we have
mentioned. One interesting conclusion is that,
when two photodetectors are used so that the

~
y(r)~' term drops out and when r =0, so that

A.,(0) = -1, the expected number of events (n(0))
in channel 0 is just "Zb,7(R, + r, ). This is also the
number that is expected in the absence of photon
correlations of any kind. As T increases, (n(r))
also increases, reaches a maximum, and returns
to the initial value 'Rhv(R, +r, ) for sufficiently
large 7. This behavior was in fact observed in the
experiment. ' Except for the factor $(r), the
[I+A.,(r)]/(N) term in Eq. (31) was also obtained
by Jakeman et al. ,

' although they used a somewhat
oversimplified argument to derive it.'

As the average number of atoms (N) in the field
of view becomes smaller, the [1+X,(T)]/(N) term
in Eq. (31) becomes the dominant term (except
near r = 0), provided the background is small
enough, and the equation reduces to the usual form
for a single atom." On the other hand, when (N)
is very large, the [1+X,(r)]/(N) term becomes
small, and the antibunching becomes less and less
evident. This is particularly true when a single
photodetector is used and the

~
y(r) ~' term, which

always has its greatest value when 7. =0, makes a,

significant contribution to Eq. (31). The importance
of using very feeble atomic beams in photon anti. —

bunching measurements is therefore clearly
brought out.

out at two different atomic-beam currents, with
the same exciting light. In the first, corre-
sponding to the upper set of points in Fig. 1, the
mean number of atoms (N) in the field of view was
estimated from the measured fluorescence to be
about —,

' with an uncertainty of 50'fo. In the second
set of measurements, corresponding to the lower
set of points, the atomic-beam current was in-
creased by a factor 2.7+0.1 as determined from
the fluorescence, although the light intensity at
each detector was correspondingly reduced by a
filter, to keep the counting r'ates approximately
the same. The rates were R, =15818 sec ', R,
= 16 796 sec ', r, = 538 sec ', rb = 472 sec ' in the
first experiment and R, = 13 323 sec
=13752 sec ', r, =246. sec ', and r, =223 sec ' in
the second. The number% of start pulses was
9x10' in both cases, and the time interva, l v is
shown digitized in steps of hv =2.5 nsec, although
it was actually measured in ~-nsec intervals. The
average transit time of the atoms through the
field of view was estimated to be 100+15 nsec, as

n(I )

IOOO

900

800

V. COMPARISON WITH EXPERIMENT 700

Figure 1 shows a comparison between the pre-
diction of Eq. (31) and some experimental results
obtained in a photoelectric-correlation measure-
ment of the type reported in Bef. 1 of the fluores-
cence from the 3I',~„F=3, m~=3 to 3'Sy/2 I" 2,
m~ = 2 transition in sodium. Two photodetectors
were used in the experiment, so that 5,b

=0 in Eq.
(31). The exciting light was on resonance and had
an intensity equivalent to 10 + 2 mW/cm', corre-
sponding to a relative Rabi frequency 0/P = 1.7
+0.2 in the notation of Bef. 3. The expected form
of A.,(r) under these conditions was taken from
Bef. 3. Two sets of mea. surements were carried

600

500

{300-—

200 I I I I I I I I I

IO 20 30 40 50 60 70 80 90 IOO
Time interval 7 in nsec

PIG. 1. Comparison of the values of n(v) measured in
a photon-correlation experiment with the theoretical
values for (n(r)) given by Eq. (31) with 0/P =1.75, for
two sets of measurements with different atomic-beam
currents. The initial rise of n(r) from 7 =0 is evidence
for photon antibunching.
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I I
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Time interval T in nsec

FIG. 2. Comparison of the values of the correlation
function 1+A&(&) derived from the measurements with
those given by the theory (fu11 curve) with 0/P =1.75.
The statistical uncertainties get progressively l arger
as v increases.

determined from the temperature of the exit aper--
ture of the atomic-beam oven. The full curves in
Fig. 1 are calculated from Eq. (31) with (N) =0.32,
l/v0=105 nsec and (N)=0.88, l/v, =105 nsec. It
will be seen that there is very good agreement
between theory and experiment within the statisti-
cal uncertainties, so that the validity of Eq. (31}
is confirmed at least for measurements with two
detectors. Moreover, the importance of keeping
(Ã) small if antibunching is to be observed is
clearly brought out. It has recently been pointed
out by Agarwal et al."that cooperative effects

between two or more atoms would also greatly
reduce the antibunching, although we do not be-
lieve that such effects were significant in these
experiments.

However, the strong attenuation imposed by the
transit time factor ((T} in Eq. (31) for the larger
delays 7 makes it difficult to extract the correla-
tion function X,(v) accurately from the measured
values of n(T). This is illustrated in Fig. 2, where
the values of I+X,(7) derived from the upper set
of data points in Fig. 1, together with their stan-
dard deviations, are shown superimposed on the
theoretical curve. As 7 increases and the mea-
sured values of n(r) approach 'Rb, v, (ll, +r, ), the
relative statistical uncertainties become progres-
sively larger, until the data will'fit almost any
curve. With the atomic-transit time l/v, of order
100 nsec, the derived values are hardly meaning-
ful for v greater than about 50 nsec. This brings
out the importance of not making the transit time,
and therefore the field of view, too small. In
practice, as always, a compromise has to be
reached between choosing a sufficiently large field
of view and keeping the background light intensity
sufficiently small.
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