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On the basis of model calculations, we argue heuristically that the dilatation-transformation method is
applicable to all potentials, even those that are not dilatation analytic. In particular, we show that
resonances are converted into bound (localized) states on the nonphysical sheet of the complex energy plane
under the action of a dilatation transformation.

I. INTRODUCTION

Besonant scattering is characterized by the
energy of the resonance E and the width of the
resonance F. Taken together, these quantities
constitute a complex energy

& =8+-'-i E.

Given the Hamiltonian H, the resolvent operator
is defined as (e —H) '. To understand resonant
scattering it is necessary to understand the analy-
tic structure of the resolvent operator. The re-
solvent has poles at real energies corresponding
to bound-state eigenvalues of the Hermitian Ham-
iltonian and cuts along the real axis corresponding
to the continuum. Resonances appear as poles of
this operator in the complex e plane on the nonphy-
sical energy sheets. That is, the analytic contin-
uation of the resolvent operator through the cuts
into the lower half of the complex c plane exhibits
poles. The real and imaginary parts of the posi-
tions of these poles are interpreted as in (l).

Scattering theory provides a, number of ways to
find resonance poles. However, in the past sever-
al years, a new method" called the method of
dilatation transformation (also called the method
of complex-coordinate rotations& has been devel-
oped which reduces the problem to solving a non-
Hermitian eigenvalue problem. This method has
been used recently to calculate the resonances' '
in electron-atom scattering. %'e shall see that
this new method has many practical advantages
over the older scattering methods.

A detailed mathematical justification of the dila-
tation-transformation method has been given"
for the limited class of so-called dilatation-analy-
tic potentials which includes the many-body Cou-
lomb and Yukawa potentials. However, Bein-
hardt'0 "has computed the Stark shift and lifetime
of the hydrogen atom using this method and ob-
tained good results even though the potential for

the Stark effect is not dilatation analytic (it does
not go to zero at infinity). This result suggests
that the method is applicable to a wider range of
Hamiltonians than one would have previously be-
lieved.

The purpose of this paper is to support our be-
lief that the dilatation-transformation method
works for all potentials. This includes non-dilata-
tion-analytic local potentials as well as nonlocal
potentia'. s such as Hartree-Fock and optical poten-
tials. Vfe do not have a mathematical proof that
this method works for such potentials. However,
we have successfully applied it to two model prob-
lems involving single-particle non-dilatation-an-
alytic potentials, and we have developed a heuristic
understanding of how and why it works. Vfe have
examined the eigenfunctions corresponding to the
resonance eigenvalues of the non-Hermitian eigen-
value problem. VVe show that this wave function
can be interpreted as bound becuase it is localized
in character. There are two indications that this
interpretation is justified. First, the resonance
eigenvalues are isolated; second, they satisfy a
complex virial theorem. "'" Since bound states
satisfy the ordinary virial theorem while continu-
um (nonlocalized) states do not, this indicates that
the resonance wave functions are bound on the non-
physical sheet. In the models we have studied, we
find that when this bound eigenfunction is analyti-
cally continued back to the physical sheet, it re-
covers the oscillatory asymptotic behavior ex-
pected for a. resonance state. Although our model
calculations provide the only direct evidence that
this is true, we believe that this will be a charac-
teristic result for any potential even if it is not
dilatatiov. analytic.

In Sec. II, we briefly dicuss the dilata, tion
transformation method. In Secs. III and IV, we
analyze the cubic anharmonic oscillator and a
simple exactly solvable separable nonlocal poten-
tial. In Sec. V, we discuss our results and po~nt
out some of their implications.
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II: DESCRIPTION OF THE DILATATION-TRANSFORMATION
METHOD

In 3.971, Balslev and Combes' showed that a con-
venient way to perform the analytic' continuation
to nonphysical sheets in the complex e plane is to
use a dilatation transformation

r -r e'~,

where 49 may be real or complex. Transforming
the Coulomb Hamiltonian gives, for example,

H- H(8) = T(8) + V(8)

=7'. e " + Ve '

where T and V are the kinetic energy operator and
many-body Coulomb potential energy operator.
If one solves for the eigenvalue spectrum of a. di-
latationally transformed Hamiltonian, one finds
that"

(i) The bound-state eigenvalues remain fixed at
their original values along the real axis.

(ii) The continuum eigenvalues are rotated
through a,n angle of -26 into the lower half of the
complex e plane (see Fig. l). (For simplicity,
we consider 0 to be a positive real number. For
complex 8 the angle is -2Re8.)

(iii) When 8 becomes large enough, one of the ro-
tated branches passes the position of a resonance
pole, and a new eigenvalue of H(8) appears at the
position (complex energy} of the resonance pole.

(iv) This resonance eigenvalue, once uncovered,
remains fixed in the complex e plane and is inde-
pendent of further increases in 0 until 6 becomes
large enough for another branch to pa.ss through
it. At this value of 0, it disappears. In effect,
the dilatation transformation fans out the Biemann
surface into strips: this allows the resonance
poles to appear as complex eigenvalues on the
va, rious nonphysical Riemann sheets.

As a practical means of calculating resonances,
we expand the transformed Hamiltonian H(8) in an
appropriately chosen basis set. Then we approxi-
mate the exact eigenvalue problem by truncating
this basis set. This gives a finite-dimensional-
vector-space eigenvalue equation

[H(8) —~„(8)1ly„(8) = 0,
which is solved by diagonalizing the non-Hermitian
matrix

H(8) = I'e-"'+ Ve-"

(for a Coulomb Hamiltonian). Here, T and V are
the kinetic and potential energy matrices which can
be set up using sta, ndard bound-state techniques.
Note that if the basis is chosen to be independent
of 0 then these matrices need only be set up once.
The resulting finite eigenvalue spectrum of H(8)
is similar to the exact one except that (a} the
branch lines appear as a, finite set of eigenvalues
which rotate by -28 as a unit (with some scatte~
due to the finite-basis-set approximation); (b)
when one of the branch lines pa, sses through a re-
sonance, one of the eigenvalues detaches itself
from the line and remains roughly fixed until it is
passed by another branch line, to which it then be-
comes attached.

Because we have made a finite-basis-set approx-
imation, the position of a resonance eigenvalue is
not completely independent of 8. Therefore, we
repeat the diagonalization for different values of 8
to find that value of 8 for which e„(8) is most
nearly stable. ' This procedure of picking out the
most stable value of e„(8) is usually done graphi-
cally. A precise condition for dilatational stabili-
ty ean be obtained" by recognizing that the dilata-
tion transformations form a continuous group. The
infinitesimal generator of this group is'"

A -r ~ p+p ~ r

0 0 0 G G G—X —X X

~(-2e ~ ~~ ~g-2e
CI N X~d ~

b b b

FIG. l. A schematic view of the eigenvalue spectrum
of the dilatationally transformed Hamiltonian H(0), show-
ing (a) the bound states, (b) the branch cuts (which ex-
tend off to infinity), (c) the continuum thresholds, and
(d) the resonance state eigenvalues.

per particle.
The condition that an eigenvalue be locally in-

variant under the action of the dilatation group is
that the expectation value (with respect to the
corresponding eigenfunction} of the commutator
of the generator with the Hamiltonian vanish:

([A(8), H(8)&„=0,

where

&&(8)&,= &V,(8), F (8)+.(8)&

and y (8) is the solution to

[H(8) —e„(8)]y„(8)= 0,

while p„(8) is the solution to the adjoint equation

[H(8)'- ~.(8)*le.(8) =0
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Equation (7) gives

2(T(e)), = g r; v;)'(e)),

as the condition for stability. This is just the
complex extension of the virial theorem.

III. CUBIC ANHARMONIC-OSCILLATOR MODEL

We have used the dilatation transformation
method to identify resonances in the cubic anhar-
monic oscillator, whose Hamiltonian is given by

H= —,+ —A.x', A. & 0.dx'2

This Hamiltonian represents a physical configura-
tion in which a harmonic oscillator is perturbed
by a cubic term.

The eigenvalues of the unperturbed (A =0) oscil-
lator are

E„=n+2,

and the eigenfunctions have the form

e' 'X(x)

(lo)

where R„(r) is a Hermite polynomial.
When ~& 0, the potential has a well with a mini-

mum at x =0 and a positive maximum at x =6 k.. Be-
yond this barrier, the potential drops off to -~.
The eigenvalue problem for ~ ~0 has never been
solved in closed form.

Vfe have examined this problem for values of X

for which the height of the potential at its maxi-
mum is 1, 2, and 2.5 so that we have one, two,
and three resonance states below the potential
barrier, respectively. As in the Stark effect, '
the continuum threshold starts at E =-~. We
therefore expect that any value of 8 would uncover
the resona. nce states.

We expanded the Hamiltonian in (9) in a basis of
the harmonic-oscillator eigenfunctions and dia-
gonalized it. To be sure of our finite-basis-trun-
cation approximation, we repeated our calculation
for different values of 0, .used different expansion
basis sets by using harmonic-oscillator eigenfunc-
tions of the Hamiltonian

d' k'g'
dg2 4

is that the eigenvalues which make up the continu-
um do not all rotate smoothly into the lower half
plane by -28. In fact, some have positive and
some have negative imaginary parts. This pheno-
menon, " though surprising at first, can be fairly
easily understood. All dilatation™analytic poten-
tials go to zero as r - . Hence, continuum states,
being infinite in extent, are dominated by the be-
havior of the kinetic energy term of the Hamiltoni-
an. Since this transforms as Te ", one gets the
-26P complex rotation. However, for the cubic os-
cillator, the potential does not vanish as x-~, but
in fact diverges like x'. Hence, the asymptotic
behavior of the continuum functions is not domin-
ated by the kinetic energy term, but is determined
by a balance between the kinetic and potential
energy contributions which rotate in opposite di-
rections.

Despite this difference between the cubic oscil-
lator's transformed eigenvatues and the expected
results of a standard dilatation transformation, we
do obtain stable converged complex eigenvalues
for the resonance states with the correct negative
imaginary parts. %'e obtain resonance states for
which Her lies below the potential maximum and
also several resonance states for which Re e lies
above the potential maximum.

The results of the matrix calculation of the re-
sonance states as well as those of the WEB calcu-
lation are presented in Table I. The agreement of
the real parts of the energy between the two cal-
culations are very good. The agreement between
the imaginary parts improves with decreasing ~
to a very good agreement at &= 0.03. Since the
WEB method becomes better with decreasing ~

(see the Appendix), this convergence between the
methods shows that the dilatation-transformation
matrix calculation has in fact converged to the
correct resonance states.

for different values of 4, and repeated the calcula-
tion for increasing basis-set size. We have also
calculated the real and imaginary part of the ener-
gy for the lowest-energy resonance states (corre-
sponding to the n =0 state) for each of the poten-
tials using a WEB-like matched a.symptotic expan-
sion technique described in the Appendix to demon-
strate that our results are in fact correct.

A somewhat surprising result of the calculation

Xmax

-3 -2 -I 0

PEG. 2. ( $(x)(2 for the n= 0 state of the anharmonie
oscillator with %, =0.034 (see Table I). x~~ is the posi-
tion of the potential maximum.
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TABLE I. Calculated resonance complex eigenvalues for the cubic oscillator.

Matrix
Vmlx n -Im&

%KB
Re& -Im&

% discrepancy
Be Im

0.0481 1.0005 0 0.465 9(9)
1.250(9)

2.280(2) x10 3 0.4746 3.085 x10 1.86 35.3
0.112(2) ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

0.034 2.0002 p.485 693 7(1) 2.875(5) xl 0 '
1 1.3915748(3) 1.3417(V) x10 '
2 2.818(1) 0.363 9(1)
3 3.59(1) 0.77(2)

P 4873 3.214 xlp 6 0.33 11.8

0.03 2.572 0.491 947 1(1)
1.422 922 6(1)
2.225 0195(5)
2.9234(1)
3.6182(7)-

5.93(12) x1p
4.092(1} x 10 '
7.408(3) x10-3
0.13910(6)
0.468(3}

04901 6 03 x10 0 38 1 69

' The matrix results are the average of all of the runs at the largest size matrix diagonal-
ized. The error is the average deviation from the average.

The corresponding harmonic-oscillator quantum number.
Calculated from Eq. (A5).
Calculated using three 20 x20 runs in single prec sion: &=0.5, 0= 0.2 rad; &=0.5, 0=0.5

rad A'=1.0, 0=0.2 rad.
Calculated using four 40 x40 runs in double precision: &=0.4, 0 =0.1 rad; &=0.4, 0 =0.2

rad k=0.7, 0=0.1 rad ~=0.7 0=0.2 rad.

To investigate the boundedness properties of
the resonance wave functions on the nonphysical
sheet, we have looked at (g,(x)1'. These are
plotted in Figs. 2-4 for the n=0, 1, 2 states of the
& = 0.034 potential. The plots definitely shows that
the functions are localized. The exponential
falloff of the wave functions, which continues
smoothly far beyond the region depicted in the
graphs, is not caused by the exponential decay in
the basis set. This is checked by examining the
continuum functions to see when the exponential
falloff sets in. The n =0 resonance wave function
looks very much like a harmonic-oscillator wave
function, slightly shifted towards positive x and

slightly distorted by compressing the function at
negative x and expanding it towards positive x.
The full width at half maximum corresponds to an
n=0 harmonic-oscillator function with a 4 of
about 0.8. One calculation was done in a k =O.V

basis set. (The projection of this wave function
on the n =0, k =0.'7 harmonic-oscillator wave
function is 0.957.) The n= 1 resonance wave func-
tion again resembles the n = 1 harmonic-oscillator
wave function, but, as one would expect from a
state higher up in the potential well, it is more
compressed at negative x and more elongated at
positive x. It is composed mostly of the n = I har-
monic-oscillator wave function (1c,1' =0.818) with

xo

"2 0

FlG. S. 1$(r)12 for the n 1 state of the anharmonio
oscillator with A, = 0.034 (see Table Q. xm~ is the posi-
tion of the potential maximum.

6 7

X

4 14(x) I for the n=2 state of the anharmonio
oscillator with A, = 0.034 (see Table I). xm~ and xo are the
positions of the potential maximum and the zero in the
potential, respectively.
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some n=2 (Ic, l'=0. 127) mixed in. The n=2 reso-
nance state lies above the potential maximum and
it is even more distorted towards positive values
of x.

IV. SEPARABLE-POTENTIAL MODEL (REF. j.8)

The eigenvalue problem

8'8(r)e f dr'V(r, r') 8(r') =Zd(r) (ll)

corresponds to a particle of mass m moving in a
nonlocal potential. The usual local eigenvalue
problem is recovered when the nonlocal potential
has the form

V(r, r') = V(r)&(r —r'). (12)

+e"' dr' V re", r'e" r' =Z r . ]3

Here, all the position variables have been trans-
formed by r-re', including those associated with
integration over r'. When V(r, r') is actually local
[of the form of Eq. (12)], we recover (4).

When the potential V(r, r') is separable,

V(r, r ') = XU( Ir I) U( lr I) (14)

closed-form solutions are easily obtained. For
this special case, Eq. (13) becomes

(k'/2 -)me
"eV'g(r ) + C(8) U(re' ) = Er/i(r ), (15)

where

The change in the kinetic energy operator under
the dilatation transformation has been discussed
above. It will be assumed that the transformation
of the nonlocal potential carries Eq. (12) into

- (k '/2m) e "8V 'P(r )

The general solution to the inhomogeneous prob-
lem (18) is

f(r) =Ae", "+Be ' "

dx xU(xe'e) sink(& —x)
2me" C(8)

(20)
with k' = 2mEe" /O'. We choose k so that Im k & 0.
If U(r) has a, finite range, then

dxxU(xe' )e ' *)e' 'f(r) ~ I A+
me" 'C(8)

o ~
. 0

+lB — .@,
'. ' dxxU(xe'e)e' "

I e

2me "eC(8)
A 2k

r
e "" dxxU xe' sinkx+ sink~

0
oo

x dxxU(xe") e
r )

Equation (22) represents a bound-state solution
to (18). The consistency relation (19) remains to
be imposed. With (22), this is equivalent to the
relation

(22)

Bemuse "'
1 =—, drrU(re' )5 k

(21)

The condition that the state be bound is equivalent
to the condition that the coefficient of e' ' in (21)
be zero. This determines the constant of integra-
tion A. %'e also impose a second boundary condi-
tion f(0) =0 so that g(r) will not be too singular at
the origin. The solution satisfying these conditions
iS

C(8)=e"'I f dr'U(r e")8(r'). ' (16)
r

dxxU(xe' ) sinkx
0

g(r) =f (r)/r, (17)

where f(r) is determined by the one-dimensional
problem

A ~2'E+ —e" d, f(r) =C(8)rU(re' ), (18)

C(8)=dele "ef drrU(re' )f(r). (19)

Because of the spherical symmetry of Eq. (15),
the energy eigenfunctions (C)(r ) can also be chosen
to be angular momentum eigenfunctions. For all
I & 0 states, (16) yields C(8) =0, so the solutions
are just free-particle states. Only the l =0 states
(s waves) are not free. When I =0, g(r) may be
written

4mmw

M'(I) +ike ' )' ' (24)

with cos 0& 0 necessary for the convergence of
the integrals. This is just a quadratic relation in
k. If ~& 0, the two solutions are

k =[ib+(I/k)(4vmk/I))' ']e'

+sinkr dxxU xe" e ""
r

(23)
In general this is a transcendental equation in k.
Those solutions with Im k & 0 correspond to bound
states.

If U(r) =e "/r, the integration in (23) is readily
performed and the result is quite simple:
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The. corresponding complex energy

E = 2vA/b k-'b '/2tn + 2ik(wbA/rn)' ' (26)

equivalent to resonance states of the original prob-
lem.

is independent of 8, as expected from the virial-
theorem argument. "'

A solution with both Im E& 0 and Im 0& 0 occurs
only if

8& tan '[k&' '/(4nmA)' ']. (2V)

Thus, a finite rotation is required to produce a
bound- state solution.

With (2V) satisfied, (22) gives an analytical
representation to the eigenfunction. This function
is readily analytically continued to 8 =0. At
8 =0 the asymptotic r dependence is

f(r) -e ' "; i@=-b+(i/k)(4wmk/b)'i'. (28)

As 8 decreases below the critical value in (2V),
the bound, exponentially decaying state f(r) an-
alytically continues into an exponentially growing
state. This is the behavior of a true resonance
state, so this transition conforms to the general
expectation: the analytic continuation of the bound
state, determined with (2V) satisfied, represents
a true resonance state and the eigenvalue repre-
sents the actual resonance energy.

For A. & 0, Eq. (24) gives

a =i [f +(1/e)(4~ ] ~]/f )~ "]e" (29)

and an Im k & 0 solution

0 =i [b —(1/h)(4am~ A~ /0)'~']e'

occurs when

-a& b'h '/(4vm).

(30)

(31)

This represents a bound state with real energy

4v~( X) l~~i~" ~

2m M b (32)

which is again independent of 8. This state is pre-
sent for all 8 when Eq. (31) is satisfied and no
resonance state is present. In the intermediate
case, A. & 0 but (31) not satisfied, there is neither
a bound state nor a resonance.

The transformations r-re ', x-xe ' in the
general relation (23) which fixes k show that it is
actually an equation for 4e ' . It is thus generally
true that the eigenvalues E do not vary with 8.
The k values do vary with 8 because the solutions
of (23) are of the form ke ' =const. Thus, the
solutions of (23) may be pictured as rotations by
an angle -8 of complex numbers 0 with Im 0 & 0.
When rotated back to 0=0, the resulting analyti-
cally continued eigenfunction will behave for large
r like e' and therefore resemble a resonance
state. For the separable model (14), then, bound
states of the rotated-eigenfunction problem are

V. DISCUSSION

The results of these model calculations plus
those of Heinhardt' " strongly suggest that the
dilatation-transformation method is applicable to
any resonance-scattering problem, both for local
and nonlocal potentials. While these examples
do not constitute a mathematical proof, it is our
feeling that enough examples have been done to
assure us that the method has a large (and prob-
ably universal) domain of applicability and that it
ought to be applied to real physical problems of
current interest.

Our results lead to a description of a resonance
as a localized eigenfunction on a nonphysical sheet
of the complex energy plane. These results, and
our previous demonstration that the complex virial
theorem is the necessary and sufficient condition
for dilatational stability, lead to the following pic-
ture of the dilatation transformation and reson-
ances: At 0=0, the bound states satisfy the
virial theorem and hence do not move under the
action of the transformation. The continuum
states do not satisfy the virial theorem and, thus,
rotate by -28 and fan out on the Hiemann surface.
When a branch passes through a resonance, a new
localized state appears on a- nonphysical sheet
with a complex energy corresponding to the re-
sonance. Since it satisfies the virial theorem, it
is effectively a bound state and it remains stable
until is is covered up.

There is a particular problem which can occur
in one dimension'(but can be avoided in higher-
dimensional problems) when the potential does not
become strongly positive for negative (or positive)
x, such as in the quartic oscillator V(x) =x' —Ax~.

While we expect that the resonance wave function
should become bound on the nonphysical sheets,
this clearly will not happen if we use the transfor-
mation x xe'~. This is troe because if we find a
8 such that iP„(x, 8) is exponentially decreasing for
positive x it will be exponentially increasing for
negative x. Hence, to obtain localized resonance
states on the nonphysical sheet, one should replace
the transformation with something like

x-xe' ~~" .
For one-sided potentials such as the cubic oscilla-
tor, this is unnecessary because the repulsive
nature of the potential for negative x will insure
exponentially decreasing wave functions as x-- ~
independent of the dilatation transformation. This
problem is avoided in more than one dimension by
using spherical coordinates where the potential is
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always one-sided (r ranges from 0 to ~).
Strictly speaking, the dilatation transformation

in N dimensions applied to the vector r =(r, qr„
y„,) takes the form

Thus, when N) I we can always express r in terms
of positive numbers (angles and distances). The
problem in one dimension is that x can be either
positive or negative.

Knowing that the resonance wave function is
bound on the nonphysical sheets suggests different
strategies for choosing basis sets in their calcula-
tion. That is, we want to find a wave function
g„(r, 8) which is bound for some 9 for which the
resonance is uncovered. If we know the approxi-
mate position of the resonance eigenvalue (as we
frequently do from experiment or approximate
calculations) and if we know the approximate posi-
tions of the relevant continuum branch thresholds
(as we frequently do), we can choose a range of 8

such that the resonance will be uncovered. Choos-
ing a value of 0 somewhere in the center of such a
range to perform the calculation, we can tailor the
basis -set to give us bound-state. -like wave func-
tions at the desired (9. Of course, any intuition
about the shape of the resonance wave function
should be put into this choice of basis. One place
this seems especially useful is in the scattering
off a system (atom) with inner electronic shells.
Since the inner shells are only slightly affected by
the scattering process, one expects that the de-
scription of the inner shells on the nonphysical
sheet should be almost the same as their de-
scription on the physical sheet for a free noninter-
acting system. This expectation can be built into
the basis set when one knows the dilatation angle.
This is most readily done by recognizing that the
wave function on the nonphysical sheet of a "true
bound" state is obtained from the wave function on
the physical sheet by just making the substitution
r; -r;e' in the wave function as has been pointed
out by Junker and Huang' arid Rescigno and co-
workers. ' Hence, following their suggestion, one
includes such functions in the basis for the inner-
core electrons by obtaining them from a standard
(good) atomic calculation. The rest of the basis
would then only have to correct the inner-core
electronic wave function for the inadequacies of
this "frozen core" approximation. This would
allow most of the basis set to be used for the eval-
uation of the outer shells and the scattering-'par-
ticle part of the resonance wave function rather
than having to be used to undo the effect of the di-
latation transformation on the inner shells. By
such tailoring of the basis set, the convergence
properties of the calculation are improved and the

necessity of going to very large basis sets is
minimized. One can then use the complex virial
theorem to monitor the convergence as the basis
set is increased while keeping the dilatation angle
constant. Of course, such basis-set tailoring
will require a considerable amount of calculational
experimentation, but the knowledge that the re-
sonance wave function is bound can not fail to be
of help in this effort.

APPENDIX

In this Appendix we show how to calculate the
real and the imaginary parts of the eigenvalues of
the Schrodinger equation

(
-d' x'

, + ——xx'-R(z))y(x(=0.dx' (Al)

For small A. we may treat H;„, = -Ax' as a perturba-
tion. The eigenvalue E(A.) can be represented by

E =ReE+iImE .
The corrections to ReE take the form of a power
series in A.:

ReE =n +-,
' ++A„A." .

7t =1

The first-order correction to ReE vanishes be-
cause H, is an odd function of x:

dx y„'H., =~ dx e-"'~'X„~ 'x' =0.

Thus, the first nonvanishing correction to ReE is
of order A.'. We calculate ReE to second order in
A. by expanding both the eigenvalue and the eigen-
function in a power series in A.. We consider just
the ground state. First we let

S(z) =-,'+AX'.

We know that any corrections from ImE will be
exponentially small and will not affect this cal-
culation. Next, we let

y(x) = W(x)e-"'~'.

The function W(x) represents the anharmonic cor-
rections to the wave function. Differentiating
gives
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10 FIG. 5. The anharmonic-
oseillator potential.

turning point

at x, ~ $4n+2'
turning point

at x, + i/4P

X~
V(x) = ——Ax~

y'=(--,'xW+W')e "~',
y" =[(-,'x' --.')W -xW'+ W "]e-" ~'.

Substituting into (A1) gives

-V" +xW' —Xx'm" —A~'W = 0.
Finally, we represent W(x) as a perturbation
series in powers of A. :

W= 1+Z(ax+ bx') +)P(cx'+dx'+ ex') + ~ ~ ~ .

Equating powers of A, gives

-6bx+ax+ bx' —x' = 0,
whence

b=3, a=2;

-2c —12dx' —30ex4 + 2cx+ 4dx4 +ex'

-ax -bx -A -0,
whence

1e= —,1S y

y(x) =D„(x). (AS)

For l«x&1/4A. , we use WEB theory to solve Eq.
(Al). Then we match both solutions together to
obtain the probability current.

The probability current is

Z(x) =—. -y*(x) '

+y(x)——'1 dy(x) dy*(x)
2i dx dx

It must be normalized by dividing by

present context.
Now, we compute ImE following the procedure

described in Ref. 19. %e use the fact that ImE is
proportional to the flow of probability current J
out to infinity as depicted in Fig. 5. To solve the
problem we use asymptotic matching. For 0&x
& —,'A. , we approximate (Al) by

, + —-Z(x))y =0,
(-d' x'

whose solution up to normalization is just the para-
bolic-cylinder functions

11C= 2 y

11
d 12 y

A =-11.
Hence,

dx i y(x)i'=-

We therefore have

I„Z = J(x)/(2m)'~'n!,

dx 0'„(x) =(2~$)2nt .

Res(x) =-,' —llew'+O(d) . (A2)

It is known that this series, which is the series
that one obtains from conventional perturbation
theory, is asymptotic to ReE. Note again that
the corrections to ImE vanish exponentially as
A.- 0 and therefore do not appear in this calcula-
tion. There may, of course, be exponentially
small terms in the expansion of ReE. However,
such terms are subdominant and negligible in the

where the right-hand side is evaluated at any value
x~ 1/4A. , the right-most turning point of the po-
tential.

The asymptotic matching goes as follows: The
%KB approximation is given by

y(x)~e= C,(x' —4Ax' —4n —2) '~'
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By matching to D„(x) we obtain

C, = exp[—,'(n+-,')[ln(n+-,') —III .

We now substitute y~~ into the expression for J
a,nd obtain simply

+12~ aar2I

ImE = ——
2(2v) / nt

(A4)

1 /4)I,

(4n+2)'/
dx(x'- -4~'-4n —2)'~'

dx (x' —4Xx' —4n —2)' i'
4n+2) ~ /2

] "I/4X
+ — dx(x' -4~' 4n 2)-'i', —

CC

wliere o, is an arbitrary intermediate point (4n
+ 2)'i' «a « I/4z. Evaluating the integrals yields

I, =(n+-,') ln(4n+2)-n--, '-2(n+1) In(2o. i+ ~

I, =- I/60K. '+ (2n+I) 1n(xu) + ~ ~

Combining I,. and I, gives

I=-,'-[&/60'' —n —-'.—. +(n+-,') ln[X'(n+-,.'-)]j .
Observe that, t~ has dropped out, as it should.

Now we substitute into (A4):

C'-, = exp I(n+,'-)[In(n+-,'-) —11I .

Hence, after a little algebra.

exp(-I/60'. ')a '" '
IrnE =-

2 (2-r)'~'n&

Thus, for the lowest level, g. =O, we have

. exp(-1/60K )
F. —2 11& -s . ,~/2 +' ~ '.

2(2g)

Note added in proof. In this note we argue that
the positive imaginary eigenvalues of the cubic
anharmonic oscillator which make up the continu-
um a,s we rotate into the complex plane are act-
ually an artifact of the limited basis which was
used for the numerical calculations. Indeed, a

x].
dt (.'t'-u-'-n --,')'i'.

xo

Here ws have chosen to evaluate Z(x) precisely at
x = I/4Z.

It remains only to calculate the integral I and
we are done. We evaluate I by considering it in
ea,ch of two regions:

/
dx (-,'x' - W' - n- -,'. )'i"'

(4n+ 2)~/

reexamination of these states using larger basis
sets lndlcates that the transformed continuum
contribution moves down in the complex plane as
the ba, sis is increased. Similar behavior was
found for the Qilatationally transformed Stark prob-
lem by Reinhardt and co-workers (private com-
munication, Reinhardt). Here is a, heuristic argu-
ment which shows that under an infinitesimal ro-
tation the continuum eigenvalues move down in the
complex e plane to -i~.

We approximate the exact continuum wave func-
tion 4 (e} of real energy e by a square integrable
function u(e). Since the behavior of the wave func-
tion is dominated by the a.symptotic region a,s )(,

-~ the cubic oscillator Hamiltonian (9) can be re-
pla.ced by

without any loss of generality.
The result of an infinitesimal dilatation trans- '

forma, tion x- xe' upon the sta,te approximated by
u(e) is given in first-order perturbation theory as

e(.&) = -2i6(u(e), Tu(e))

-315K(u( E), x'u( E)) .
As we Ietu(e) become abetter approximation to

e(~),

-~(u(e), x'u(e)) - -~
as u(e) -4 (e).

However,

(u(e), Tu(e)) —X(u(c), x'u(e)) = c„-e,

(a finite

number�}

as u(e) -+(e) .

(u(c), Tu(~)) - —;

» u(~) -4'(~).

g(5) —.joo

as u(E)4'(E)'
independently of &.

Vfhile this demonstration cannot be taken to the
limit, it does indicate strorigly that the continuum
spectrum of the dilatationally transformed cubic
oscillator is emPty. This demonstration is similar
to a proof (using a different method) of Reinhardt
and co-workers that the continuum spectrum of the
dilatationally transformed Stark problem is empty
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(private communication, Reinhardt). If the above
method is used on the Stark problem it also gives
e(&) --i~. However, when it is applied to a dila-
tation analytic potential where &(x)-0 as &- ~ it

yields the familiar -2& rotation of the continuum
cut.
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