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The excitation spectrum arising from the interaction between two identical atoms (molecules}, one of which
is excited. in the presence of a resonant strong electromagnetic field (pump field), is investigated. The
excitation spectrum is found to consist of those describing the symmetric and antisymmetric modes,
respectively. The form of both spectra depends on the relation between the distance R separating the atoms
and the wavelength k of the transition from the ground state to the excited state. For R & A. , and when
certain conditions prevail, the spectral function for the symmetric modes consists of three Lorentzian lines

describing the central peak and the two sidebands whose radiative widths are equal to yp, 3yJ2, and 3@+2,
which are twice the corresponding ones arising from an isolated single atom interacting with the pump field.
For the antisymmetric modes the central peak has a 8-function distribution indicating the stability of the
mode in question, while, when certain conditions are satisfied, the two sidebands are described by
Lorentzian lines each having a radiative width of the. order of y+2, which is equal to the natural linewidth
for a photon spontaneously emitted from an isolated atom. For both the symmetric and antisymmetric modes,
the dipole-dipole interaction between the atoms brings about small energy shifts. For R ) A. , apart from the
small energy shifts caused by the dipole-dipole interaction, the spectral functions for symmetric and
antisymmetric modes are similar to that for the single atom interacting with the pump field.

I. INTRODUCTION

Dicke first pointed out that changes in the life-
times should be expected when two atoms, one of
which is excited, are separated by a distance
R &X, where X is the wavelength of the transition
from the ground state to the excited state. He con-
sidered' the initial state of the system where one
atom is excited while the other is in its ground
state. This initial state may be taken as a super-
position of states which are symmetric and anti-
symmetric with respect to interchange of the
atoms; these states are formally analogous to the
singlet and triplet states of two spins. The anti-
symmetric state is stable while the symmetric
state has a lifetime one-half that of the isolated
atom. These states have been called by Dicke'
super-radiant states. A detailed calculation for
the energy of interaction between two similar
atoms (molecules) has been given by Stephen' and

also by Hutchinson and Hameka' and McLachlan. '
The spectrum of the light scattered by an iso-

lated atom driven at resonance by a strong electro-
magnetic field consists of three peaks: a central
peak at the excitation frequency and two symmet-
rically placed sidebands. This so-called dynamic,
or ac, Stark effect has been theoretically predicted
by Mollow' and observed experimentally by Schuda
et al.' The three peaks are described by Lo-
rentzian lines' "whose radiative widths are —,yp,
43yo, and 43yp, reSpeCtiVely, Where 21yo 1S the nRtural
linewidth for a photon spontaneously emitted from
an isolated atom. The ratio of the central peak
height to the heights of the sidebands is 3:1.' "

There have been many theoretical treatments of
the subject in question and we refer to a recent one
by Kimble and Mandel" where details as well as
references can be found.

Collective atomic effects in resonance fluores-
cence have recently been discussed by Agarwal
et al." Using the master equation, the scattered
light spectrum from two-and three-atom collec-
tive systems has been calculated and compared
with the one-atom spectrum. The differences are
found' to be significant for weak fields but become
less pronounced at high intensities of the driving
field. The effects arising from the dipole-dipole
interaction between the atoms have not been con-
sidered. ' The purpose of the present study is to
investigate the excitation spectrum arising from
the interaction between two identical atoms, one
of which is excited in the presence of a strong res-
onant electromagnetic field.

The problem is formulated in Sec. II where a
model Hamiltonian has been considered describing
the physical processes where two identical two-
level atoms interact between themselves through
the dipole-dipole interaction as well as with two
fields, a strong resonant (pump) and a weak photon
field, respectively. This Hamiltonian is then used
to derive the equations of motion for the Qreen's
functions describing the symmetric and antisym-
metric modes, respectively. Using a decoupling
approximation tp truncate the hierarchy of the
Green's functions that appear in the equations of
motion, expressions are derived for the Green's
functions of the symmetric and antisymmetric
modes. The derived formulas for the Green's
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functions are reduced to those known in the litera-
ture in the limits in which either there is no reso-
nant pump field or only a single isolated atom in-
teracts with the pump field.

The excitation spectrum of the symmetric and
antisymmetric modes is considered in Sec. III.
The corresponding spectral functions have been
calculated and discussed for the limiting cases
when the atoms are close together R&X (wave-zone
region) or when they are far apart, R& &. A de-
tailed discussion of the spectra is given in Sec. IV.

where

&.= "o(b~b~+ babs+ Po&o)

+ ,'i ~,Wf [(b„+bs)Pot —(b„'+bst)P,], (2)

X, = V»(b„bs+bJ3b~),

K„=Q ckP& P-„„,.

(3)

(4)
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with R =8». P„and P~ designate the transition
dipole moments to the excited states of the atoms

H. FORMULATION OF THE PROBLEM

We consider a simple model consisting of two
identical atoms (molecules) A'and B a distance R
apart. The atoms are assumed to have two non-
degenerate electronic states, the ground and the
excited state, denoted by 0 and v, respectively.
The spectroscopic transition 0- v is electric-di-
pole allowed and the transition frequency is de-
noted by E„,=E„-E„unitsin which 5=1 are used
throughout. The distance between the atoms is
taken such that the overlap of the wave functions
is very small and may be neglected and the inter-
action between the atoms is of the dipole-dipole
type. Effects associated with the translational
motion of the atoms such as recoil, etc. , are neg-
lected. The atoms are resonantly pumped by a
strong-field mode at a frequency &,=E„„andsi-
multaneously coupled to the remaining modes of
the electromagnetic field, these being initially
unpopulated. The Hamiltonian for such a system
may be taken to be

X X +X +X +X

where

&U) =trUe ~+/tre ~~, P = (ksT) ', (7b)

K~ is Boltzman's constant, T is the absolute tem-
perature, and X is the total Hamiltonian of the
system 8(t) is th. e usual step function and the op-
erators are in the Heisenberg representation and
g ig taken to be either +1 or -1 depending upon
considerations of convenience. The equation of

(molecules) A and B, respectively, f=f~ is the
oscillator strength for the electronic transition
0- v and &o~ is the plasma frequency. Po~ and P,
are the boson creation and annihilation operators
for the pump mode ~,=E„„whileP„-~and Pp~ are
the corresponding ones describing the electromag-
netic field with wave vector k, frequency ck, and
transverse photon polarization A(=1, 2). The com-
pound operators b„and b„aredefined as b„
=&„„n~,and „=„,„„,where &„„and» are
the creation and annihilation operators describing
the electron states v and 0, respectively, and sat-
isfy Fermi statistics; effects resulting from the
electron spin are neglected. The operators b~ and
b~ describe the creation and annihilation of excita-
tions of the atomic field, and for the two-level sys-
tem under consideration, satisfy Pauli statistics;
the operators b„and b„commute with those of b~
and 5~.

The first three terms in Eq. (2) describe the
free fields of the

atomic,

the atom B, and that of
the strong pump field, while the remaining ones
represent the coupling between them. Eq. (3) de-
scribes the Coulomb (dipole-dipole) interaction"
between the atoms A and B. For the -sake of sim-
plicity, a term in Eq. (3) of the form V»(bt„bshe
+bsb„), which describes the simultaneous creation
or annihilation of two excitations, has been neg-
lected. Eqs. (4) and (5) represent the free electro-
magnetic field and its coupling with the atomic
fields A and B, respectively. This photon field,
which may be considered to be, the weak field in
comparison with the strong pump field, can be
either an external field or the field produced by
the radiating atoms themselves. If the terms de-
scribing the atomic field B are discarded in Kqs.
(l)-(6), then the remaining terms are identical to
those used in the literature' to study the dynamic
Stark effect for a single two-level atomic system.
%e are interested in the physical processes that
occur when a strong pump field acts at resonance
&p E 0 on the atomic systems A and B, and there-
fore our results will be valid in this extremelimit.

We shall make use of the retarded double-time
Green's functions defined by"'
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where

+i(d~Vf (((b~~b„+btsbs)P„b~~&&, (9)2'

motion of the Green's function ((X(t); I'(t')»(„&is
given by

&«X(t); I'(t')», „=(1&2~)&[X(t),I'(t)] „)
+ «[X(t),Xl; I'(t')»,„,. (8)

The subscript (&u) as well as the time arguments
of the operators will be suppressed for conve-
nience.

If we define the Fourier transform of the Green's
function as G„"s'(&o)= ((b„+bs; b~~)) then using Eq. (8)
and the Hamiltonian (1) we derive the equation of
motion

R(If(1 + 1) (9:)
4 (d —(do

field A and B on the nuMber density operators
b~b~ and b„b~, respecti. vely. Both processes are
much less important than that caused by the photon
density of the pump field acting on the atomic sys-
tems A and Band described by the Green's function
&((b. b.)p."P.; b„'»

In the same spirit we derive the following ex-
pressions for the Green's functions:

( — .-r)&((b,'b, +b', b )P;, b'»

=+-',~f(((b b )P', Po; b'&)

+ [i y„s-,'(1 ~ 1) + V~ (1 ~ 1)]

&((b.'b. b',b, )p.; b.'», (»)

(~ —,—-'r, )&&(b. ~ b.)p.'P„b'„&)

.
" n, + 2(tnt, ) «(b„'b„~btb, )P,; b„'&&

2m'

(d = COO+ P&&,

~+~LB ~

(io)

(11)
where

n'(1+1)
+

2(~ (g )
AB( (16)

, ~ f„(k,x) (0O
4s ~ " ' ('~ ((o-ck) cb

x exp[i(k R»)],
and

n=(d~(fn, )"~',

n. = (P.'P.)

(17a)

(17b)
with n„=(b~ b„)=(b~~bs&. The expression for
y =y„„((u)= yss((u) can be obtained from y„~Eq.
(12), if we replace the exponential expi(k R„s)by
unity. In deriving Eq. (9), we have discarded the
Green's function (&(b~b„ebs(bs)P„-~;b~)& as being
unimportant compared to (((b~b„ab~sbs)PO; b~&&.

This is. in accordance with our original assumption
that the pump field is the strongest of the two.
Using the Hamiltonian (1) and Eq. (8), we derive
the equation of motion for the Green's function
(((b„'b„+b',b,)P„b„'))as

( —,—r) «(b,'b„+b',b, )P.; b'»

.',~y «(b„~b, )p'. P.; b„'&&

+ [2y~, (1+1) + I'„(I~ t) l &((b'„b,+ b', b~)po, b~&&,

(13)

where a term of the form

-'t"o~&&«4'ba)PGPG —(b~b~ba'baobab~)' b~&&

(i4)

has been omitted on the right-hand side of Eq. (13).
The first term in Eq. (14) describes the physical
process where two photons of the pump field act
simultaneously on the atomic systems A and B,
while the last one represents the analogous pro-
cess arising from ithe action of the dipole atomic

are the energy shift and the average number den-
sity of the photon pump field, respectively. In
deriving Eq. (16) use has been made of the follow-
ing decoupling approximations:

I

«(b.'b. b', b,)P.'P.p.; b.')&

= 2n &((b„b„+bshe)P,;b„»,(18a)

«P.'P.P.; b.'» = 2 .«P;, b„'))

= [(i(o,Wf )/((0 (o,)]n,G„"(I((o). (18b)

This decoupling approximation indicates that all
dynamic effects arising from photon-photon inter-
actions for the pump field ape completely dis-
carded and the photon in question sees only the
average field of all others (static effect) which is
described by the average number of photons
n, =(P,PG&. This approximation is asymptotically
valid for large values of ~ and high photon densi-
ties of the pump field.

Solving Eqs. (13), (15) and (16), we obtain

=-—'( ~),Wf
" n + G„"(w)), (19l

(i —an) n'

[(~ —(d, r.)(& —&.——2r. ) —n'] &&(b„'b„+b'b)P„b'„))
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[(~ —~. y-+ 2&,)(~ —~ 2-y ) —Q'] (.) (1 —2n„)
2m((d —(d, ——,'y, )

(2o)

Substituting Eq. (19) into Eq. (9) and retaining
only those energy shifts induced by the pump field
which are of the order of 0, i.e., considering the
limit in which np~~1 we have

(
pQ2x 1+ . . . (21)

((d —(o, —y.)((d —(d. ——,'y, ) —Q'

which describes the spectrum of the symmetric
modes, while substitution of Eq. (20) into Eq. (9)
yields

( )( )
(1 —2n„) —,'Q'

2w(td —~.— rJ —', (td —~, —ye 2('„)(td—td ——,'y ) —()') ' (22)

the spectrum of the antisymmetric modes. The
Green's functions (21) and (22) will be used in Sec.
III to discuss the excitation spectrum of the sys-
tem under investigation.

III. EXCITATION SPECTRUM

In the absence of the pump field, i.e., in the
limit in which Q=O (no=0), Eqs. (21) and (22) are
reduced to

(1-2n„)
(22)(&u —~, ——,'y, ) ' (23)

which describes the excitation spectrum of the
symmetric (+) and antisymmetric (-) energy
modes for the physical process arising from the
interaction of two similar atoms one of which is
excited. When the appropriate limits are taken
for 8 & i(: and 8 & it, where i(:= (c/E„,), the results
obtained from Eq. (23) for the spectrum of the
symmetric and antisymmetric modes are identical
to those known in the literature. ' 4.

In the absence of the atom B, i.e., when y» =o
and V„s=0,then Eqs. (21) and (22) become identi-
cal, G„'s)(e)= G„(s)(&o)= G„„((d),which is given by

(1 —2n„)
&A( 22 ((4) (4) 4 y)

1 —2n„1—Q'/2(Q' ——,
' y') Q

X(10 —gy
3

CO —COp —Q —4P

n, +-,'y
(d —hap+ Q —

~ P
(25)

In calculating y=y(&o) from Eq. (12) with
exp(k 'R„s)=1, we discard the real part and con-
sider only the imaginary part so that

y((d) - i imy(~) = -iy()

where

(26)

which is the spontaneous-emission probability.
Substituting Eq. (26) into (25) and then taking the
imaginary part of G»((d) we find

r 2Q'x ~]+(~-(d. y)((d--~, - 2'y) -Q-'& '

(24)

which may be rewritten as

1 —2n„2y,[1—Q'/2(Q'++y2J Q'
llA p ((4) Z )2+ (4y )2 4(Q2+ 1 y2)

-*,y, - (~ —td, —())yg40 —,'y, + (td —~„+())y/4()
)(~ —(d, —Q)'+ (—,'y, )' (~ —~,+ Q)'+ (-,'y, )' (26)
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(28)

which is identical to that known in the literature. ""' For the sake of convenience, we will consider the
excitation spectrum for the symmetric and antisymmetric modes separately.

Equation (28) describes the spectral function for the interacting system in question. In the limiting case
when 0'» ~

ymo then Eq. (28) is reduced to

(~-~,)*r(lr,)* (~ —~, -)))'r(~r.)' (~-~.+)))'r(!r.)') '

l. Excitution spectrgm of the symmetric modes

The expression (21) for G„'z)(~)may be written

1 —2n„1—0'/2(0, —4y,)(0 + —,'y, ) 0/4(0 +4y, ) 0/4(0, —~y, )
2r (d —(d v - mp —Q, —~y, v - (dp+ Q ——y,

where

(31)

We first consider the case in which the atoms are close together.
(a) R&X (W=c/(()O=c/E„o). The expression for y, =y, (v) can be calculated from Eqs. (11) and (12); the

results of such a calculation are known in the literature. ' ' In general, for the real part of y»((d) we have'

2ReyAB(» = -V»+ &»(R» (32)

where the expression for e»(R) decays exponentially with R/X. For R&X, an expansion in powers of R/&
yields, &u»(R)= V» so that, in this limit, Hey»(&u)=0. For the imaginary part of y»(&o) for R&X is
given by2 4"

imy„,(co) =y, II+O(R'IX')j =y, .
Hence,

Imy. ((d) = 2y, .
Substituting Eqs. (32)-(34) into Eq. (30) and then taking the imaginary part of G„'s)(a&), we have

G(,)( )
1 —2n„y(&(1—2D)+ ((() - (d„)yoV~~D/(4'0 V~~+y~)

77 (~ —~.)'+ y'.

(33)

(34)

(r„)—(tr —rt —Q.)rr (2)) —r„),—,'r + (tr —td + 9 )rr'(2Q+ r„)
)(~ —(d, 0,)'+(,'y-, )' -' ' (~ -~,+ 0 }'+(-,'y.)' (35)

where

40 (40 —V„s+yo}

-21mG„'~)((u) =
4m (() - (d, '+ y',

20(20+ V„~)
(20+ V„,)'+ y',

(38)

(37)
Equation (35) for -2imG„'~)(&o) describes the spec-
tral function of the system under consideration as
a function of & and for any values of the parame-
ters~, V», andy, .

In the limit when 0,'» —,y20 and 0» V», Eq. (35)
is reduced to

~ oyQp ~ V~gj and ~
The spectral function (37) describes three Lo-

rentzian lines peaked at frequencies +=~„~=up
+O„and (d = ~, —0 having spectral widths of the
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order of yp, &yp, and asap, respectively. Equation
(33) implies that the damping constants are larger
by a factor of 2 than the corresponding ones of
Eq. (29). Hence, there is a cooperative effect due
to the presence of the atom B. There is also an
additional small energy shift arising from the
dipole-dipole interaction between the atoms. The
ratio of the central-peak height to the heights of
the sidebands is 3:1, the linewidth ratio is 1:1.5
and remains the same in both cases; this is in
agreement with the conclusion derived by Agarwal
et al '4

The spectral function (35) implies that the profile
of the three lines becomes asymmetric for fre-
quencies occurring far from the center of the lines.
The asymmetry of the central peak for cot , de-
pends on the value of the dipole-dipole interaction
V„Bas well as of that of the ratio (40'+ VAB)/yBB.

The asymmetry of the sidebands occurs for fre-
quencies &4&p+0, and co4+p —0 and depends on
the values of (20 —V„B)/yo and (20+ V„B)/yo, re
spectively. It is pointed out that one of the three
terms of Eq. (35) may be negative or zero for
values of & for which the numerator of the corre-
sponding term becomes negative or vanishes. For
example, considering that V~~ is an attractive in-
teraction so that V» = —

~ V„B,then the first term
of Eq. (35) for the central peak becomes negative

or zero for values of ~ satisfying the condition

(4Q —VAB+yo) 1 . 1
I V~~I D 2

(38)

Similarly, the second and third terms in Eq. (35)
which describe the two sidebands become negative
or zero for values of ~ satisfying the expressions

4Q —Vq~ ~ —Np —4Q —Vq~ . (39)

BReyAB((d) = -U„B, Imy, ((B)= yo. (4O)

Substituting Eq. (40) into Eq. (30) and then taking
the imaginary part of GA'B)((d), we have

Negative values of the spectral function indicate
amplification rather than attenuation of the signal
field and corresponds to the physical process of
stimulated emission. '" Thus, if u satisfies one
of the inequalities (38)-(39) then the phenomenon
of stimulated emission occurs. Antiresonance is
obtained when (d satisfies one of the equalities
(38)-(39), for which value the corresponding term
in Eq. (35) vanishes. "

(b) R & X. In this limit, (dAB(R) and ImyAB((d) are
negligibly small in comparison with that of V»
and y, and are given by Eqs. (33) and (34) of Ref.
(2), respectively. Neglecting (BAB(R) and Imy„B((B),
we obtain from Eqs. (32)-(34), for R &X,

1 —2n„~yB(1—BD') + ((4) —(BB)yBVABD'/4(0 —V„B+—'yB)
AB

, —,'y, —(~-td -4))yg4(Q —V„),, —,'y, +(td —td +44)y/4(44+)'„)
)((B —(d —0)'+ (-,'y, )' ' '

((B —(B + 0)'+ (-,'y, )'

where —21mGA" ((d) = 1 —2n 2&-'

4B ((B —(B,)'+ (-,'y, )'

~AB+ yO) +4yD AB

0(0+ VAB)

(42) 3

(~-~ +44)'+(-*~ )')'

for

Eq. (41) represents the spectral function for our
system for distances R & ~ as a function of & and
for general values of the parameters Q, U», and
yo. In the limit when (0 + V„B)B»—,

'
y2B and 0» V„B,

we derive from Eq. (42) the expression

(0+ V„,)'» —,', y'„0»V„„
In this limit, the damping of the modes in Eq. (43)
is identical to that of Eq. (29). The central peak is
not affected at all, while there is a small frequen-
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cy shift of the sidebands due to the dipole-dipole
interaction.

The three lines corresponding to the three terms
in Eq. (41) become asymmetric for frequencies
~t &0 and-u&& +0, respectively. One of the
three terms in Eq. (41) becomes negative (zero)
if v. satisfies one of the following inequalities
(equalities)

2. Excitation spectrum of the antisymmetric modes

We may rewrite Eq. (22) for G'„~(v)as

1 —2n„1—0'/2(0 + —,'y- —,'y )(Q.——,'y+ -,'y )AB'~ I
2w (~- ~-- &r-)

0/4(0 + —,'y- —.'y )
1 1

co - (0 —0 —~y —4y

(44)
0/4(0, -,'y+-.'y )+ 1 1

(d —(d +0 (46)

4(0 —V„~)~ (o —(oo & -4(0+ V„~). (45)

Eqs. (44) and (45) are analogous to Eq. (38) and
(39), respectively.

(a) R&X. In this limit, the imaginary part of
y (~) is given by' I'my (&o) = yo(R'/%~), which is
small in comparison to y, and may be neglected.
Using the fact that Rey„s(~)=0 and Imy(&o) = yo,
Eq. (46) becomes

1 —2n„1—0 /2(Q —2iyo)(0, + wq'yo) 0(0 + wq'yo)/4(0 + —,'yo) 0(0,—~z'ro)/4(0, + 4yo)
wa&& =

2m (& —& ) (~ —u& —0 + ~2'y, ) (&u —&u +Q,+-,iy, )
(47)

Taking the imaginary part of Eq. (47), we have

'0 0
(0,0 + 4 yo)'+ 4 y', Vgs

QQ ~ yo (&u &u 0 )yo/20 00, ~yo+ (ar —m + 0,)y,/20,
4(0'+ -,'r') (~ - ~ —0 )'+ (-'y.)' 4(".+ -'yo) (~ - ~ + Qg'+ (kr.)'

(48)

In limit when 0', » —,y', and Q» V„~,Eq. (48) becomes

1
2 YO (49)

for 0,» ~ yo, 0» V~~.

The spectral function (49) indicates that the central
peak has a 5-function distribution and peaked at

This is in agreement with the results ob-
tained in the absence of the pump field. ' ' The
sidebands are described by Lorentzian lines peaked
at the frequencies ~= co +0 and ~= co —0 with
each having a spectral width equal to —,'y, . Thus,
the energy mode of the central peak is stable and
does not radiate, while the modes co= co + 0

3=u —2V„+0and co=co —0 =co —&t/„—0, cor-3

responding to the sidebands, are damped and have
a lifetime-equal to that for a single isolated atom,
respectively. The lack of radiative cooperative
contribution of the atoms A and B to the sidebands 2(0+ V„s)~(o- aro ~ —2(0+ V„s), (50)

can be seen from Eqs. (13) and (15) wherein the
expressions for the Green's functions
(((b~~b„-bt~bs) Po; b'„))and (((btbs-b~sb„)Po; bt)),
the cooperative radiative effects (of the type y»),
are cancelled and only that of y(u) =y„„(m)=rsvp(~)
survives.

The spectral function (48) indicates that, for
frequencies e Wv +0 and cot~ —0„the spectral
lines for the sidebands become asymmetric, the
extent of which depends on the values of the ratios
y,/20 and y,/20, respectively. When &u satisfies
one of the inequalities
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then one of the last two terms in Eq. (48) becomes
negative, indicating that the process of stimulated
emission may occur. Antiresonance is obtained
when &u satisfies one of the equalities (50).

(b) R&X. Neglecting &u„s(R) and Imy„~(&) and
considering that Rey„s(&u)= 2V„sand Imy(ur) =yo,
we obtain from Eq. (46) the expression for
-2 ImG'„3'(~) which is identical to that of Eq. (41)
as it should be. Hence, Eqs. (41) and (43) describe
the spectral function for case in question since,
for R & X, ImG'„'s(v) = ImG'„~~(co).

»' y2o and 0» V„~. Eq. (43) is similar to that ob-
tained when an isolated single atom interacts with
a strong pump field.

In the expression (35), the central peak is asym-
metric at frequencies co 4~, and the asymmetry
appears to be proportional to V». To investigate
this term further, we write the asymmetric part
of the numerator of the first term in Eq. (35) as
(v —e,)20'S(Q'), where the function S(Q') has the
form

IV. DISCUSSION

S(~) =
(40 —V„s+yo) + (2yoV„~)2' (51)

We have considered the excitation spectrum
arising from the interaction between two similar
atoms, one of which is excited in the presence of
a strong resonant electromagnetic field. It is
shown that when R &%., the spectral function for
the symmetric modes is given by Eq. (35), which
consists of three asymmetric lines whose form
depends on the relation among the parameters 0,
y„and V». When 0,'» —,'yo and 0» V„s,Eq. (35)
is reduced to Eq. (3V) which is similar to
Eq. (29) describing the interaction of an iso-
lated single atom with the pump field with the ex-
ception that the damping constants are twice as
large and the energies are shifted due to the di-
pole-dipole interaction between the atoms.

The spectral function for the antisymmetric
modes (R & X) is given by Eq. (48), where the mode
of the central peak is stable while the two side-
bands are described by asymmetric Lorentzian
lines where the extent of the a,symmetry depends

, on the values of y,/20 and y,/2Q„respectively;
when 0,» 2yo, both lines for the sidebands be-
come symmetric with a linewidth appropriate to
spontaneous emission from a, single isolated atom.
It is of interest to point out that the central peak
corresponds to a stationary state with energy ~
=co, which is in agreement with the literature, ' '
while both states corresponding to the sidebands
are capable of emitting photons.

For R &X, the spectra. l function for the symme-
tric' and antisymmetric modes is given by Eq. (41)
which is reduced to Eq. (43) when (0+ V»)'

Equation (51) indicates that S(IP) as a function of
0' is described by a Lorentzian line peaked at
4Q'= V» —y', and has a width of the order of
2y, V». Physically, the function S(Q') describes
the cooperative effect which results from the cor-
relation of the interatomic (dipole-dipole) interac-
tions and the ra,diation field. Such physical pro-
cesses arising from correlation effects satisfy the
appropriate energy-conservation rules and bring
about asymmetric broadening of the spectral lines.
The function S(Q') becomes maximum

for

S,„(Q')= 1/2y, V„~,

4n'= V'„,

(52)

(53)

When Eq. (53) is satisfied, then the term describ-
ing the asymmetry becomes equal to (e —e,)Q'/
yoV&z, an effect which may be observed experi-
menta, lly for co tee, . Similar discussion holds for
the asymmetry that appears in the first term of
Eq. (41).

We emphasize that our results are valid when
the pump field is strong, that is, when the number
of photons n, is much greater than one (n, » 1). In
this respect, the neglect of the Green's functions
like those appearing in Eq. (14) is justifiable. The
decoupling approximation given by Eq. (18) is
equivalent to the Hartree- Fock self- consistent
field approximation" and is expected to be asymp-
totically correct for large values of frequency co

and high photon densities of the pump field.
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