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A variety of results are reported for the ground state (X'X~+) of the hydrogen molecule. They include
improved Born-Gppenheimer calculations, a study of the convergence of energies with basis-set size,
adiabatic calculations, and the first successful ab initio nonadiabatic calculation. The latter, which treats H,
as a four-body problem, leads us to predict that the dissociation energy of H2 is 36117.92 cm . This value
may be compared with 36 117.8 +0.4 cm ' (the value derived from the experimental ionization potential),
with 36118.6+0.5 cm ' (the value derived from the experimental vibrational levels of the 8 'X+ state), or
with 36118.3 cm (the upper-bound value derived from the experimental absorption limit).

I. INTRODUCTION

This paper is concerned with highly accurate so-
lutions of the Schrodinger equation for the hydrogen
molecule in its lowest electronic state (X'Ze).
The reasons for undertaking the calculations re-
ported here were (i) to obtain an independent veri-
fication of the pioneering Born-Oppenheimer and
adiabatic calculations of Ko)os and Wolniewicz,
(ii) to explore the convergence properties of the
basis sets used and to find a logical way of choos-
ing basis functions, (iii) to carry out a full non-
adiabatic calculation (i.e. treating H, as a four-
body problem) of the lowest nonrotational energy
level, and (iv) to determine as accurately as pos-
sible the dissociation energy of H2.

The r'ationale behind the first two reasons is
self-evident, the third reason is founded on the
fact that the only previous nonadiabatic calcula-
tion' for H, was unsuccessful insofar as it gave a
ground-state energy higher than the adiabatic val-
ue, ' This was due to the use of too small a basis
set. The fourth reason is related to the known

discrepancy between the theoretical and experi-
mental dissociation energy of H, ." In essence,
the work is a logical extension of our recently
published H, ' calculations' '. the techniques which
we found successful for H, 'are now applied to H, .

The paper conveniently falls into three parts
which reflect the three levels at which the Schro-
dinger equation can be solved: Horn-Oppenheimer
(Bo), adiabatic, and nonadiabatic. Excluding radia-
tive effects, the complete nonrelativistic Hamilto-
nian in the center-of-mass system for H, may be
written as

&'= 2(V1+ V2) —&ie 2'1() 'rse -~2()~ + "12 +R

&,'=-(st ) '(V'. +V'+2Vi ' V.)

ff,'= -(2p. ) 'Vtt.

(2)

(4)

(5)

2
+ =—, McospB, B2,

In these equations V', is the Laplaeian operator for
electron j relative to the geometric center of the
nuclei; V2~ is the I aplacian operator for one nu-
cleus (a) relative to the other (b); r„, 2"», and R
are the distance of electron j from nucleus g, the
intereleetronie distance and the internuclear dis-
tance, respectively; p. is the reduced nuclear mass
and e(luals tris/2me where the electron-proton mass
ratio (tN, /m&) is 0.000 544617.' 1'f 8„ ti„gt are
the usual eQiptical coordinates of the ith electron,
then for nonrotational states'

V,'. = (4/R') X, ,

~.,'+~,' =(4/R)5 (5,
'

n,') ', -
Vl ' V2 —(4/R )(~i ll~2 1&1+2+B1B2 5 1 il+1B2

—g,ri,B,A2+M coach, A,),

where, using atomic units (1 hartree =2 R„
= 219 474.64 cm ' and 1 bohr = tt, = 0.529 177 06 A), rg = (() —nt) ((g(() - () + vi('( —v))stt eg,
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TABI,E I. Convergence of E (&) with basis-set size
at &=1.4 bohrs.

8
&) = (5) n-g) n1 —$1at,. sq,.

M = [{&1—I)(&'- 1)(1—n1)(1 rl —')]'~',

In the Bo approximation the calculation of the
rovibronic energies proceeds in two parts: first
the calculation of the potential-energy curve E'{R)
from

Basis set

{6453/5)

{6453/6)

(6453/7)

(5342/7)

(6453/7)

130

176

249

Total number of basis functions.

Eo(B) (hartrees)

-1.174475 36

-1.174475 62

-1.174475 65

-1.174475 55

-1.174475 65

H'4 =E'(R)4 (6)

II. BORN-OPPENHEIMER CALCULATIONS

Equation (6) was solved by using the variational
wave function:

N

e, = g c;[C,(1,2)+e,.(2, 1)],
where

2) —e ss1 1e-ss2 1 pm s(lsg1Ikg~ )pcs

x [e al~ 1 + 8 8? + ( 1)&s 14ss a 1~ 1 a& s2] (10)

p = 2~12/R.

(0 a are the BO electronic wave functions) and then,
using this curve, the solution of the vibrational-
rotational Schrodinger equation to obtain the final
rovibronic energies. The adiabatic approxima-
tion in its usual form (a variation of the method is
also considered in Sec. III) differs from the BO
method by using U(R) in place of E'(R), where

U(R) =(e, i
rz'+ e'i ~,)

=E'(R)+ ~E'(R).

The nonadiabatic calculation requires the solution
of the exact complete nonrelativistic nonradiative
Schrodinger equation:

(8)

where 0 are wave functions involving explicitly
both nuclear and electronic coordinates and the
eigenvalues E are the rovibronic energy levels.

All the calculations were performed on an IBM
360/65 computer in double precision and, unless
stated otherwise, the integrals were evaluated by
the methods in Refs. 10 and 11 except that Gauss-
Legendre quadrature was used in place of Simp-
son's rule. All integrals are accurate to at least
nine significant figures.

It should be noted that the powers m&, n„etc. , are
integers ~0 and that there are four nonlinear pa-
rameters (n„n„P„P,) which may be optimized
with some difficulty, and N linear parameters
c,. which may readily be found by solving the usual
secular equation.

The key to the solution of Eq. (6) lies in finding
an efficient and logical way for selection of the
basis functions 4, We have found that it is not
satisfactory to simply add basis functions one at a
time and to retain or exclude a function on the
grounds of the energy drop. Quite often a function
which at first sight gives little improvement to.the
energy soil/ do so when further terms are added.
After much trial and error we have concluded that
if we denote the wave function 4s as (g,a,a, ~ /5),
where a~=max(m, +0,) =max(n, .+ l, ) for q,. =p and 5
= max(m, + n, + k;+ l, ) for any value of sl, (the power
of p), and include all basis functions within these
constraints, then raising a» a, ~ in concert and
separately raising the value of b is an efficient
test of convergence.

In Table I we present results for R=1.4 bohrs
and with n, =n, = 1 117 an. d .P, =P, =O. For this si-
tuation symmetry requires that 0;+l; be even. The
value of n, (= n, ) was determined by minimizing
E,(1.4) for the wave function (5342/5) which con-
tains 107 terms. We checked our programming by
reproducing the energy that Kol'os and Rychlewski
(KR) obtained for the 80-term (l1) wave function
listed in Table I of Ref. 12. We also tested the
effect of adding basis functions containing powers
of p higher than 3 [i.e. , 0 a = (a,a,a,a,a,/5)] but
found that the energy lowering was less than 10 '
hartrees. Consequently, we restricted ourselves
to wave functions of the form (aoa, a,a3/I1). The
first three rows in Table I show that our basis set
(6453/I) has converged to within 0.01 cm ' with re-
spect to changes in 5, and the last two rows- show
that it has converged to within 0.02 cm with re-
spect to raising a» a» a„a, together.

Kol'os and Rychlewski" have used the same type
of wave function as Eq. (10) but they optimized
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TABLE II. Comparison of E~(R) values (hartrees).

R (bohrs) Eo(A), Hef. 2 Eo(~) this work Difference (cd ~)

1.3
1.4

-1.172 346 23
-1.174474 77
-1.172 854 08

-1.172 347 08
-1.174475 65
-1.172 855 00

0.19
0.19
0.20

100-term wave function.
Basis set (6453/7).

all )our nonlinear parameters n„n„p„and p,
for a 40-term expansion. They then used these
pa.rameter values in a 130-term expansion for
A =1.4 bohrs and found E =-1.17447540 hartrees,
only 4x10 ' hartrees lower than the va, lue for our
130-term function. The latter, it should be noted,
contains only one nonlinear parameter (n, = n )2
Table I shows that with a few more terms we can
obtain lower energies than KR even though we keep
o., = n, and P, = P, = 0. This is an important point
since not only are bnear parameters easier to
optimize than nonlinear ones but the basic inte-
grals are easier to evaluate when P, = P, =0; there
will also be fewer integrals.

Previously the best determination of E'(R) near
the equilibrium internuclear distance (R = 1.4
bohrs) has been that given by Ko)'os and Wolnie-
wicz' for a 100-term expansion of the same form
as used here; in Table II we compare those results
with our (6453/7) wave function at R =1.3, 1.4,
and 1.5 bohrs with n, =n „=1.117 an. d P, =P, =O.
There is a significant and almost constant im-
provement of 0.19 cm '. We therefore conclude
that all potential curves based on the results of
Ref. 2 should be lowered by 0.19 cm ' in the re-
gion 1.3-1.5 bohrs. We should emphasize that
this drop is only partly a result of having a larger
basis set since even the wave function (5342/5),
with only 107 terms, gives an energy (-1~ 174 475 28
hartrees) which is 0.11 cm ' lower than the 100-
term function of Ref. 2 at R =1.4 bohrs. Qnce
again, choic'8 of basis functions is as important
as the number of basis functions.

III. ADIABATIC CALCULATIONS

We have calculated the adiabatic energy V(R),
see Eq. (7), near R =1.4 bohrs using the wave func-
tion (5342/5) with n, =c.,=1.117, P, = P, =O. We have
assumed that do. /dR is zero since Pritchard and
Wolniewicz" estimate tha, t the error in doing so
will only amount to a few hundredths of a cm '.
This error will decrease with an increase in the
number of linear parameters (c,.) and so should
be less for our wave function than for the one used
in Ref. 13. We have used a numerical method to
find the derivatives dc, /dR, i.e. ,

dc, (R) c, (R+ ~) —c,-(R —~)
dJt', 282il

with ~ = 5 x10 ' bohrs. This approximation ap-
pears valid since the results obtained using it ag-
ree with those of Kol'os and Wolmewicz" who used
an analytical method for finding dc, /dR.

The adiabatic correction AE'(R) may be split
into two parts

«'{R)=«,'+ «,',

and H„' and H,' are defined by Eqs. (4) and (5),
respectively. The results are given in Table III
under the heading method I, and the total correc-
tions differ from those of Ref. 11 by about 0.02
cm ', the major part of this discrepancy is in the
~,' component. A correction has been made to
the values in Ref. 11 for a change in the proton-
electron mass ratio. The differences are given
in the column headed 6,. Since only a, 54-term.
wave function was used in Ref. 11, it is clear that
hE' is not very sensitive to the quality of 4~. We
may note for the sake of comparison that the
change in Z'(l. 4), the BO energy, in going from
the 54-term wave function" to the (5342/5) wave
function is about 1.0 cm '.

An alternative approach to ca.lculating adiabatic
corrections has been given by Pritchard and Wol-
niewicz"; we will call this method II. They pro-
pose calculating the BG energy with the operator
co+Bi'. ~Ei' could then be defined by

(14)

and AE2I by

(15)

The BQ wave function in this treatment, C~~, dif-
fers very slightly from C~ by virtue of small
changes in the linear parameters (c,) caused by
adding II,' to H, . We have verified the results of
Ref. 13 and find that there is little difference be-
tween using the 54-term wave function of that
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TABLE III. Adiabatic corrections (cm ).

8 (bohr)
Method I Method II

EE(' C
1

1.30
1.35
1.40
1.45
1.50

79.780
77.962
76.253
74.646
73.135

38.203
38.264
38.341
38.434
38.546

79.760
77.942
76.234
74.627
73.117

38.183
38.244
38.321
38.415
38.526

118.005
116.250
114.618
113.103
111.702

0.023
0.024
0.024
0.022
0.021

0.062
0.064
0.063
0.061
0.059

Except for the sixth column the basis set is (5342/5).
The total adiabatic correction from Ref. 11, using a 54-term wave function, but corrected

to account for more recent mass values.
Column 6 less the sum of columns 2 and 3.
Column 6 less the sum of columns 4 and 5.

reference or our (5342/5) wave function. The adia-
batic correction differs by about 0.06 cm ' (see
the column headed A, in Table III) from the results
given in Ref. 11.The implication is therefore that
method II decreases the adiabatic correction by
about 0.04 cm ' in comparison with method I. This
is the same conclusion as the one reached by
Pritchard and %olniewicz. "

IV. NONADIASATIC CALCULATIONS

For the nonadiabatic calculations we solved the
complete nonrotational Schrodinger equation

where H is defined by Eq. {1)and 4 is expanded as

c g[4)(1~ 2)+ C'g(2~ 1)lg, ~

o

The radial functions are defined by

gj
-- R-' e-"' ~'B', (x),

(1V)

(18)

where x=y(R —6) and H&(x) are the usual Hermite
polynomials. Since we are only considering non-
rotational energies, the nuclear-angular coordi-
nates do not appear in Eq. (1V). For the electronic
functions in Eq. (1V) we use those defined by Eq.
(10) and the basis set (5342/5), 10V terms, with

n, = a, =1.11V and P, = P, = 0. The other nonlinear
parameters p and 0 are fixed at 4,3 and 1.4» re-
spectively, the former number being estimated
from the harmonic force constant for H» and the
latter being the equilibrium internuclear distance.
The wave function 4' is a natural extension of the
type of nonadiabatic wave function we used success-
fully for H, ', ' andin that work we found that with
a large basis set the results were not sensitive to
the choice of y and 5.

It should be mentioned that the usual techniques
for solving secular equations do not work here,
where we have very large nonsparse matrices, and

consequently we have developed a new method
which is described elsewhere".

Vfe have tested the convergence of 4 with respect
to the number of radial functions X&, by finding
the lowest-energy level when 0 &j & 8 (nine radial
functions) and when 0 ~j = 9 (ten radial functions)
giving a 963- and 1070-term wave function, re-
spectively. For the 963-term wave function the
lowest energy is -1.16402411 hartrees and for
the 10VD-term wave function it is -1.16402413
hartrees, suggesting that the energy has con-
verged, in terms of radial basis functions, to with-
in 0.01 cm '. For overall convergence, a crude
compa, rison with the convergence of the 8,', re-
sults in Ref. 5 suggests that the energy
-1.16402413 hartrees is within 0.2 cm ' of the
true nonadiabatic lowest energy of H, . This re-
sult is the first successful non-approximate non-
adiabatic ca,lculation of the lowest-energy level
of H, . Previously Kol'os and Wolniewicz' used a
147-term wave function but it was so ina, dequate
that their energy was above the best adiabatic
value available at that time. Vfe have confirmed
our nonadiabatic calculations by repr oducing
their 54-term result. This showers that their cal-
culation is error free and we can therefore say
that the inadequacy of their I47-term wave func-
tion lies in having an insufficient number of elec-
tronic and ra,dial functions.

The lowest-energy level may be used to de-
termine the dissociation energy of H, . However,
before comparison with experiment can be made, two
corrections (relativistic and radiative) must be
considered. Using the data in Ref. 15 the vibra-
tional-rotational Schrodinger equation can be
solved with and without the relativistic energy
added to U(R) and this leads to a correction to
the dissociation energy of =0.54 cm '. The radia-
tive correction has been calculated by Garcia"
to be -0.22+ 0.03 cm ~. Furthermore, our BO cal-
culations show that changing from a (5342/5) to a
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TABLE IV. Dissociation energy Dp of the hydrogen
molecule (cm ~).

Nonadiabatic
Basis-set correction
Relativistic correction
Hadiative correction
Total theoretical energy

Semiemp ir ical

Experimental

36 118.60
0.08

-0.54
-0.22

36 117.92

36117.8+ 0.4

36 118.6 + 0.5.

' From the theoretical dissociation energy of H2+ and

the experimental ionization potential of H2.

From Ref. 4.

This value is in good agreement with our theo-
retical value but one notes that only at the limit
of the error bar does it come within the region of
the previous "experimental" value.

Herzberg" from ultraviolet absorption studies
of H, has determined that the dissociation energy
lies between 36118.3 and 36116.3 cm ' but favors
the upper limit. Our value falls within his range
and is closer to the upper value.

Since there have until now been no acceptable
nonadiabatic calculations for H„many theo-
reticians have made approximate estimates of the
nonadiabatic correction, i.e. the difference be-

(6453/7) basis set lowers E'(1.4) by 0.08 cm ',
therefore it would not be unreasonable to expect
the same decrease in the nonadiabatic energy if the
larger basis set had been used to put 4 together.
In Table IV we combine these results and show
that the dissociation energy is 36117.92 cm '.
This is a lower limit but we believe it to be with-
in about 0.1 cm ' of the true value. Stwalley
has analyzed the experimental vibrational levels
of the B'Z„' state and concludes that the experi-
mental ground-state dissociation energy is 36 118.6
+ 0.5 cm ', so that even if one takes the maximum
experimental error bound there is still a differ-
ence of 0.2 cm ' between theory and experiment,
of which only 0.1 cm"' could be picked up by
further improvement in the nonadiabatic calcula-
tion.

One may obtain a semiempirical value for the
dissociation energy by combining the theoretical
dissociation energy of H,

' (Ref. 17) [&0(H,')] with
the experimental ionization potential (I'z) of H,
(Ref. 18) and the energy of the hydrogen atom
(corrected for radiative and relativistic effects)
[E(H)]:

D,(H, ) = D,(H, ')+ Z, (II,) + E(H)

= 21 379.4+ 124417.2 (+ 0.4) —109 678.8

tween the adiabatic and nonadiabatic dissociation
energy, and it is of interest to compare these esti-
mates with the results in thi. s paper. %e have
calculated the lowest adiabatic energy from the
data in Ref. 15 and corrected the result in two
ways: (a) a correction of 0.11 cm for using our
107-term BO wave function (which is more ap-
propriate in view of the basis functions used in
the nonadiabatic wave function) in place of the
Koyos and Wolniewicz' 100-term wave function
for calculating E'(R), see Sec. II; and (b) a cor-
rection of 0.02 cm ' to the adiabatic correction
for using the 107-term wave function in place
of the Kofos and Wolniewicz" 54-term wave func-
tion in calculating 4E'(E), see Sec. III. We then
find the adiabatic energy (method I) of the lowest
level to be -1.16402220 hartrees and, if we com-
pare this value directly with the 1070-term non-
adiabatic energy of -1.16402413 hartrees, we
have a nonadiabatic correction of 0.42 cm '. If
method II is used to find the adiabatic energy then
the correction will be 0.04 cm ' smaller (see Sec.
III), i.e. 0.38 cm '. It is clear that either of
these values can be considered to be the non-
adiabatic correction since the adiabatic energy
can be defined in more than one way.

Bunker" has compared the vibrational spacings
obtained from adiabatic calculations (method I)
with the experimental spacings; By a fit of these
differences (attributed to nonadiabatic effects")
to a polynomial in the vibrational quantum number
he deduced the nonadiabatic change to the individu-
al levels and concluded that the correction to the
dissociation energy is 0.43 cm . This result is in
excellent agreement with our value.

LeRoy and Bernstein" have used the treatment
developed by Van Vleck" which in turn was based
on second-order perturbation theory. Unfortun-
ately it makes use of the UnsOld approximation
which requires knowledge of the mean excitation
energy ~&„, a quantity which ~s notoriously dif-
ficult to estimate. The value I eRoy and Bernstein
took was 1.35 x 10' cm ' and this is probably too
low if the H,

' value is any guide'. They then found
the nonadiabatic correction to be 0.65 cm"'. A

larger value of ~E„would reduce this number.
Kogos and Rychlewski" have used this value of
0.65 cm ' to estimate the dissociation energy of
H, and consequently they obtain a larger energy
than we have reported here. We might also note
that the adiabatic-relativistic-radiative dissocia-
tion energy they quote (36117.33 cm ') is 0.04
cm ' larger than our value. This is because the
value quoted is based on m&/m, = 1836.12 rather
than on the more recent mass ratio given in Ref.
8; this point has been discussed before. "

Bishop and Shih" have used an effective Schro-
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dinger equation involving a single variable param-
eter to determine the nonadiabatic energy levels
of H, and D,. The parameter is chosen so that
there is the best possible fit to the experimental
energy spacings. This method predicts a nonadia-
batic correction to the dissociation energy of H,
of 0.49 cm '.

Approximately, the ratio of the nonadiabatic
correction for the lowest level for H, to that for
D, is (pn /p, s,)' '=2.8, see Eq. (31) of Ref. 5.
So that we estimate the nonadiabatic correction
to the dissociation energy of D, to be 0.42/2. 8
= 0.15 cm '. We have calculated the adiabatic-
.relativistic-radiative dissociation energy from the
data of Table GI of Ref. 15 to be 36747.93 cm '.
If we correct this value by 0.19 cm ' for improve-
ment in the Bo energy curve (see Sec. II) and add
the nonadiabatic correction, we find the approxi-
mate theoretical dissociation energy of D2 to be
36748.27 cm '. This may be compared with the
experimental values of 36 V48. 88 (+0.3} (Ref. 3)
and 36 V48.9 (+ 0.4) cm ' (Ref. 19).

It is tempting to use the wave function in Eq.
(1V} to calculate the higher nonrotational non-
adiabatic energy levels but extreme caution must
be applied since (a) more radial basis functions
(X&) will be needed and (b) the form of the elec-
tronic part of the wave function is not as appro-
priate when, on average, the internuclear distance
is different from 1.4 bohrs (as it will be for the
excited states). With 13 radial basis functions
and 10V electronic basis functions (giving a non-
adiabatic wave function with 1391 terms) the sec-
ond root of the secular equation is -1.14506341
hartrees while the lowest root is -1.16402415
hartrees (only 2 & 10 ' hartrees lower than the
value given by the previous 1070-term wave func-
tion). These values lead to a transition frequency,
corrected by 0.024 cm ' for relativistic effects, of
4161.425 cm for the transition between the two
lowest nonrotational states of H, . This value may
be compared to the experimental one' of 4161.178
cm '. The discrepancy is undoubtedly due to our
not having enough electronic basis functions for
calculating the excited state. %e do believe, how-
ever, that we have sufficient radial basis func-
tions since with one fewer the excited energy
level changes by less than 0.02 cm '. The adia.-
batic-relativistic transition frequency between

the two lowest nonrotational states of H, is 4162.046
cm ' (Ref. 15}.

It should be mentioned that Atabek and co-
workers" have applied multichannel quantum-
defect theory to the molecular Rydberg states of
H, and D,. This theory includes both adiabatic
and nonadiabatic effects. They have obtained
rovibronic levels for the B and C states and
the agreement with the experimental levels is to
within a few cm '.

V. CONCLUSIONS

Our essential results are as follows. For BO
calculations near A=1.4 bohrs the wave func-
tion in Eq. (9}can be simplified without loss of ac-
curacy by letting n, = n, and P, = P, =O as was done
originally by Kolos and Wolniewics. ' To achieve
accurate results it is necessary to increase the
basis-set size in an orderly manner. By doing
this we have obtained BO energies which have con-
verged to within 10 ' hartrees and are approxi-
mately 0.2 cm ' lower than those of Ref. 2 which
have been the standard values for the past decade.

Our adiabatic calculations confirm the results
of Pritchard and Vfolniewicz", i.e. a relatively

, small basis set is sufficient for calculating the
adiabatic correction and a different formulation of
the adiabatic problem (method II) lowers the adi-
abatic correction by about 0.04 cm '.

From our nonadiabatic calculations we conclude
that the dissociation energy of H, is 36117.92 cm '
which compares favorably with the value deduced
from the experimental ionization potential but is
just outside the limits of the "experimental" value
given by Stwalley (36118.6+0.5 cm '}. It is within
the limits given by Herzberg", however these
limits are quite wide.
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