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Perturbation theory of the Stark effect in hydrogen to arbitrarily high order
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The solution of the Stark efFect in hydrogen to arbitrarily high orders of perturbation theory is made
feasible by the explicit formula for the Nth-order energy in terms of the separation constants through Nth
order, derived here. The Nth-order separation constant P~iN~ is shown to be a polynomial of total degree
N+1 in the parabolic quantum number n,. and the magnetic quantum number m. The polynomial
coefficients have been tabulated through seventeenth order and are listed here through tenth order. Similarly,
the ¹h-order energy is a polynomial in the quantum numbers n&, n2, and m. The polynomial coefficients
(which are more numerous than for P~ ~) have been tabulated through seventeenth order and are listed here
through seventh order. Severiteenth order is high enough to permit a clear numerica1 demonstration of the
asymptotic character of the perturbation series, and a "maximum useful field strength" is defined arid
illustrated. Energies calculated by perturbation theory for specific states are shown to be in excellent
agreement with energies calculated nonperturbatively.

I. INTRODUCTION

The Stark effect in hydrogen was the first quan-
tum-mechanical problem to be treated by Ray-
leigh-Schrodinger perturbation theory. ' The per-
turbed energy is easy to obtain in first and second
order. Third order' requires some effort, but
fourth order" is already so tedious that the cor-
rect formula was finally obtained only in 1973.'
Higher orders have not been published, except
for the ground state, "although there have been a
number of nonperturbative calculations. ' "

Recently there has been experimental interest
in high Rydberg states of atoms. " Since detection
techniques for these hydrogenic states have in-
volved ionization of the atoms by an external elec-
tric field, it is of some interest to have accurate
formulas for the Stark shifts and for the ionization
lifetimes. The asymptotic formula"' for the
lifetimes depends sensitively on the accuracy of
the computed perturbed energy and separation con-
stant.

The purpose of this paper is to discuss the solu-
tion of the Stark effect in hydrogen to arbitrarily
high orders of perturbation theory.

In each order of perturbation theory, the separa-
tion constant and energy are polynomials in the
parabolic and magnetic quantum numbers. We
show that the total degree of the polynomials is
only about half of that expected. We give the poly-
nomial coefficients for the separation constant to
tenth order and the energy coefficients to seventh
order. Tables of both through seventeenth order
are available from the Physics Auxiliary Publica-
tion Service (PAPS). 'o

Although the relation between the values of the
separation constants and the energy is very
simple, the relation between the two perturbation

II. PERTURBATION THEORY EQUATIONS
FOR THE SEPARATION CONSTANTS

In this section the perturbation-theory equations
for the separation constants are restated so that
all the relevant quantities are polynomials in the
quantum numbers.

The Schrodinger equation for hydrogen in a uni-
form electrostatic field,

(--,'V2 —1/r+F~ —E)e =0

separates in scaled parabolic coordinates, ","
x=(-2E) ' '(op)' 'cosP,

y = ( 2E) ~2(gp) ~ sing

z = (-2E) 'i'(cr —p),

~ =(~p) "@,(c)C.(p)e"',

(2)

(3)

(4)

(5)

d ' m'-1

+ + 'p-fp' —P. @'.(p)=0, (l-)
d ' (m2-1)

dp (4p)

f= '(-2E) ' '&. -

series is not, because the expansion parameter
for the separation constant series explicitly in-
volves the energy. In the past it was unnecessary
to go beyond fourth order, and a successive sub-
stitutiori method sufficed. Here the order may be
arbitrarily high, so that we must derive the ex-
plicit relationship between the two series.

The Stark-effect perturbation series do not
converge: they are asymptotic. ' For a given
number of terms, it is possible to find a heuristic
maximum useful field strength, which we illustrate
through some simple numerical calculations.
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The-energy is determined from the separation
constants by

~2(P, +p, ) '

Since the quantum number m appears only in the
form —,'(m' —1), we denote the combination by M
for convenience"

Note that the difference of any two unperturbed
eigenvalues is an integer. The function ~0), which
is normalized to unity (with volume element
o 'do), is the unperturbed eigenfunction belonging
to the unperturbed separation constant k.

The matrix of the perturbation, which is defined
by

M = ~(m' —1) . (10) o '
~ j) = g v;z(k, M)

~
i),

We also introduce the symbol k& for the unper-
turbed separation constants, ' which play a major
role in subsequent formulas

p
(0)

= n, +-,'(m( +-,.
'

(n, =0, 1, 2, . . . ).
(11)

(12)

k; is a more convenient label than the parabolic
quantum numberS n, and n2.

Since the essential difference between Eqs. (6)
and (7) for P, and P, is the sign of f, it is sufficient
to consider only one, say Eq. (6), and we write

v, ,(k, M)=1 (i=j+2)
= 4(k+j+-,') (i=j+1)
=6(k+j)' —2M (i =j)
= -4(k+j —2)[(k+j —l)(k+j ) -Mj

(22)

(23)

(24)

is straightforward to evaluate from the well-known
properties of the generalized Laguerre polyno-
mials. " One finds that the nonzero v, &

are polyno-
mials in k and M

P, =P(k„M,f),
P. = P (k~, M, -f ),

P(k, M& f) = Q P (")(k,M)f".

(13)

(14)

(i =j —1) (25)

=[(k+j 2)(k+j 1) M]

x[(k+j —1)(k+j)-M] (i=j 2) (26)

(27)

(!m!+))/ ae-a/2L! m! ( )n~+1+I fft [

where Lt, ,I,, I ~
denotes the usual generalized La-

guerre polynomial, "and N& is a constant that
spoils the normalization, given by

1-1
i)i, = g [(k + i) (k + i + 1) —M]' ~'

(j & 1)

(16)

S=O

ml (j =0) (17)

= Q.[(k —i)(k —i+1)-M] ' ' (-1&j &-n,).
s = j.

(18)

[Here k means n, +-,'~m(+2, as in Eq. (12).]
The

~ j) are eigenfunctions of the unperturbed
Hamiltonian h +',

2

da cr

= (k+f )
~ j) .

When there is no danger of confusion, subscripts
will be omitted. Subscripts will be indicated for
the parabolic quantum numbers n, and n„how-
ever, because we wish to reserve n (without a sub-
script) to represent the "principal quantum number. "
To make all the important quantities in the calcu-

lation polynomials, we introduce an un-normalized
basis. Let (j) denote the function,

(j) =N, [(n, +j)!/(n, +j. + (I()!'j'~

In the usual manner, with "intermediate nor-
malization, "we expand the perturbed eigenfunc-
tions 4 '"' on the basis (~ j)j and obtain recursive
relations for the expansion coefficients and for
the separation constant:

C, (N)f N

c, (0) ip)

(28)

(29)

C (N) = g c(N)(k, M)
~ j) (X 1),

JssO

(O)
C~ -6go

(30)

(31)

1
N j

C(N) = ——P v c(N )) —g p(N ~) C(~) (14 P)l
~

lg i
JssO &=1

(32)

P (N)(k, M) = Q v, c,
jto

(33)

Because each nonzero v, &
is a polynomial in k and

M of total degree 2 —i+j (where ~i-j
~

&2) in k
and M'~', it is apparent from Eqs. (31)-(33) that
the wave function coefficients c,' ' are also poly-
nomials in k and M of total degree 2N —/ in k and
M'~'. (Note that / must satisfy -2!)i& f & 2N for
c)(N) to be nonzero. ) Similarly, the separation
constants p'N'(k, M) are polynomials in k and M
of maximum total degree 2N in k and I' '. Ac-
tually, we prove in Sec. III that the degree of
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P'"' is only N+1. Since P'»' is known' to have
parity (-1)»"' with respect to k, we can write
for c &"' and for P'

»-& i(2N-J-s)/ g3

c&»'(k, M) = g g c&„,'M" k',
s=O r~O

(34)

BN+-1) /23 t; (N+ i) /23-r
n (N) g(N)

f r, N+1.-2r-2t
r=0 t=o

(35)

where cz~' and P,'»' are constant coefficients, and
where [i] denotes the greatest integer c i.

By programming the recursion formulas (31)-
(33) with the polynomial formulas (34), (35), and

(22)-(27), one can generate with a computer the
numerical values for the polynomial coefficients
to as high an-order as is desired. In Table I we
have listed P„',»' for N ( 10. Orders 1-4 agree
with Alliluev and Malkin. The coefficients ap-
pear to be even integers for N ~ 10. Since the
calculation has been carried out in double preci-
sion on a Digital Equipment Corp. System-10
computer, it is not possible to tell if the coef-
ficients are integers beyond tenth order, as the
numbers of significant digits in the P„',»' are too
large. The number of nonzero p„",»' in 2Nth order
is ,'(N+—1)(N+2), and the number in (2N+1)st
order is ~(N+1)(N+4). Tables of P„'»' for N(17
are available from PAPS."

TABLE I. Separation constant, orders 1-10. P» =P P M "k'

N r s

0 2
1 0

0 1
0 3
1 1

0 2
0 4
1 0
1 2
2 0

0 1
0 3
0 5
1 1
1 3
2 1

0 2
0 4
0 6
1 0
1 2
1 4
2 0
2 2
3 0

0 1
0 3
0 5
0 7
1 1
1 3
1 5
2 1
2 3
3 1

~(N )
rs

-10
-68

36

660
1 500
—120

-1032
44

-2 210
-37 900
-42 756

12 960
35 640
-3636

381264
2 093 280
1 400784
-54 240

-1029 600
—1 364160

33712
229 200
-3680

-1656 500
—43 002 592

-113822 520
-50 118384

12051720
72 439 200
55 719216
-5 881416

-13182 480
552 912

N

0
0
0
0
0
1
1
1

0 2
0 4
0 6
0 8
1 0
1 2
1 4
1 6
2 0
2 2
2 4
3 0
3 2
4 0

2
4
6
8

10
0
2

~(N)
rs

484 419 360
3 997 074984
6 142 374000
1905 807 816
-60 441 600

-1663 495 776
-4 778 464 320
-2 379 3M416

46 142 240
657 768 432
728 298 480
-8 886 688

-53 877 984
450 696

-2 564 063 050
-83 943 936 120

-331953 386940
-330 097 271 640
-75 783 847 700

20 998 605 600
182 925 628 704
302 909 140 800
104 928 884 208
—12 837 436 200
-60 110940 120
-39 436 837 272

2 155 524912
4 336 206 000
-98 489 844

1 078 065 703 680
11206 248 868 800
25 598 194895 280
17 695 955 613600

3 118465 869 552
-123998 092 800

-4 217 580 898 560
—17 545 111106 880

10

r s

1 . 6
1 8
2 0
2 2
2 4
2 6
3 0
3 2
3 4
4 0

5 0

0 1
0 3
0 5
0 7
0 9
0 11
1 1
1 3
1 5
1 7
1 9
2 1
2 3
2 5
2 7
3 1
3. 3
3 5
4 1
4 3
5 1

p(N)

-18689 372 876 160
—4 741 154 003 520

104 008 003 840
2 121721 190976
4891 069 777 440
2 112491 924 256
-25 354 142 720

-313679 336 640
-313746 377 280

2 306 958 208
12 987 661680

—66 513664

-6 733 922 487 500
-255 756 162 331848

—1 272 588 709 670 760
—1 872 704 078 101248

-947 164 090 664 440
—131843 747 886 864

59 428 632961 080
640 629 497 858 400

1 534 647» 588 890 960
1130767 102 209 600

218 322 729 416 880
-40 501 147 719.024

-271 104 353 086 320
-369 115567 782 192
-112468 417 051 680

8 691 108 323 328
35 612 199123840
21 237 767 907 552
-717 606 581 400

—1 343 525 553 360
19 093706 352



HARB, IS J. SII VKRSTONK

III. THEOREM ON TOTAL DEGREE OF P ~N~

In this section we prove that the total degree
of P with respect to k and Mi ls /(l + 1.

Alliluev and Malkin" observed extensive can-
cellation in calculating P"), P"', and P(4) that
reduced the total degrees in k and I'~' to 3, 4,
and 5 from 4, 6, and 8, respectively. To prove
the cancellation for arbitrary order, the author
finds it necessary first to convert to an ortho-
normal basis, and then to introduce a new co-
ordinate representation not directly connected
to the o representation, but which has the same
matrix representation. The new coordinate rep-
resentation yields a tractable equation for the
logarithm of the eigenfunction, which in turn gives
the polynomial degree of P("' directly, without
the necessity of cancelling higher terms.

The orthonormal basis is obtained by removing
the Nz from the definition of the functions

~
j):

n', (k, M) = [(k+j+1)(k+j+2) M]'~

x [{k+j)(k+j+1)—M]'~' (i=j+2),
(26)

= -4(k+j+-,') [(k+j)(k+j+1)-M]"'

(i =j+1), (SV)

=6(k+j)' 2M (z=j),
= 4(k+j --,')[(k+j)(k+j 1) M]"

(28)

(i =j —1), (39)

= [(k+j 2)(k+j 1) M]'~'

x[(k+j 1){k+j) M"' (l=j-2),

=0 ((i j~&2).

(40)

(41)

The new coordinate representation is obtained
by the correspondence,

p)' = (2w) ~/28~~4 (42)

In the
j
j)' basis, the matrix of the perturbation

becomes

In the Q representation the unperturbed Hamil-
tonian is essentially the angular momentum oper-

A
ator / „while e becomes a function of both Q and f,

I ~'& =t, +u (43)

(44)

8=e"~[(k+l,)(k+l, +1) M]'~'[{k+—l, +1)(k+l, +2) —M]'~' —4e'~(k+l, +)[( k3+,)( kl+, +1)—M]' '
+ 6(k+l,)' —2M —4e '~(k+l, —2)[(k+ l,)(k +/, —1) —M]'i'+e ' ~[(k+ /, —2)(k+l, —1) —M]'i'

x[(k+i. 1)(k+i,) M]"'.
The unperturbed eigenfunction 4 ("' is just the constant (2v) '~'

e introduce what is essentially the logarithmic derivative of 4 by

e(@)= (2w) '~' axp[i )((4') d(':,

where X-0 when f-0. Since C((5) is single valued, we must have

f );:N)ay=a.

(46)

(4V)

The eigenvalue equation for C then yields the equation satisfied by y,

x(Q)+k —P =-exp iy((l)-') d@' fv exp i x(4') d4', . (48)

For the purpose of obtaining the behavior of X and P for large k and M, we expand & in a power series

e =e,((t))+v,(y)f, +u, (y)l', + ~ ~,
and g in a power series 1Bfq

x =fx"'+f '-x"'+

(49)
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The e, depend on (t); for instance,

e,(g) =e"'[k(k+1)-M]"'[(k+C)(k+2) -M]"' 4e"(k+-')[k(k+1) -M]'~'+6k'-2M

-4e '~(k ——')[k(k —1) -M]'~'+e "o[(k —1)(k —2) -M]'~'[(k —1)k -M]'I'. (s1)

From Eqs. (45) and (49) we can characterize the behavior of e for large k and M, or more precisely,
for fixed but arbitrary k'/M,

((t)) =Q[(ak+bM~~2)2 "] (s2}

where the constants a and b depend on the ratio k'/M.
The system of equations obtained by substituting Eqs. (15), (49), and (50) for p, e, and g into Eq. (48)

and collecting froms of the same order in f,

k P&'& =O,

x"' —p'"'= -vo(y}

d "' {)P"'= gt „(y) fd-
g= 1

)("'-()"'=-Z~.(@)(~d—) )("'-Z~.(()(-() 'Z (" ) (z Il
x"'

(d ) .
)("'

(58)

(s4)

(ss)

l)" =(») f v (Q)d4',
0

)) =(») J Z" ((')(-( ) x

(sv)

(s8)

and so forth, can be solved recursively. The
P'"' are obtained via the single-valuedness con-
dition (4V)

y=P, +P. (6o}

proximation to eliminate E from f=F(-2E) ' '—is
unwieldy after the first few terms, and also un-
necessary: the "formula of Lagrange"" per-
forrds both steps at once.

Let us denote by y the sum of the separation
constants,

y(0&y(&&f y(2)f 2 ~ (61)
and so forth. It is not our purpose to solve Eqs.
(53)-(56) for, y'»' and p'"', but only to determine
their behavior for large k and M. From Eqs.
(51), (52), and (57), we see that y"' and P"' are
O[(ak y b M'~')']. From Eqs. (52) and (55), we
see that X'~& and p"' are O[(ak+bÃ~~2)']. It
follows inductively from Eqs. (52) and (4V) and
from the system of equations whose first four
members are Eqs. (53)-(56), that X'"' and P' '

are O[(ak+b M'~')»"]. But since P(»' is a poly-
nomial in k and M, to know its behavior for large
k and M'~, ' is to know its total degree.

{N) ~ (N) g {N) (62)

=P'"'(k M)+( I)"P'"'(k„M). (68)

y{0)=k, +k, (64)

y may be regarded as the "perturbed principal
quantum number, " since y'" is the usual unper-
turbed principal quantum number n

IV. PERTURBATION SERIES FOR F. FROM THE SERIES
FOR P~ AND P~

The usual procedure to obtain the series in I"

for E,
E{0) E{1)y+E{2)y2+ ~ ~ ~

from the series in f for p, + p,—expansion of
--,'(P, +P,) ' in a series in f and successive ap-

=n, +n, + )m)+1

The explicit formula that we derive for E{~) in
terms of the sums of the separation constants
y{E)

(65)



1858 HARRIS J. SILVKRSTONE j.8

E (N) 3N —3 f

tl 0 t2 0 '''
~ T=TT0 (3f&) —2 -Z; z;)!z, !z, ! z„!

(a 1+2e2+3S3+~ ~
6+N&N=N )

y(0)3N2L jf j y(l)i1 y(2)~2 o o e y(N N

For example,

E (1) 1 ~, (l)

(2) 4-2( (0)3 (2) 3 (0)2 (1)2)

E (3) 4-3( (0)6 (3) 6 (0)5 (1) (2)

(66)

(69)

Collecting all terms multiplying F"and evaluating
the derivatives, one obtains Eq. (67).

V. POLYNOMIAL FORMS FOR E +)
&0)a &1)3) (VO)

The summation in Eq. (6V), although complex in
appearance, is just over the distinct partitions
of N into sums of positive integers. "

The derivation takes only a few lines. The
relations (8), (9), (60), and (61) among E, P, yP„
f, F, and y tra. nslate into an implicit equationfor y:

y =y"'+y"'(5 y'&)+y"'(4y'F)'+ . (71)

Langrange's formula gives any desired function
of the solution of the above implicit equation,
1n particular~

F- " can be evaluated as a polynomial in k„k„
and M via Eq. (67), which expresses E(") in terms
of the y ", which in turn are expressed as poly-
nomials via Eq. (35). The resulting formula is
slightly simplified, however, by first factoring
y(0) jp y y pg out of each y( )

For even N, we find from Eqs. (63) and (35)
that

N/2 N/2 —r
(N) &&) ~ P(N) M (k 2r)&+1 +k 22+ 1)r2p+1 1 2

r= p p=p

(Ã even), (74)
E=-2r1

(o)-2 +
2

(72)

z —,(„...)
X (p&

g y(v) y(0)3F v l4
1

N/2 N/2-r

=(k, +k, ) g Q P(",0)~, M"
r=o V=o

)( (k 02
1 1 2 1 2

+ k', ") (E even),

while for odd N,

(N),
(N+ 1)/2 (N+1)/2-r

r=p
M" (k', "-k' ) (%odd) T (76)

(N+ 1)/2 (N+ 1)'/2-r

=(k, +k, )
r=0 P&

P(N) Mr (k20 -1 k2ll -2 k ~. . . ,k2ll-1) (f&( odd)
t

(77)

Thus the product of y's in Eq. (67) has the natural
factorization,

(0)3N-2-~j &j (1)& 1 (2) &2 . . ~ (N) iN

E(N) 4-N 3N-2 QQ Q E(N)Mrkt kJ
r«o~«o j«o
(i+j+Neien, ,

$+j+2r ~N)

(V9)

Taking this factorization into account, we infer
from Eq. (67) the formula for E ":

When N is odd, it is clear from Eq. (76) that y("
is divisible by k, —k, . Consequently E " [each
term of which in Eq. (6V) must contain at least
one y factor of odd order] is also divisible by
4, —k„ implying an alternative polynomial decom-
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TABLE D. Perturbed energy, orders 1-7. Z + =4 n3+ ~Q E I.".0(0'

&(N)
rij N .r i j &(N)rij

&(N)rij

1 0 1 0
0 0 1

2 0 2 0
0 1 1
0 0 2
0 0 0
1 0 0

-14
-40
-14
-10

36

3 0 3 0
0 2 1
0 1 2
0 0 3
Q 1 0
0 0 1
1 1 0
1 0 1

132
156

-156
-132

3QQ

-300
264

-264

4 0 4 0 -1860
0 3 1 -5 340
0 2 2 -7 548
0 1 3 -5 340
0 0 4 -1860
0 2 0 -9 100
0 1 1 -13580
0 0 2 -9 100
0 0 0 -1760
1 2 0 4536
1 1 1 4536
1 0 2 4536
1 0 0 9 720
2 0 0 2196

5 0 5 0
0 4 1
0 3 2
0 2 3
0 1 4
0 0 5
0 3 0
0 2 1
0 1 2
0 0 3
0 1 0
0 0 1
1 3 0
1 2 1
1 1 2
1 0 3
1 1 0
1 0 1
2 1 0
2 0

31920
95 088
62 160

-62 160
-95 088
-31920
277 440
265 440

-265 440
-277 440

182 544
-182 544

11904
1 344

-1344
-11904

27 360
-27 360

34 800
-34 800

6 0. 6 0 -616216
0 5 1 -2327 664
0 4 2 -3758 904
0 3 3 -4106 816
0 2 4 -3758 904
0 1 5 -2327 664
0 0 6 -616216
0 4 0 -8 482 320
0 3 1 -18397 680
0 2 2 -19846 320

7 0
0 6
0 5
0 4
0 3
0 2
0 1
0 0
0 5
0 4
0 3

0
1
2
3
4

7
0
1
2

12 865 608
55 273 752
88 743 240
46 243 224

-46 243 224
-88 743 240
-55 273 752
-12 865 608
259 786 800
647 145 360
387 343 440

0 1 3 -18397 680
0 0 4 -8 482 320
0 2 0 -12409 432
0 1 1 -10958 528
0 0 2 -12409 432
0 0 0 -1360 000
1 4 0 909 216
1 3 1 3445 344
1 2 2 5047776
1 1 3 3445 344
1 0 4 909 216
1 2 0 9907200
1 1 1 18734 400
1 0 2 9907 200
1 0 0 9292320
2 2 0 421 200
2 1 1 -324 000
2 0 2 421 200
2 0 0 301 584
3 0 0 222 432

0 2 3
0 1 4
0 0 5
0 3 0
0 2 1
0 1 2
0 0 3
0 1 0
0 0 1
1 5 0
1 4 1
1 3 2
1 2 3
1 1 4
1 0 5
1 3 0
1 2 1
1 1 2
1 0 3
1 l 0
1 0 1
2 3 0
2 2 1
2 1 2
2 0 3
2 1 0
2 0 1
3 1 0
3 0 1

-387 343 440
-647 145 360
-259 786 800

692 482 344
537 695 544

-537 695 544
-692 482 344

256 412 640
-256 412 640

-9 092 832
-27 488 928
-19002 912

19 002 912
27 488 928
9 09/832

-133799 040
-138 516 480

138 516480
133799 040

-154141344
154 141344

3 864720
-2 482 320

2 482 320
-3864 720

7 757 904
-7 757 904

5 369 952
-5 369 952

TABLE III. Odd-order energies vrith k&- k2 factored out, orders 1-7.

g(&) 4 &g y ) 3&-&P-E(nYMryiy&2n rij i 2

N r i j g( N)' i j S„'Nij"

1 0 0 0

3 0 2 0
0 1 1
0 0 2
0 0 0
1 0 0

5 0 4 0
0 3 1
0 2 2
0 1 3
0 0 4
0 2 0
0 1 1
0 0 2
0 0 0
1 2 0

132
288
132
300
264

31920
127 008
189 168
127 008
31920

277 440
542 880
277 440
182 544

11904

1 1
1 0 -2
1 0 .0
2 0 0

13 248
11904
27 360
34 800

7 0 6
0 5
0 4
0 3
0 2
0 1
0 0
0 4
0 3
0 2
0 1
0 0
0 2

0 12 865 608
1 68 139360
2 156882 600
3 203 125 824
4 156882 600
5 68 13S360
6 12 865 608
0 259 786 800
1 906 932 160
2 1 294 275 600
3 906 932 160
4 259 786 800
0 ' 692 482344

0 1 1 1230177888
0 0 2 692 482 344
0 0 0
1 4 0
1 3 1
1 2 2
1 1 3
1 0 4

256 412,640
-O'092 832

-36 581 760
-55 584 672
-36 581760
-9092 832

2 2 0
2 1 1
2 0 2
2 0 0
3 0 0

3 864720
1 382 400
3 864720
7 757 904
5 369 952

1 2 0 -133799 040
1 1 1 -272 31552Q
1 0 2 -13379S 040
1 0 0 -154141344
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position,

E'"'=4- (u, —u, )n' -'

&~o & ~oi -o
(i+j even,

4+J+ 2F—2g-].)

Ei;,» M" 0,'k2» (N odd) . (8o)

VI. CALCULATION QF PERTURBED ENERGIES
FOR SPECIFIC STATES

The perturbed energy of a specific state can be
calculated by putting the appropriate values of k„
k„and M into Eq. (79) to get E~ », and then the
desired value of F into Eq. (59) to get E. Given
the asymptotic nature of the perturbation series,
the question naturally arises how large a field
strength can be used. For example, we list in
Table IV the termwise contributions to the ground-
state energy for fields of 0.02 and 0.10 a.u. At
the lower field, the terms decrease in magnitude
monotonically, the last term being 10 "a.u. At
the higher field, the terms decrease in magnitude
until the sixth order, then increase monotonically

To find the numerical values of the polynomial
coefficients E„";,», one must substitute Eqs. (75)
and (77) for y~"»/yio» into Eq. (67) and collect
terms proportional to ~k,' k, . To evaluate the
F-„";,, it is necessary to divi. de the polynomials

by k, —4, . It is straightforward to carry out
these calculations on a computer, and we have
listed the values of the E„;,. and the F-„;",. for or-
ders 1-7 in Tables II and III.

The number of nonzero E""'is ,'(N+ 1)—(N+—,')(N+ 2),
which is also the number of nonzero E„",&"'. The
number of nonzero E~z" is 3 (N+ 1)(N+2)(N+8).
As these numbers increase rapidly as N increases,
we have not included tables for orders higher than¹7.Tables of E„'~~' and E„'0' for N ~17 are avail-
able from PAPS.

so that the sixteenth-order term is almost 3.5
times the zeroth-order term. The behavior ex-
hibited at the higher field is characteristic of an
asymptotic series.

The terms of an asymptotic power series typi-
cally tend to decrease in magnitude until some
critical term is reached, after w. hich they tend to
increase without limit. " In favorable cases the
value of the (N+ l)st term is a measure of the
error in the Nth partial sum. In the higher-field
example of Table IV, we would accordingly regard
the fourth partial sum, -0.5281 a.u. , as optimum,
with an error of the order of 0.004S a.u. The
accurate value of the perturbed energy is re-
portedio to be -0.5275 a.u.

The important question from a practical point of
view is how accurately the energy can be computed.
That is, given a maximum error e and a maximum
number of terms available, what is the maximum
value of I" that can be used in the series, and how

many terms should be included. Towards answer-
ing these questions, we fix e and consider the se-
quence of numbers, F„(e):

Fz(&) = Ie/E'~'I"" (for E "» 40) . (81)

F~(e) is the value of F for which the Nth term
has magnitude e. Intuitively, we expect F„(e) to
tend first to increase, then decrease as N in-
creases. The maximum value of F„(e) can be
taken as a "maximum useful field for error e, "
and the corresponding order of N (which also de-
pends on e) indicates how many terms should be
included, since at this value of I', the magnitudes
of the terms preceding and following the Nth are
larger than the Nth, which has the magnitude e.
If F„(e) is still increasing at the last term avail-
able, then F„(e) may still be regarded as the
"maximum useful field for error e, "but with the
qualification, "with terms of orders &N, " since
if more terms were available, it might be possible
to go to higher fields without increasing the error.

TABLE IV. Termwise contributions to the ground-state energy at low and high fields, in
a.u.

Order
N

5'=- 0.02 a.u.
S'"E'~' x 10" Partial sum

~=. 0.10 a.u.
I""E~'x 104 Partial. sum

0

6
8

10
12
14
16

—500 000 000 000
-900 000 000

-8 887 500
=314097
-20 332
-1992

-271
—49
-11

-0.500 000 000 000
-0.500 900 000 000
-0.500 908 887 500
-0.500 909 201 597
—0.500 909 221 930

. -0.500 909 223 922
—0.500 909 224 193
-0.500 909 224 242
-0.500 909 224 254

-5000
—225
-56
—49
—79

-195
—663

-2992
-17347

-0.5000
—0.5225
-0.5281
-0.5330
-0.5409
-0.5604
-0.6266
-0.9259
-2.6606
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TABLE V. Perturbed coefficients E N and maximum field parameters for the ground state
for various error limits, in a.u.

(E) j~/E(N) it/N

E =0.5X
10 2 10 4 10-6 10-8

0
2

6
8
10
12
14
16

—0.5
-2.25

-55.546 875
-4 907.771484 375

-794 236.926 452 636 718
-194531960.466 499 329

-66 263 036 523.689 170 9
-29 924 943 988 411.939 5

-17 346 970 495 631 198.5

0.0471
0.0974
0.100
0.0944
0.0873
0.0806
0.0747
0.0694

0.00471
0.0308
0.0466
0.0531
0.0551
0.0549
0.0537
0.0520

0.000471
0.00974
0.0216
0.0298
0.0348
0.0374
0.0387
0.0390

0.0000471
0.00308
0.0100
0.0168
0.0219
0.0255
0.0278
0.0293

To illustrate the calculation of the maximum use-
ful field, we list in Table V the values of ~" and
F„(e)for ie/E i

= 10 ' 10, 10 and 10 ' for
the ground state. Note that the ground state F- ~

for orders 2-10, when truncated to ten significant
figures, agree exactly with Mendelsohn's. ' For an
error of 10 ' relative to E 0, the maximum F„(e)
occurs at X=6. Accordingly we would take E only
through fourth order, and I' not greater than 0.1
a.u. For g, relative error of 10 4, the maximum
F„(e) occurs at %=12. Accordingly we would use
the tenth-order partial sum with E not greater
than 0.0551 a.u. For relative errors of 10 6 or
10 ', we would use all terms available, and we
would limit I' by 0.0390 a.u. and by 0.0293 a.u. ,
respectively.

In Table VI, we list F»(10 'E~'i) or, in the cases
for which n, =n„F, (160 E~o)) for a number of
states. As with the ground state, F„(e) is still
increasing at X= 17 for relative error 10 ' (and
10 '). For values of F less than those in Table
VI, the energy through seventeenth order has a
relative accuracy of 10"'.

In Table VII, we compare some typical pertur-
bation-theory energies with energies computed
nonperturbatively. Not only is the agreement
excellent, but we observe that for the ground state
the error turns out to be less in magnitude than
the imaginary part of the energy corresponding to
purely-outgoing-wave boundary conditions, """
while for the excited state listed, the error is
approximately one order of magnitude larger than

TABLE Vj:. Maxixnum useful field for accuracy 10 6 relative to E'~', for E calculated to
17th order for various states.

n m n& n& E(a.u.) n m n& n& E(a.u. ) n m ng n2 E(a.u. )

1 0 0 0 3.90x10 ~

2 0
0
1

3.76x10 3

0 3.76 x 10
0 0 3.95 x 10+

3 0- 0 2 880x10 4

0 1 1 9 52x10+
0 2 0 8.80x 10+
1 0 1 9.43x10 4

1 1 0 9.43x 10+
2 0 0 9.80x 10+

4 0 0 3 3.06x 10+
0. 1 2 3.40x10 4

0 2 1 3.40x 10+

0 3 0 3.06 x10+
0 2 3.21x10~

1 1 1 3 40xlo+
1 2 0 3.21x 10+
2 0 1 3.44x 10+
2 1 0 3.44x 10+
3 0 0 3.55 x10+

0 0 4 1.33x 10+
0 1 3 1.44x 10+
0 2 2 1.49x 10+
0 3 1 1.44x 10+
0 4 0 1.33x 10+
1 0 3 1.38 x 10+
1 1 2 1.52x 10+
1 2 1 1.52 x 10+

1 3
2 0
2 1
2 2
3 0
3 1
4 0

0 1.38 x 10+
2 1.45x10 4

1 1.51x 10+
0 1.45 x 10+
1 1.55 x 10+
O 1 55x10"
0 1.59 x 10+

20 0 19 0 6.07 x 10
25 0 24 0 2.50 x 10"~

10 0 9 0 9.29x 10 6

14 2 0 11 2.56x 10 6

15 0 14 0 1.89x 10 6
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TABLE VII. Energies calculated perturbatively compared with energies calculated nonper-
turbatively.

E(a.u.)
E(a.u. ) calculated by
perturbation theory

Next term~
(
pV+f E(X+1 &

(

E(a.u.) calculated
nonperturbatively

0.001
0.004
0.005
0.006
0.007
0.008
0.009
0.01
0.02
0.03
0.04
0.06
0.06
0.07
0.08
0.09
0.10
0.11
0.12

-0.500 002 250 065 56
-0.600 036 014240 15
-0.500 056 284793 'l9
-0.500 081072 219 07
—0.500 110383 950 08
-0.500 144 228 820 08
-0.500 182 617086 12
-0.500 225 560 457 96
-0.500 909 224 254
-0.502 074 263 6
-0.503 77146
-0.606 099
-O.5O9 1S
-0.612 94
-0.5167
-0.521 9
-0.528 1
-0.527 2
-0.532

Ground state

16
16
16
16
16
16
16
16
16
16
14
10

8
6

2
2

&10-"
&10-"
&10 ~5

&10-i5
&10 ~5

&1O-"
&1O-"
& 10-i5
& 10-1i

&74x 10 io

75x10 8

16x 10 8

12 x 1O-'

46x10 5

13x 10+
26 x 10+
49x10 4

81x].0-'
12x 10+

-0.500 002 250 056 56 "
-0.500 036 014 240 0"
-O.6OOO562847937 b

-0.500 081072 2194 ~

-O.6OO11O 383 958'
-0.500 144 228 821
-0.500 182 617 088 "
-0.500 225 560459 ~

-0.500 909 224 258 ~

-0.502 074 273 "
-0.503 7715 "
—0.506 1054
-0.509 204
-0.51308
-0.517 56'
-0.522 4 c

-0.627 5
-0.532 5
-0.637 4

Excited state with n=5, m=1, n& ——3, n2=0

1.556 xlo 4

1.9448 x 10 4

2.1393x 10+
2.5282x 10 4

2.9172x 10+
3.3061x 10 4

-0.016865 16
-0.016 182 1
-0.015 868
-0.016 294
-0.01478
-0.014 30

-15x 10+
57xlo 7

18xlo 6

79x10 6

20x10 5

49xlo 5

-0.016865 237 2
-0.016 179388 5
-0.015860 468 ~

-0.016269 204 "
-0.014740 243
-0.014 242 49

For the ground state, the next term is @@'~E++ ~.
"Heference 8. We have taken the average of Alexander's upper and lower bounds.

Reference 10.
~ Reference 15.

TABLE VIQ. Energy through 17th order for n =14,
m -2, ng -0, n2-11.

E (a.u.)

2.4 x 1O"

2.5x10 6

2.6 x 10

2.7 x 1O-'

E (a.u.)

-0.003 157057 8

-0.003 185402 6

-0.003 214 1327

-0.003 243 283 3

~ ivg( i7)

9 x 1O-"
17 x 1O-"
33 x 10-xo

63x 10 co

the imaginary part of the energy.
Finally, in Table VIII we give the perturbed en-

ergy for a particular state of the n = I4 level to il-
lustrate the accuracy obtainable (absolute, -6
x 10 ' a.u. ; relative, -2 x 10 ') for a state experi-
mentally observed in sodium, at field Strengths at
which ionization rates have been measured. '7

VII. CONCI. UDING REMARKS

It ha, s been shown how to generate the explicit
formulas for the perturbed separation constant
and energy in the Stark effect in hydrogen as poly-
nomials in the quantum numbers, for arbitrarily
high orders, and the usefulness of these formulas
has been demonstrated by numerical examples.
We conclude with some practical observations.

The number of nonzero polynomial coefficients
in p

"~ and E " increases as ,'N' and —', N', resp-ec-
tively. The total number of c&~„,~ for orders up to
and including N is roughly of order N'. As N in-
creases, the large number of quantities becomes
troublesome. The maximum value of N= 1.V that
appears in this paper represents the largest calcu-
lation that fit in a computer memory of 256k words
without extensive effort to conserve storage, with-
out explicit overlaying, and without using disk
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files for intermediate results.
If one is interested in only a few states, to gen-

erate the P" and d" as polynomials for very
high %would not appear to be as efficient as to
generate the numerical values directly from Eqs.
(32}, (33), (63), and (6'?). Compared to the effort
required to program the polynomial solution, it
is rather easy to program Eqs. (32} and (33) to
get numerical values of the P '~' for specific
states. The general formula (6V) then produces
the Ei ~ from the P "~ with an even more modest
effort. Such a computer program has been written
to give pi"~ and Ei"~ through N=25.

For some practical purposes, the energies com-
puted by perturbation theory are probably of suf-
ficiently high accuracy, since in some cases the
errors inherent in the use of the asymptotic ser-
ies comparable with the widths of the levels, which
are nonzero because of field ionization. One is not
normally interested in the energy of a state to an
accuracy too much finer than its width.

Finally, we note that the perturbation series
is much easier to use than any of the nonperturba-

tive schemes.
Note added in p~oof. Precise measurements of

intense-field Stark shifts in highly excited states
of hydrogen have now been reported by Peter M.
Koch [Phys. Rev. Lett. (to be published)). In the
two cases analyzed in detail, the discrepancy be-
tween perturbation theory and experiment is less
than the experimental uncertainty for a large
n, -n, state (n=30, n, =0, n, =29, m=0), but more
than an order of magnitude larger than the uncer-
tainty for a large n, —n, state (n = 25, n, = 21, I,= 2,
)m(= 1). In the latter case, successive partial
sums alternately bracket the experimental value
from above and below. The author is grateful to
Professor Koch for a preprint of his paper and
for helpful discussions.
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