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The method of polarized orbitals is modified to treat low-energy scattering of electrons from highly
polarizable systems, specifically alkali-metal atoms. The modification is carried out in the particular context
of the e-Li system, but the procedure is general; it consists of modifying the polarized orbital, so that when
used in the otherwise orthodox form of the method, it gives (i) the correct electron affinity of the negative
ion (in this case Li~), (ii) the proper (i.e., Levinson-Swan) number of nodes of the associated zero-energy
scattering orbital, and (iii) the correct polarizability. A procedure is devised whereby the scattering length
can be calculated from the (known) electron affinity without solving the bound-state equation. Using this
procedure we adduce a 'S scattering length of 8.69a,. (The 3§ scattering length is —9.22a,.) The above
modifications can also be carried out in the (lesser) exchange adiabatic approximation. However, they lead to
qualitatively incorrect S phase shifts. The modified polarized-orbital phase shifts are qualitatively similar to
close-coupling and elaborate variational calculations. Quantitative differences from the latter calculations,
however, remain; they are manifested most noticeably in the very-low-energy total and differential spin-flip

cross sections.

I. INTRODUCTION

The scattering of electronsfrom alkaliatoms is
of obvious importance in many applications, how-
ever, theparticular challenge of this problem is a
theoretical one stemming from the very large
polarizabilities of the alkali targets. In principle
the close-coupling approach is well suited to this
problem, because as is well known the lowest
excited state provides the bulk of the long-range
polarizability. Indeed close-coupling calcula-
tions'™ are among the best presently available in
such cases. Nevertheless the question of the
importance of the shorter-range correlations and
the extent to which close coupling can include
them still remains, and it is compounded by the
well-known fact that any multistate method like
close coupling is necessarily a long and involved
one and is not well suited to whole sequences of
calculations which may be necessary for the pur-
pose of space or plasma physics.

For these reasons we have considered the elec-
tron-alkali scattering problem from the point of
view of polarized orbitals.®® In fact, such at-
tempts are not new.” Most recently and most
completely, Bui and Stauffer® have attempted to
follow the orthodox polarized orbital methodology
most closely,® but when carefully analyzed (and
our calculation when similarly performed qualita-
tively supports their results), it must be con-
cluded that those results are unsatisfactory;
hence the method is unreliable for highly polariz-
able targets. We shall therefore attempt to
modify the method of polarized orbitals to apply
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to electron scattering from highly polarizable
targets in the specific context of e¢-Li scattering
problem.

Starting first from the unmodified equations
whose derivations and results are given in Sec.
II, we are led to a modification which necessarily
restores the main elements of a correct solution,
Sec. III. The essential part of the modification
concerns the manner in which the polarized orbi-
tal, P,.,,() in this case, is constructed. Given
the modification, the new results in the form of
phase shifts and cross sections are seen to be
very satisfactory, and they are given in some de-
tail and compared with other good results where
possible.

An alternative method of constructing the polar-
ized orbital has been given by Stone,® when used
in the otherwise conventional polarized orbital
methodology by Vo Ky Lan,'° this too gave satis-
factory results. In Sec. IV we shall contrast and
discuss Stone’s method with the present modifica-
tion. In that section we shall also give some con-
cluding remarks. -

II. UNMODIFIED POLARIZED ORBITAL CALCULATION

Specializing immediately to e-Li scattering, we
start with a Slater determinantal approximation
for the ground, 25(1s%2s), state of Li

&9 (123) = (1/V37) det[p,,(1)a(1)p,, (2)
XB(2)pB)x(3)].  (2.1)

The function y represents the spin which can be
“up” (x =a) or “down” (x=8). To include polariza-
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tion via the method of polarized orbitals,® we
augment each orbital in an approximate form as
it would be perturbed by a scattering electron at
a point 7,

@5 = 0 @) + Prgnp(i54) (2.2)
where
(pns(i)=[Pns(ri)/ri]yoo(ng), (23)
(i34)=— €lry,7;) Pyo,lr;) cosgy, (2.4)
Pns\ts rs 7, m ’ .

and ¢ is a step function

elr,9)= {1’ ¥>3
0, x<y.
With the replacement indicated in (2.2) the un-
polarized ground state goes into polarized func-
" tion (we shall neglect throughout the polariza-
tion of the tightly bound P, orbitals)

. - ol .
¥, (123;4) =87 (123)+3 (P (123;4), (2.5)

where
®P°)(123; 4) = (1/V31 ) det[p,,(1)a(1)p,,(2)8(2)
X Pap(3;4)x(3)].
(2.6)
A total scattering wave function, unsymmetrized

with respect to electron 4, but of good total spin
S, is then '

v¥(123;4)=[Flr,)/V2T |[¥ ,(123;4)8(4)
+¥,(123;4)x(4)]. (2.7)

In (2.7) the superscript + (=) refers to triplet, S
=1 (singlet, S=0) spin state. Note the difference
from e¢-H where (+) is usually associated with
singlet and (-) with triplet scattering. Finally a
totally antisymmetric scattering wave function
can be formed by cyclic permutation (since ¥* is
~ antisymmetric in its first three indices)
Vi=(1/V4)[w*(123;4) -¥*(234;1)
+0*(341;2) - ¥*(412;3)]. (2.8)

In (2.7) F(¥) is a scattering wave function, which
one conveniently decomposes in partial wave form

FE)=3 E!T(L) V1o(®). (2.9)

1

1
Wexu, = 251 [P )T, (1s,kL;7)+ Py ()T, (25, kL ;7)]
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Uncoupled equations for the scattered orbitals,
u,(r), can be derived from whose asymptotic
forms the phase shifts n, can be derived in the
well-known way

limu,(r)=Asin (kr — 31ln+7,). (2.10)

r>oo
(We here suppress the + superscripts on F, u;,
and 7,.)

The scattering equations for «,(») are derived
by projecting on the unperturbed ground state®
(dr“) means integration over all coordinates
except the radial distance 7,)

f[‘I’g?)(lz:})B(‘l):t<1>(80)(123)a(4)]*

Xy(Q)H-E)¥:dr® =0, (2.11a)

where H is the total Hamiltonian

k 2z i 2
n=-3 <v§+—;—> I

i i>4=1 ij

(2.11b)

That one uses the unperturbed ground state &(®
in this projection is a very important aspect of
the method of polarized orbitals,® and we have
discussed itat length elsewhere.!! The result of
the projection is an integro-differential equation
for the scattered orbitals u, (in rydberg units)

(diyr - *ka“"”

=[V@)+V,r) -W*r)u, ). (2.11c)

In principle the direct, polarization, exchange-
polarization potentials, V(r), V,(r), -W‘*)(»),
respectively, should be identical to those given
by Bui and Stauffer® (cf. the Appendix of their
paper). In fact, our equations exhibit some dif-
ferences which we are unable to establish as
being typographical on their part or not. Specifi-
cally we find (Z = charge on the nucleus- Z =3 in
this application)

Vir)=4r,(1s, 1s;7) +2T4(2s, 2s,7) - 2Z /7,

+§om(p,,(r) fo " dx Py x)[ey, — B + 2T (25, 285 2)]u, ()

72P, 0 dx Py WIT(Ls, 255 ¥ ) wlen, = BP0 [ dx Pyl (e))

(2.12)
2 r
V== gor f PuldaPu,Wax,  (2.13)
W*ulzz(W:xux +Wef>ux); (2.14)
where
(2.15)
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and Wgu, is written in three parts
W, =[6,0W'Q £ 6, WD +W Y,
with

W Q= Pu) (5 PubV, b are [ PV, o))

— 1 *
V,()=- 5% f P1,(0)yPy. ) dy

1 d P, (rlu,(r)
WSy, = - 3 (PZS,,(’V)T Aol 1'21

d? 2 2z

_—— = — 2, =
B (dr2 7?2 TR » 4To(1s, 1s;7

+ Pls(r)f dx

F %Pu(r)ﬂw dx ﬁlg(Lx)Z“_LQ‘l [xdszs(y)gl(y,V)stap(y)»

Pg;(?’)u‘('r) d_

(x)u, k) f dyP1(9)g1(9,7)Pgy . () + 5P, (r) To(ls, 253 r)fwdx L) (z)—L—"I; W

(2.16)

(2.17a)

d?’ PZs ..p("')

))st,,,(v) f dx._.E(x_}“l_(x_)_

)

”r

(2.17b)

(2.17c)

I+4

Wg;)“1=" st..e(y) <l+1 Hlf dx P, (x}ul(x)

27+1 21+3

To complete the specification of quantities ap-
pearing in the foregoing equations, we have

Al n'157)= [ Pylolgy b, )Py () dx
o

(2.18)

where

A A+l <
gx(x,y)E{x/y SR (2.19)
y)\/x)d-l, x>y’

The indices n’]’ in (2.18) can also refer to the
scattered orbital kl=u,(r).

For P,,, P, we take as the frozen core Hartree-
Fock (HF) orbitals of Cohen and Kelly*? satisfying

( a’ + Ef - 2Iy(1s, 1s; r))P;_s(‘r)——ﬁsts(”)

dr?
(2.20a)
d? 2 .
(—(—1;—2 + 7_Z —4F0(ls,ls;r)P28(r)

+20(1s, 25;7) Py () = —€,, P (r) . (2.20D)
Our own solutions of those equations yield eigen-
values ¢, =-5.584729 Ry, ¢,,=-0.392616 Ry cor-
responding to a total Li energy
Ey=2€,,+€ 5~ Zf P2, (x)T(1s,1s,x)dx
(4]

=_14.865447 Ry

21_1 dfd PZ(xu(x)).

—

compared to the experimental value'? E,
=-14.956138 Ry.

The equation for the polarized orbital P, _,, is
obtained by projecting with the adiabatic Hamil-
tonian H,4 acting on the adiabatically perturbed
target function, y, of Eq. (2.5), on the (ls)2 Li*
core function, &, 2(12):

(®(152(12)a )| Hua — Eo| ¥ ,(123;4))=0,  (2.21)
where
H=Hyq~92. (2.22)

Drooping second-order terms gives

d? 2 2Z
(—017—2—— - 5T tet T —4r(1s, 13;7>P23—>p(r)

+2 P )T (s, 25~ p;7) = =27 Py (v) .

(2.23)

This procedure is a somewhat more elaborate
version of the original prescription of Stern-
heimer?®? for obtaining the polarized orbital P, ;..
Specifically (2.23) contains a I', term coming
from the fact that ¥ , in (2.21) is completely anti-
symmetric in (123). It is not clear in the case of
alkali scattering how important that term is, how-
ever we have retained it to give the closest cor-
respondence with Bui and Stauffer.® [Equation
(2.23) agrees with their equation (4) in lim» — . ]
On the other hand, our numerical solution does
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not completely agree with theirs. Ours is given
in Fig. 1 (together with some modified P, , func-
tions which we shall discuss below), leading to
a polarizability a(»)=169a derived from
2 r

alr)= §f° Py (x) xP5q ., (x) dx (2.24)
to be contrasted with Bui and Stauffer’s value of
«=149.243. Furthermore, the adiabatic polariza-
tion potential (Fig. 2)

V,0r) = —alr)/r* (2.25)

is significantly different from theirs mainly in
that ours changes sign and becomes repulsive for
7 <1. The necessity for a change in sign is ob-
vious from (2.24), because P, from Fig. 1 is
nodeless, whereas P, as always has a node. The
appearance of a repulsive part to polarization po-
tential would appear to be in contradiction to the
adiabatic hypothesis, however it must be remem-
bered that the polarized orbital procedure®:!!does
make modifications in the adiabatic hypothesis.
In particular, because of the presence of the step
function e(r,,7,), a part

(_gw / " . (x)xpzw(xmx)

of the polarization potential that would otherwise
occur in V,(r) is removed. If one included that
piece, one would achieve a negative definite po-
tential, butsodeep astobe quantitatively useless.
Various polarization potentials are given in Fig. 2.
As to the comparison of our scattering equations
with those after Bui and Stauffer,® we will not go
into detail on this: the differences are of the form
of the inversion of couple of + signs and the inter-
change of the functions P,; and P, in some places.
Our equations can be checked by letting P, .~ 0 and
Py~ 2(Z%)2ye?”, In that case our equations
reduce to the polarized orbital equations for

general Z of the one-electron target as deduced
by Sloan.*

The effect of the variations in the unmodified
polarized orbital equations in the respective cal-
culations do not seem to be large. Before con-
sidering them, we briefly discuss the numerical
solution of the scattering equations. As is usual
the integro-differential scattering equation was

0.45 -
0.40
0.35|

0.30]

0.25

Voalr)

polarized orbital difi
exch. — adiabatic| ™ ified method

Vpoi {r), unmodified pol. orb. method

FIG. 2. Adiabatic polarization potential (V) using
the various polarized orbitals (Fig. 1). Note the huge
difference in the modified vs the unmodified potentials
for r< 5.
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decomposed into a set of inhomogeneous ordinary
differential equations.!®* However, this set does
not have a unique solution in the full polarized
orbital (and also exchange) approximation. We
therefore have augmented these equations by

imposing the condition that the s-wave scattering -

function u(») be orthogonal to P, in the sing-
let case and P,; as well as P,  in the triplet
case. The justification for these conditions is
that 1s? and 1s22s represent closed shells in
the singlet, triplet cases, respectively, so that
the incoming electron is excluded from them.
In the Appendix we show that this procedure
does not compromise the physical validity of the
resultant solutions. (However, we remind the
reader we consider that the imposition of ortho-
gonality for nonclosed shells suspect.'') The nu-
merical procedure for integrating the differential
equations was a Nordsieck predictor-corrector
method, with a variable mesh size.

The s- and p-wave phase shifts of the unmodified
approximation are given in Table I. The s-wave
functions have two nodes at k*=0, thus phase
shifts approach 27 radians in accord with the
Swan-Levinson “theorem”.'® But the absolute
phase shifts!” are quantitatively toc large (cf.
Table III) particularly in the 3S case. This stems
from the fact that the polarization function is
much too deep at intermediate » (1<y<4), cf.
Fig. 2. That, rather than the repulsive core,
dominates, because at the smaller » the scattered
orbitals u,(r) are themselves small so that the
effect, which is proportional to [a(r)/»*]u, (), is
minimized where @(r) is repulsive.

The effect on the p waves of this over attrac-
tiveness is much more pronounced. Here we see
both singlet and triplet absolute phase shifts
approach 7 radians, whereas correctly neither
'should approach 7 (cf. Table III).!®* The completely

TABLE I. Unmodified polarized orbital phase shifts. ?

k2 (Ry) 35 18 BP 1P
0.0 (—11.49)° (—9.48)" ™ ™
0.001 6.437 6.395 3.139  3.174
0.01 6.169 6.124 2.901  3.355
0.02 5.936 5.910 2.703  3.414
0.04 5.611 5.629 2.442  3.380
0.06 -~ 5.374 5.437 2.266  3.295
0.08 5.186 5.291 2.134  3.204
0.10 5.030 5.172 2.027  3.116
0.12 4.897 5.071 1.939  3.033

2 Phase shifts are in radians in all tables.
b Quantities in parentheses are scattering lengths
(in ay) in all tables.
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unacceptable behavior of the p waves, in addition
to the quantitative deficiencies of the s waves,
makes it clear that a modification of the polarized
orbital method is required.

II1. MODIFIED POLARIZED ORBITAL AND RESULTS

We have seen that the main effect of the unmodi-
fied polarized orbital is to give an overly attractive
polarization potential and a consequent exaggera-
tion of the phase shifts. To some extent this re-
presents a break down of the adiabatic hypothesis.
however the mathematical framework of polarized
orbitals, particularly when one consistently in-
cludes exchange, goes beyond the adiabatic hypo-
thesis.®*® Thus, we are led to ask if we can
simply modify the polarized orbital, PZS_,,,(V), in
order to achieve the desired changes. In order
to judge the effect of such an alteration, we have
found it incisive to focus on the electron affinity
of the negative ion and the satisfaction of the
Levinson-Swan “theorem.”'® The latter states
that the zero-energy phase shift of the partial
wave of a given symmetry is

lim p=(m+m)r. 3.1)

k=0
In (3.1) 5 is the phase shift (with its symmetry
indices, 7 and spin, suppressed), n is the number
of additional bound states (with its given quantum
numbers) of the negative ion, and s is the num-
ber of filled orbital shells of the target which the
incoming electron can thus #of¢ occupy. In this
case of Li the (1s)? shell is filled for both singlet
and triplet s-wave electron; in the former case
there is also one bound state of the negative ion,
and in the latter the 2s shell is also forbidden
(since a triplet wave function cannot have both
spins identical implying their spatial parts must
be different). Thus, for !S we have n=1=m,
whereas in 3S n=0, =2, thus in both s-wave
cases we have

lim n,=27. (3.2)

k=0

For all other partial waves,
lim- 7,,,=0. i (3.3)
B0

(VV e have seen in the unmodified calculation that
limn, =7 as k- 0).

The other succinct piece of information that we
shall use in the electron affinity of Li~(*S); the
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Weiss’ value'® is
€=0.616 eV =0.045 Ry . (3.4)

In order to find a consistent and sufficiently ac-
curate (1S) scattering length we use the relation-
ship?®

a'1=€1/2—efw[Hi(r)—Gi(r)]dr. (3.5)
1]

H,(r) is the exponential function having the same
asymptotic form as the bound 2s orbital G,(r) of
Li~. In our calculation G,(r) would correspond to
a bound solution of our polarized orbital equation
(2.4c). In practice we found it very difficult to
find G, directly, therefore we have developed the
following iterative procedure, which is expected
to be quite accurate, and should be useful else-
where as well.

Since
lim G,(r)=H,(r)=—e~*", (3.6)
where
k=Ve, ' 3.7)

then knowing k is small, we can well assume that
Gy(»)=uylr), r<r,. 3.8)

That is, G,(r) is essentially the same as the zero-
energy solution of the scattering equation, u(r),
for small values of » (less than some »,, defined
below). That is so because the potentials in Eq.
(2.4c) are much larger than the energy term ¢ in
(2.4c), the more so the smaller the value of €.
The point is, however, that we can readily solve
for the zero-energy solution u,(r). The value of
7, is chosen as that value of » at which u,(»)
merges into the asymptotic solution H,(r):

ullr) _ Hjlr)
(uo(r) T Hy(r) ),:,c ’ 8.9)

The procedure is illustrated in Fig. 3. The re-
sultant G,(r) is thus

G, 0) = {Nuo(r), r<v,, . (3.10)

¥
H,(r), r>7,,

where N is a normalization constant such that
Nuy(r,)=H,(,). (3.11)

Of course even to solve for u,(») we need to know
our modified polarized orbital P, ,,(»), which we
do not know to begin with. We do know that any
satisfactory P, ,, will have to approach the adia-
batic P, ., for large enough »:

Py, r) =Py, ¥), 7>7,. (3.12a)

A smooth joining is assured by demanding
[P y@)/Prgy#) = Pho s, )/ P s, )],
(3.12b)

In 3.12), P,,.,, is the solution of the unperturbed
static equation (2.23) which we have given in Fig.
1. We also require that our ultimate P, ,(»)
should give the correct polarizability

2 [~ -
=3 [ PuoWP, ., dr=164a3.  (3.13)
)

(This experimental value?! rather than the calcu-
lated value 16943 is used at this point.)

These conditions allow us to establish an itera-
tion procedure which proceeds thus:

A first guess a'® for the scattering length q is
made

al® =12,
'!"o (r) Nuo(r/)//
/ //
Gplr) r //
c, r
P —e X'
ulln
u,(r)
0 r
b\ — — — N - — — — —

FIG. 3. Curves illustrating the bound function G, ()
(solid curve), zero-energy scattering function Nuy(r)
(dashed curve) and the asymptotic bound-state func-
tion H,(r). In the bottom half of the graph the lo-
garithmic derivative of wy(») is plotted and the
value of 7, is where (after the first note) it intersects
— k which is the logarithmic derivative of Hy (7). The
approximation to the desired G, (7) is Nuy(7) for » <7,
and Hy (v) for » >7, as given in Eq. (3.10). ’
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A first guess P{?,, is generated of the form

COr" y<r,,
n=2

PR, )= (3.14)

st_.,(r) >V,

such that conditions (3.12) and (3.13) are satisfied.
(A reasonable value of 7,= 11 was chosen; at the
end of the iteration procedure », was varied to
make sure final results were insensitive to it.)
Specifically the coefficients C,(,°) had one degree

of flexibility left such that u{*(») (with the cor-
rect number of nodes) did indeed correspond to

a scattering length a(®,

lim 4" () =7/a

r—>c

©_1.

From this, a zeroth-order bound orbital G{? could
be generated from (3.10),

(0) (0)
G4 = {N“c 0, r<re?, (3.15)

Hyr), r>r®,

From G{® we can form a new iteration for the
scattering length a¢¥); from (3.5),

(@V)-t=¢l/2 - ef [H20) - (GO @) 2]dr (3.16)
0o

And now this whole process can be repeated until

convergence of both a and P, _,, is obtained.

Table II contains the convergence for a. The con-

verged P, _,, is given in Fig. 1, and the resultant

polarization potential in Fig. 2.

It is interesting to note from Table II that the
iteration procedure converges very rapidly, but
that the converged value of ¢ is quite different
from the zeroth-order iterate ¢!®. That the final
scattering length is larger than a(® seems virtu-
ally assured from (3.5). For since H,(r) is finite
at the origin, whereas G,(r) is zero; it is clear
that the integrand and hence the integral will al-
most certainly be positive, with the net effect
that a'¥)>¢(#-1, Table II confirms a monotonically
increasing convergence pattern and in particular
that a>a!®. The whole effect is similar to what

TABLE II. Iterative results for (modified) polarized
orbital and exchange adiabatic (1S) scattering lengths.

Polarized orbital = Exchange adiabatic

Iteration a Ve a (A
0 470 7.1 4.70 7.15
1 8.90 9.0 8.01 8.95
2 8.62 9.3 8.57  9.30
3 8.68  9.35 8.64  9.35
4 8.69 9.35 8.64 9.35

happens in # ~ wherein the zeroth-order (*S)
iterate of a{® = (0.0555)~'/2 = 4,24 increases, when
account is in effect taken of the second term? in
(3.5), to a=6.%2 The error in the i ~ is such?®
that we feel we can assert that our final e-Li
scattering length (Table II) is correct to within
10%.

Under the circumstance, we find it very diffi-
cult to understand how the (1S) scattering length
of other calculations®* (cf. Table III), being less
not only than @ but even a'”, can be correct. Or
to put it another way, we do not believe that the
previous scattering lengths are consistent with
the electron affinity of Li~.

The same iterative procedure can also be
carried through in the exchange adiabatic approx-
imation. The results for the scattering length
(Table II) and P,,,(r) (Fig. 1) are of necessity
similar to the results of the similarly modified
polarized orbital procedure. In formulating the
exchange adiabatic equation we have, for consis-
tency, added a Lagrange multiplier term to im-
pose the same kind of orthogonality constraints
on the solutions that we had to impose in the po-
larized orbital equation. (The constraints, Appen-
dix A, are necessary even in the modified polar-
ized orbital, but not in the exchange adiabatic ap-
proximation. They are also necessary in the ex-
change approximation.)

In either of the approximations once the appro-
priate B,;_, has been determined, there are no
free parameters. That means the equations in all
other symmetries are fixed. Table III contains
the resultant S -wave phase shifts; Table IV con-
tains P-wave results. In both cases the results
are compared to close-coupling®’'* and elaborate
variational results of Sinfailam and Nesbet.?® In
Table III we give very low-energy S close-cou-
pling phase shift of Norcross* which correct the
original %S phase shifts of Burke and Taylor.?

The salient features are the following: the S
phase shifts conform to the results of Table II.
The larger scattering length corresponds to less
attraction, and Table III shows that the phase
shifts are correspondingly smaller than the ones
to which we compare. For the reason as the scat-
tering length result, we find it equally difficult to
believe that the polarized orbital results should
not be the most accurate here also. The 3S phase
shifts on the other hand are quite close to one
another. Here we see one of the main advantages
of the polarized orbital technique, whereby be-
tween exchange-polarization and direct polariza-
tion one does not obtain a uniform effect in all
phase shifts relative to unpolarized (say exchange
approximation) results. Note, however, that the
exchange approximate results are qualitatively
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TABLE III. Modified polarized orbital and comparison S-wave shifts.
3s is

k% (Ry) exch. ex.ad.?  pol. orb.? c.c.b var. © exch., ex. ad.® pol. orb.? c.c.? var. ©
0 (5.48) (+3.21) (-9.22) (=7.12) (17.01) (8.64) (8.69) (3.65)

107° 6.266 9.403 6.309 6.304 6.229 6.246 6.253 6.272

1074 6.228 9.356 6.354 6.336 6.114 6.165 6.183 6.239

5x1074 6.161 9.269 6.391 6.356 5.909 6.020 6.042 6.158

1073 6.110 9.199 6.391 6.348 5.763 5.912 5.931 6.086

0.0025 6.010 9.049 6.346 6.300 5.495 5.701 5.710 5.973 5.940
0.01 5.741 8.584 6.101 6.049 4.922 5.164 5.151 5.510
0.02 5.524 8.189 5.862 5.826 4.572 4.788 4.759 5.192

0.0225 5.479 8.109 5.812 5.778 4.508 4.718 4.685 5.138
0.04 5.229 7.648 5.525 5.511 5.495 4.184 4.359 4.300 4.797 4.793
0.06 5.016 7.247 5.279 5.284 3.992 4.090 4.008 4.542

0.0625 4.992 7.204 5.251 5.234 3.917 4.063 3.976 4.532
0.08 4.845 6.922 5.081 3.765 3.898 3.793

0.09 4.771 6.778 4.996 5.003 3.692 3.820 3.704 4.306
0.10 4,702 6.644 4.918 3.627 3.750 3.626

0.12 4.579 6.399 4.777 3.515 3.632 3.492

0.1225 4.565 6.371 4.761 4.768 3.503 3.619 3.477 4.139

# Polarized orbital and exchange adiabatic calculation each uses its appropriately modified Pyg,, see text.
b S results for £2=<0.06 are from Norcross, Ref. 4. Remaining close coupling results from Burke and Taylor, Ref. 3.
All close-coupling scattering lengths from Norcross also. The scattering lengths from Karule’s c.c. calculation (Ref. 1)

are —5.66a; and 3.65a, for 35,13, respectively.
¢ Sinfailam and Nesbet, Ref. 22.

not bad, whereas the exchange adiabatic in the

3S case approach (as k*-0) the wrong multiple of
7. (By construction, the 'S in the exchange adia-
batic approximation is necessarily good.) This

is the most vivid case we have showing the unre-
liability of the exchange adiabatic approximation
for highly polarizable targets and we would advise
extreme caution in using it. The other half of
the conclusion from this comparison is that the

simple exchange approximation is a move uni-
formly reliable approximation for highly polariz-
able tavgets than the exchange adiabatic approxi-
mation.

This is confirmed also in the 3P phase shifts
(Table IV), where the exchange results show
the shape resonance which is known to be the
dominant feature of the P-wave scattering. The
polarized orbital 3P phase shifts are seen to be

TABLE IV. Modified polarized orbital and comparison P-wave phase shifts. ?

3p ip
k% (Ry) exch. ex. ad. pol. orb. c.c. var. exch. ex. ad. pol. orb. c.c. var.
1075 4.1x1076 4.8x107% 1.5x107% (0.0192)° —8.0x1077 2.1x107% 1.4x107¢ (4.0x107%P
1074 1.3x107% 0.0015 0.004 (0.0724) —2.5x107°% 6.5%x107¢ 0.0031 (0.0032)
5x107% 1.5x107% 0.0175 0.023 (0.209) —2.8X107% 0.007 0.0166 (0.0163)
1073 4.2x107%  0.0515 0.051 (0.346) —7.1X107% 0.0190 0.0328 (0.028)
0.0025 0.017 0.230 0.159 0.307 —0.003 0.0641 0.0787 0.058
0.01 0.158 1.571 0.956 1.952 —0.022 0.240 0.240 0.189
0.02 0.509 1.849 1.457 2.107 —0.053 0.334 0.332 0.262
0.0225 0.612 1.856 1.501 2.162 —0.061 0.346 0.342 0.239
0.04 1.162 1.806 1.588 2.017 1.981 -0.118 0.353 0.346 0.293 0.272
0.06 1.375 1.714 1.566 1.911 1.876 —0.175 0.307 0.296 0.292
0.0625 1.386 1.702 1.560 —0.182 0.299 0.287 0.276
0.08 1.422 1.631 1.528 1.820 -0.222 0.248 0.233 0.304
0.09 1.423 1.594 1.510 1.787 —0.241 0.219 0.204 0.301
0.10 1.418 1.560 1.493 1.743 -0.258 0.192 0.175 0.360
0.12 1.396 1.500 1.463 1.678 —0.285 0.142 0.122 0.530
0.1225 1.393 1.493 1.460 1.660 —0.287 0.136 0.116 0.515

# Footnotes a, b, and ¢ from Table III apply here also except that all close-coupling results are from Ref, 3.
b Results in parentheses are digitized interpolation results from Fig. 3 of Ref. 3.
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FIG. 4. Elastic cross
section in (modified) pol-
arized orbital and close-
coupling approximations.
Experimental points are
total cross-section mea-
surements (Ref. 25). Above
0.136 Ry they therefore in-
clude inelastic contribu-
tions; cf. text for discus-
sion, Thec.c.curve, where
dashed, was calculated
from digitized interpola-
tion of graphical phase shift
from Ref. 3 and may not be
accurate. Cf. footnote b of
Table IV.

iZ(eV)
0.0005 0.001 0.005 0.01 0.05 0.1 05 1.0 5.0 10.0 13.6
10* T T T T T T T T T T
LN
AN
, L/ N
10° - ’// \\ .
%
-
e
8
=
s 02 modified pol. orb. (m.p.o.)
1
‘Zp Threshold
1 1 1 1
10495 10 10-3 102 10 10°

k2(Ry) —

quantitatively smaller than the comparison re-
sults in Table IV, and they peak at a somewhat
larger energy with a value closer to 3. This
difference in the respective 3P-wave phase shifts
is the major factor accounting for lower polarized
orbital scattering cross section below the maxi-
mum and the higher cross section above it com-
pared to the close-coupling results® (Fig. 4). The
larger values correspond to the lower side of the
presently measured® range and they therefore
qualitatively support the somewhat larger experi-
mental value® than those predicted by close cour
pling. A good measurement at the lowest energies
should clearly distinguish these various calcula-
tions.

The various partial waves, including higher
partial waves, at a coarser mesh in energy are

given in Table V. In general the I > 2 phase shifts
follow the a/r* polarization formula?!

1, =Tak?/(20-1)(21+1)(21+ 3) (3.17)
to increasingly larger values of k2% as [ increases.
The value of k% where (3.17) ceases to hold can be
judged from Table V by noting where singlet and
triplet phase shifts (for each !) begin to differ ;
significantly from each other.

In Fig. 4 one also sees increasing deviation from
experiment?® above the inelastic threshold at 1.4
eV. This is mostly due to omission of the exci-
tation of 'S(1s22p) first excited state. If one takes
the 2s-2p cross sections of Williams ef al.2® and
adds it to their elastic cross section, then that
sum is indeed close to Bederson and Miller.?®> How-

TABLE V. Collected (modified) polarized orbital phase shifts.

kZ(Ry) 3s 3P 3D SF 3G 3H ls ‘P 1D lF 1G 1H
0.01  6.095 0.956 0.046 8.8x1073 1.4 x10™% 1.6x10™* 5.148 0.240 0.046 0.009 1.4 x107% 1.6x1074
0.02 5.859 1.457 0.101 0.031 9.87x1073 0.0025 4,755  0.332 0.102 0.031 9.88x10™% 0.0025
0.04 5.522 1.588 0.194 0.065 0.028 0.014 4,298  0.346 0.201 0.065 0.028 0.013
0.06 5.278 1.566 0.262 0.100 0.044 0.022 4,006 0.296 0.274 0.101 0.044 0.022
0.08 5.081 1.528 0.308 0.131 0.060 0.031 3.793  0.233 0.324 0.133 0.060 0.031
0.10 4.918 1.493 0.337 0.159 0.075 0.039 3.626  0.175 0.351 0.163 0.075 0.039
0.12 4.777 1.463 0.353 0.182 0.090 0.047 3.492  0.122 0.364 0.189 0.090 0.048
0.20 4.360 1.381 0.365 0.239 0.141 0.080 3.137 -0.020 0.332 0.253 0.144 0.080
0.30 4.018 1.319 0.355 0.253 0.180 0.115 2.904 -0.063 0.244 0.266 0.188 0.117
0.40 3.779 1.274 0.352 0.243 0.196 0.140 2.778 —0.004 0.168 0.243 0.207 0.144
0.50 3.599 1.239 0.357 0.229 0.197 0.155 2.704  0.102 0.113 0.212 0.207 0.161
0.60  3.455 1.211 0.365 0.216 0.191 0.162 2.660  0.217 0.077 0.181 0.198 0.169
0.70 3.340 1.186 0.373 0.206 0.183 0.163 2.630  0.318 0.056 0.155 0.185 0.171
0.80 3.237 1.164 0.382 0.200 0.174 0.161 2.608  0.401 0.046 0.133 0.170 0.168
0.90 3.151 1.145 0.390 0.195 0.166 0.156 2.590  0.467 0.044 0.116 0.156 0.162
1.0 3.075 1.127 0.397 0.193 0.158 0.151 2.573  0.519 0.049 0.102 0.143 0.155
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ever Williams et al.?® specify a rather large error
bar (32%) in their experiment. Thus, if we add
their 2s-2p cross section to our elastic result we
obtain a total cross section about 20% lower than
the presently measured one.?® :

That deviation is in general accord with Wal-
ters’ ?” claim that the measured total e-Li cross
section is too large. However, we believe the
present calculations and experiments are not suf-
ficiently definitive to substantiate that assertion.
(This remark is intended in the low-energy range
just beyond the 2p threshold; we do not wish to
comment on the higher-energy range which was
the main concern of the Walters paper.2?)

Some differential cross sections are given in
Fig. 5; although experimental angular results®®
are more complete at higher energies, we believe
our calculation is more reliable below the inelas-
tic threshold. We therefore have also plotted in
Fig. 5 the angular distribution at the presently
unmeasured energy of 1.36 eV.

Even more sensitive to the phase shifts is the
spin-flip cross section. Specifically the amplitude
for converting the target (or the scattered electron)
from spin “down” to spin “up” (sometimes called
spin exchange cross section) is?®
(6)= 3£ (6) -9 (9)] .

J (3.18)

spin-flip

The ratio of the associated cross section to the
full elastic cross section

04 (6)=357(0)]2+ 5|/ (0]

is given by

R(0)=%| ) (6) =5 (6)[%/0,, (6).
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FIG. 5. Elastic differential cross section in (modified)
polarized orbital approximation. Experimental points
at 5.4 eV are those of Williams, et al. (Ref. 26).

Results are plotted in Figs. 6 and 7. In Fig. 6
the ratio is compared to measurement of Bederson
and Miller®® and close coupling result of Burke
and Taylor® (where to their /=0 plus I =1 close-
coupling phase shifts we have added our higher
partial phase shifts). The differences between
the calculated results is quite evident, but the
errors in the experimental results which are in
qualitative accord with both calculations, do not
allow a definitive comparison. In Fig. 7 we have
given our own (polarized orbital) results at two
lower energies which can provide useful tests
for a future experiment.
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FIG. 7. (Modified) pol-
arized orbital differential
spin-flip cross sections at
two lower energies.

k2 = 0.136 eV

IV. DISCUSSION

We believe that our modification of the polarized
orbital method to treat electron-alkali scattering
is a reasonable one. One further test of the pro-
cedure is that it should reduce to the unmodified
method when the polarizability of the target be-
comes moderate. This in turn means that in the
general case the P,,.,;s are satisfactorily given by
the unmodified, essentially Sternheimer,'? form
of P,;; + and that latter will lead to a good polar-
izability, a good electron affinity, and the satis-
faction of the Levinson-Swan “theorem.” In the
canonical case of the e-H system it is well known
that the unmodified polarized orbital P,,_., used
in the traditional polarized orbital method® passes
all three tests.!

The modification contains another—although more
subtle—advantage, which to some extent corrects
for the necessarily inexact target wave function.
Namely since we have fit to the experimental or
equivalently highly accurate theoretical Li~ elec-
tron affinity,’® neither of which knows anything
about the approximate target wave function, our
modified P,,_, must contain a part which corrects
for the approximate target state function which
must be used in the polarized orbital (or any other
scattering) formalism. It may be thought that this
correlation only applies to the 'S results, however
we would again argue that since the polarized or-
bital procedure puts this information into a wave
function®' % (and not into an effective potential),
with all the benefits accruing from correctly anti-
symmetrizing the wave function,'! that the correc-
tion should be operative for other partial waves
symmetries as well. We therefore believe that
this set of modified polarized orbital shifts are -
overall the most accurate e-Li phase shifts pre-
sently available.

One shortcoming of the modification is that it

is not abd initio, i.e., one must know values of the
electron affinity and the polarizability to make it
work, and even with these modifications the modi-
fied polarized orbital P, is not uniquely de-
fined. In contrast to this it is interesting to ob-
serve that Vo Ky Lan!® has obtained satisfactory
phase shifts using Stone’s form® of polarized or-
bital in an otherwise conventional polarized orbi-
tal calculation. (Vo Ky Lan calls this the POM III
variant.!°) In Stone’s form the polarized orbital
that replaces P, ., (%,4) of (2.2) is

Pos=0 P seone (@,4)
= Br)[ Py (ry)/7v; ] cosb,,. (4.1)

The fact that P,, replaces P, in (2.4) is a
simple outgrowth of the fact that for alkalis most
of the polarizability does derive from the lowest
b orbital in the expansion of P,;.,,. More impor-
tant is the dependence of § on the incident coordi-
nate 7,, specifically the fact that in Stone’s method
B(7) is determined ab initio by minimizing the
adiabatic energy of the Li atom for each (stationary)
position 7, of the incident electron. The ansatz
for the adiabatic wave function is ¥, (123; 4) of
(2.5) with the replacement of ¢,;., by ¢. The
graphical result for B is given in Stone’s paper
and we repeat it here (Fig. 8) together with a B
coming from our polarized orbital treatment,
which is obtained from equating the right-hand
side of (4.1) and (2.4) (with P,,_,, replaced by
st —’P)
= 6(1’4, e ) st—"b('ri )
Byolry7y) =~ Jirr? Py lry) (4.2)

The result, Eq. (4.2), is a function of 7; as well
as 7,. In Fig. 8 we show S, at two values of 7;
compared to Stone’s. One value 7;=3.05 is where
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FIG. 8. B(74) in various
approximation (cf. text).
Note the effective g,

[Eq. (4.1)] depends on the
value of 7; and has a dis-
continuity there; it is shown
for two values of 7;.

Stone’s (adiabatic varia-
tional) B gione has a cusp
plus a minimum and is
roughly similar to 8,, for
a value of 7; near this
minimum.
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the unperturbed P, (r;) has its second maximum;
the second, 7;=1.7 is a mean between the first
and second maxima of P, (r;). The figures demon-
strate both the differences and the similarities as
compared to Stone’s 8. Note specifically that the
latter has a cusp, compared to ﬁpo which has a
discontinuity; the perturbation theoretic B, , (7,)
(also shown in the figure and taken from Stone’s
paper®) is completely smooth as a function of 7,.
To the extent that one can draw general conclu-
sions from this circumstance, it would appear
that it may not be the adiabatic hypothesis which
is at fault in constructing the polarized orbital
wave function for electron-alkali scattering, but
rather the use of first-order perturbation theory
to approximate the adiabatic result (rather than
Stone’s formulation which is variational and does
not depend on perturbation theory). If this is true,
it is significant, because Stone’s method does con-
stitute an @b initio prescription. However, we be-
i

dr?

- [2Plsl"0 (1s,1s;7)x 2P, T'((2s,1s;7)

ra (ao)—‘

lieve one will require direct comparison of the
phase shifts themselves, and comparison of both
methods when applied to other alkalis and highly
polarizable targets before one can be sure that
that is the case. Nevertheless, we emphasize
again the agreement of our qualitative conclusions
with those of Vo Ky Lan.*

To conclude we mention that since we have de-
rived a total (polarized orbital) wave function,
it can also be used for photodetachment (of Li™)?°
and distorted wave calculations of electron impact
excitation of Li, particularly of the resonance
transition (2s-2p). Both calculations are in pro-
gress.

APPENDIX

It canbe shown thatu = P, (r) is an “integral” solu-
tion in singlet and triplet states in exchange and
polarized orbital approximations.

Letu,_,=P,, in Eq. (2.11c), we get

2
(d— + IeZ)PJls =[ 4T (1s,1s; 7} 2Ty(2s, 25;7) =2Z/r+ V, | P, (7)

+P (els -k 2] P, (x)T(2s, 25; x)P, ;(x) dx ¥ 2 f P, (x)To(1s, 2s;%)P, , (x) dx
[J] [¢]

©

N fo P (x)V, (%)P,, (x)dxF 2 fo P07, (P, (x)dx)] 3P, (7) f TRLWP (),

%
(A1)



Multiply on the left by P, (r) and integrate to get
A P, ( It + kAP 1s @7

=f P (N[2T,(1s,18;7) ~2Z/7r — €, + k7 dr
0o
or

© 2 )
f drPls(‘%'—zR—rZ——ZI‘O(ls,ls;r)«Lels)Pls:O.
0 (A2)

2Z

f

dr P, () [(d Bt

We see that only in the triplet state (upper sign),
the above equation reduces Eq. (2.20b), the equa-
tion satisfied by P,;.

In conclusion then, it would appear that the
apparent lack of determinacy of the original
equations stems from the fact shown above
that P, () [and P, (r)] are “integral” solutions
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In the derivations of the above equation we use

the fact that P ; is orthogonal to P, in the frozen-
core approximation. Equation (A2) is the same
equation as Eq. (2.20a), thus (A2) is indeed zero.
That is what we mean by an “integral” solution.

It canbe shown that u =P, (r) is an “integral” solu-
tion in exchange and polarized orbital approxima-
tion for triplet state only. Let u;_,=P,,(¥) in Eq.
(2.11¢), multiply on the left by P,, and integrate.
We get

-4T(1s,1s; rteZ,>st(r)+ZI‘o(ls 2s; r)Pls(r)]

= 2(1;1)( fn ar P, (r)[T(2s,2s8;,7)+V, /2]P23('r)> .

(A3)

of the appropriate scattering equations. Therefore,
the orthogonality conditions serve to make the
solutions unique for all », and they should not af-
fect the phase shifts significantly (modulo 7),

since the added function P, (r) and P,,(r) vanish

at infinity.
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