PHYSICAL REVIEW A

VOLUME 18, NUMBER 5

Level-degeneracy effects in super-radiance theory. Calculations for
j = 1/2 to j' = 1/2 dipole transition
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We study here level-degeneracy effects in super-radiance, using the quantum “small-system” model whose
interest and limitations are discussed. First, we show that this model allows one to understand the physical
origin of these effects and to describe their qualitative influence on the properties of the emitted light. We
also present and analyze numerical results obtained for the case of a dipole transition between two
degenerate levels of angular momenta 1/2. We show that in this particular case one can define a basis of
collective states which is well adapted to the invariance properties of the master equation. It is then possible
to solve the master equation and to compute expectation values for the radiated field (intensity radiated with
a given polarization, quantum fluctuations of this intensity) for various initial conditions and for small but
already significant values of the number of individual systems. A detailed analysis of these results and a
comparison with analogous calculations in the case where the degeneracy is supposed to be removed allows us
to estimate the individual influence of the different types of effects (interference effects and the two sorts of
competition effects, inhibition and initiation). We also compare the total intensity radiated to the intensity
radiated by the same number of two (nondegenerate) level atoms. This comparison can be simply understood -
if one studies the partition of the population .of the collective energy levels between the different states of
these levels, and it appears that the most populated states are these which are able to radiate the most.
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Finally, it is shown how level degeneracy affects the quantum fluctuations of the intensity.

I. INTRODUCTION

Cooperative emission of light by a collection of
identical initially excited systems— super-rad-
iance—has been until recently extensively studied,
theoretically,'™ and experimentally.*"” However,
even in the most sophisticated models, the indiv-
idual systems are always considered as two (non-
degenerate) level atoms and level degeneracy is
ignored. An important interference effect can how-
ever be expected for degenerate levels and experi-
mental evidence for the existence of such an effect
can already be found in a recent work”: quantum
beats have been observed on super-radiant signals
between quasidegenerate levels even if no coher-
ent superposition of states has been initially pre-
pared.

In a previous paper,?® we have described a theo-
retical approach to the problem of the influence
of level degeneracy on super-radiance. Using the
small system model,’ we have been able to analyze
the differences between the case of two (nondegen-
erate) level atoms and the case of atoms with two
degenerate levels of angular momenta j and j/ (con-
nected by an electric or magnetic dipole transition)
The specific influence of level degeneracy consists
ininterference effects, but they are added to another
type of effect whichwould also appear if level degen-
eracy was removed: aneffect of competitionbetween
the different Zeeman transitions sharing a com-
mon upper or lower state. We have also shown
that the use of tensorial formalism should simpli-
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fy considerably the solution of the master equation
but the labeling of collective states for any j and
j’ remains very complicated and no general con-
clusions on the influence of level degeneracy on
the emitted light have been derived.

We will show here® that such problems can still
be solved in the particular case of two degenerate
levels of angular momenta 3. In this case, it is
possible to label the collective states using the
formalism of Ref. 8 and, finally, the master equa-
tion can be numerically solved for values of the
number of atoms which are already significant.

The numerous limitations of the small-system
model are well known in the two (nondegenerate)
level case. Let us recall that since the atoms are
confined in a small volume, the dipole-dipole in-
teraction would in fact destroy super-radiance'®;
moreover it has been shown' that the Markovian
approximation is not valid (except at the very be-
ginning of the phenomenon) in all the experiments
which have been performed up to now. Concern-
ing the influence of level degeneracy a supplemen-
tary limitation appears, due to the geometry of
the system, which is different from the pencil-
shaped geometry used in all experiments. In the
small system model, three independent polariza-
tions can super-radiate, instead of two for pencil-
shaped systems, and this difference will clearly
affect both interference and competition effects.

Nevertheless, the small system model provides
a simple description of the phenomenon of super-
radiance, in which the influence of level degener-
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acy clearly appears. It is thus well adapted to
analyze the different effects, to understand their
physical origin and to qualitatively discuss their
influence on the pulse shape and on the polariza-
tion properties. Moreover, a careful discussion
of the numerical results obtained for a j=3—~j5’
=4 transition has allowed us to give a more pre-
cise estimate of the individual influence of the dif-
ferent types of level degeneracy effects. In view
of these results, one can think that these effects
cannot in general be neglected; in particular, im-
portant polarization effects are to be expected,
which depend in a nontrivial way on the excitation
light polarization properties; moreover even if
no polarization analysis is made, the maximum
intensity and the corresponding time delay can be
significantly different from the results one would
obtain if level degeneracy was ignored.

In the second part of the present paper (Sec. II),
level-degeneracy effects in collective spontaneous
emission are described in a general and qualitative
way. The basic equations for collective spontan-
eous emission between two degenerate levels of
angular momenta j and j’ are recalled and a very
simple analysis of the physical origin of the dif-
ferent level-degeneracy effects is given (Sec. ITA).
Then the specific influence of competition effects
(Sec. IIB) and of interference effects (Sec. IIC) is
qualitatively discussed. The third part (Sec. III)
is devoted to the particular case of a j=3—~j'=%
transition. A basis for collective states is chosen
(Sec. III A) and the principle of the evaluation of the
matrix elements of the collective dipole operator
if given (Sec. III B); for this latter point we have
used group-theoretical methods and the details of
the calculation are reported in the Appendix. A
conservation equation which is the generalization
of the Bloch vector length conservation is also
given. Then it is shown how the use of tensorial
formalism simplifies the solution of the master
equation and the calculations which have been done
are described (Sec. IIIC). The obtained results
are finally presented and analyzed (Sec. IIID).

II. GENERAL AND QUALITATIVE DESCRIPTION
OF LEVEL-DEGENERACY EFFECTS

A. Basic equations

In the small system model, the master equation
describing collective spontaneous emission of N
atoms with two degenerate levels of angular mo-
menta j and j/ (j for the upper level) connected by
an electric or magnetic dipole transition has been
derived in Ref. 8. It reads

pE)=T 3 [R,p(t)R, - 3(R} R p(t) +p()RLR))], (1)

with

R=@+1)M2 37 (-1

a'=1,N
m-m=q
1 s
x(] ]>lj'm’)w(jm|. 2)
-m’' q m

As the sums in Eq. (2) run over all possible val-
ues of o, m, and m’, it means that the origin of the
emitted photons of given polarization cannot be
known, so that interferences appear. These in-
terferences are the manifestation of two distinct
effects. The first one is due to the fact that it is
indeed quite impossible to say which atom has
emitted a photon, at it is the case for two (non-
degenerate) level atoms. As shown in Ref. 11,
the corresponding interatomic interferences are
responsible for the building up of the super-radiant
signal. The second effect, on the contrary, does
not appear for two (nondegenerate) level atoms;
it comes from the fact that, for a photon of given
polarization, it is impossible to say on which Zee-
man transition it has been emitted and the conse-
quence is the existence of supplementary inter-
ference effects'? which are essentially specific
to the level degeneracy.

These effects are not the only difference between
the two (nondegenerate) level case and the con-
sidered one; they are added in fact to another
type of effect which would also appear if the de-
generacy were removed. In effect, for atoms with
more than two nondegenerate levels the master
equation can be written

p(t)= 2 T yy[Ry,pt)RY, — 5(RY, R, ,p(t) + p(t)RY, R, )]

®

the sum runs over all transitions i —j (i for the
upper level) of transition probabilities T';; and the
operator R, is given by

Ry= D [iaalil, @)
a=1,N

) and |j) being monatomic states. If the differ-
ent transitions do not share any common level,
p(¢) can be written as a sum of terms with inde-
pendent evolution. Otherwise, super-radiance on
the different transitions sharing a common upper
or lower level will influence one another. These
“competition” effects are obviously present in the
j—j’ case and are inseparable from the level-de-
generacy interference effects: these two types
of effects and their qualitative influence on the
emitted light will be discussed in Secs. II B and
IIC.

The expressions of expectation values for the
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radiated field in the j —j’ case are also given in
Ref. 8. We recall here the expression of the in-
tensity radiated in all directions with a polariza-
tion &€

L) =I{(R - ON® - O)(t); (5)

we also give the expression of the expectation val-
ue for the total intensity, radiated in all directions
. and with all polarizations

It) =I,(R' - R)H @), (6)

which is proportional to the mean value of the
scalar operator

X=®'"-R)= ) RIR,. ‘ W)

Notice that, because of the geometrical symmetry
of the small system model and due to the isotrop-
ic nature of spontaneous emission, Eq. (1) is in-
variant under rotations. For this reason the sys-
tem generally radiates in all directions and with
all polarizations. Therefore this equation does
not apply to the experimental situation, in which
the system radiates in two opposite directions
and thus on two polarizations at most. As a con-
sequence both interference and competition are
expected to be different from those described by
Eq. (1). However this equation is quite useful for
understanding the physical origin of these effects
and for discussing their qualitative influence on the
pulse properties; let us add that the rotational in-
variance itself allows important formal simplifica-
tions, so that quantitative results can be obtained
in a particular case.

B. Competition effects

As said above, competition effects appear if a
system super-radiateson at leasttwo transitions
sharing a common level. The situation is differ-
ent if the common level is the upper one, the low-

er one, or the intermediate one. In this discussion

" we shall consider three cases of three level atoms
(case a: common upper level; case b: common
lower level; case ¢: common intermediate level).
The energy level diagram for one single atom in
each case can be found in Figs. 1(a), 1(b), and
1(c). The master equation is given by Eq. (3) and,
for the sake of simplicity, we restrict ourselves
to symmetric collective states (the symmetric
character is obviously conserved during the evolu-
tion). These collective states can be written in
the occupation number representation

IN0N1N2>)

with N,+N,;+N, =N, and the collective state dia-
grams corresponding to the three cases are rep-

resented in Figs. 1(a), 1(b), and 1(c). The evolu-
tion of the system starting from a symmetric col-
lective state consists in cascading emission be-
tween the states of these diagrams. The corre-
sponding transition probabilities are easily de-
rived using the expression of R; in terms of an-
nihilation and creation operators and they are pre-
cisely stated on separate diagrams in Figs. 1(a)
1(b), and 1(c). The consequences of the competi-
tion between the two transitions are rather differ-
ent in the three cases.

1. Common upper level: Inhibition

The branching ratio.between the two transition
probabilities corresponding to the emission of a
photon on 0 -1 or 02 at a given point of the main
diagram of Fig. 1(a) is W, + 1)T',/(N,+1)T',. If T',
>T', and if the system starts from near the top of
the diagram, this ratio is always favorable to
the emission on 0—~1, and the process is cumula-
tive since the emission of each photon on this
transition increases the branching ratio. It is thus
expected that the emission on 0 -2 will be much
less important than it would be if this transition
was alone, the effect increasing with N. In fact
super-radiance onthe most probable transition
empties the upper level before the appearance of
super-radiance, onthe other one, which istherefore
“inhibited.”

2. Common lower level: Initiation

In this case [see Fig. 1(b)] the branching ratio
between the emission probabilities of the two sorts
of photons is N,I',/N,I',. If I',>T,; this ratio is
favorable to the emission on 1 -0 only if N,/N, is
not too large: but the emission of each photon on
this transition decreases N, and leaves N, unal-
tered, so that the branching ratio decreases. It
is thus expected that super-radiance on2 ~0 will
be “initiated”: it will appear sooner and larger
than if alone.”®* The importance of this effect de-
pends on the ratio of the initial populations of lev-
els 1 and 2 and it obviously vanishes if one of these
populations is zero. Moreover each emission of
a photon on whatsoever transition increases N,
and consequently both transition probabilities: it
is thus expected that both super-radiant pulseswill
appear sooner an: larzes than if 2lone.

3. Intermediate common level: Cascade

In this case [see Fig. 1(c)] the branching ratio
between the emission probabilities of the two sorts
of photons is N, (N,+ 1), /N (N, +1)T',. If the sys-
tem starts nearly from the top of the diagram, this
branching ratio is very favorable to the emission
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FIG. 1. (a) Competition for super-radiance on two transitions sharing a common upper level (inhibition). The figure
includes three diagrams. First, the energy-level diagram of one single atom (case a). Second, a diagram represent-
ing cascading emission between the symmetric collective states of N such atoms; each point represents a state
|NgN{N,;) and the double and single arrows correspond, respectively, to the emission of photons of energy %w; and
7iw,. Third, the general expressions for the transition probabilities between the states INONW2) . (b) Competition for
super-radiance on two transitions sharing a common lower level (initiation). Same as (a) with case a replaced by case b.
(¢) Super-radiance on two transitions sharing an intermediate common level (cascade). Same as (a) with case ¢ replaced
by case b.

on 1-0, for any I', /T, ratio, and this remains true identical to the super-radiant pulses emitted by

as long as N, is large enough. Thus, during a first N initially excited two-level atoms with transition
period, photons are emitted almost only on 1 -0. probabilities I', and I',; the second pulse is simply
At the end of this period, levels 1 and 2 are al- delayed and begins at the end of the first one.

most empty and the population of level 0 is almost
equal to N: the branching ratio is then favorable
to the emission on 0—~2. Finally it is expected As shown before, the specific consequence of
to observe two successive pulses, practically level degeneracy consists in interference effects

C. Interference effects



due to the indiscernibility of the photons emitted
on the Zeeman transitions corresponding to a
given polarization. These interferences manifest
their influence not only on the emitted real photons
but also on the emission and reabsorption of vir-
tual photons which represent, in the small system
model, the interaction of the atoms between them-
selves.

The emitted real photons consist in cascading
emission between the collective states. Interfer-
ences appear between all collective transitions of
the same polarization. The only peculiar point
concerning these effects—comparedto other quantum
interferences—isthatthe collective energy levels
are highly degenerate; inparticular for a given ener-
gy level there is a great number of states correspond-
ing to a same eigenvalue of J,. The number of inter-
fering paths is therefore very large (as an ex-
ample, see Fig. 4, which shows the # cascades
in the case of four atoms with two degenerate
levels of angular momentum %, in a basis which
will be explained later) and the global influence
of the interferences is hard to estimate.

Formally, the consequence of the interferences
is that the emission of a real photon leads gener-
ally from one state of a given basis to a super-
position of several states of the same basis. Let
us take as an example the case of atoms with two
degenerate levels of angular momentum 3. The
states of such an atom and the different Zeeman
transitions are represented in Fig. 2 and one can
see that the interferences concern 7 photons only.
We again consider symmetric collective states,
which are labeled in the occupation number re-
presentation as lNl N,N,N,) (the indices of mon-~
atomic states can be found in Fig. 2). The emis-
sion of a 7 photon is represented by

Ro IN1N2N3N4>0C {Nl(N8+1')]1/2 IN),_ 1N2N3+1N4>
+[N,(N,+1)]*/2|N, N, = IN,N, +1)
(8)

(the particular case of two atoms is represented in
Fig. 3). As a consequence, the evolution of the
populations is mixed with the evolution of some
coherences, at least in the considered basis, and
the solution of the master equation (1) is therefore
complicated. This problem is studied in more de-
tail in Ref. 8, where it is shown that such a mixing
occurs whatever the choice of the state basis is.
Concerning the emission and reabsorption of vir-
tual photons, the formal consequence of the inter-
ferences is the same as for the emission of real
photons: this process generally leads from one
basis state to a superposition of several basis
states. In the case of atoms with two degenerate
levels of angular momentum %, the emission and
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FIG. 2. State diagram of one single atom with two de-
generate levels of angular momentum %; the states are
either written as | (£)m), the symbols () and () re-
ferring, respectively, to the upper and lower level, or
simply numbered from 1 to 4. The transition probabil-
ities of the different Zeeman components are given.

reabsorption of a virtual » photon is represented
by

RJR,|N,N,N,N,)
< [N,(N;+1)+N,(N,+1)] [N, N,N,N,)
+ [Ny (N, + 1)V, +1)N,]/2 | N, - IN, + 1N, +1N, - 1)
+ [(N, + 1N, N, (N, +1)]/2 | N, + 1N, - 1N, - 1N, +1)
(9)

(see also Fig. 3 for the two-atom case). It appears
here an interesting phenomenon: because of the
interferences, the exchange of virtual photons can
modify some mean values. In particular, the pop-
ulation of an upper state may increase, although
only Markovian processes are considered and no
real absorption is taken into account. Let us not-
ice that the mixing of states through an exchange
of virtual photons can be suppressed [in order to
formally simplify the solution of the master equa-
tion (1)]: in effect, it is always possible (see Ref.
8) to choose a basis in which the operator X de-
fined by Eq. (7) is diagonal (such a basis will be
exhibited in Sec. III A for the 3 -3 case).
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FIG. 3. Elementary-level-degeneracy interference
processes for two atoms with two degenerate levels of
angular momentum %; a symmetric two-atom state is
represented by a nonordered pair of monatomic state
diagrams in which the occupied states are circled.
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III. APPLICATION TO A4 j =% —j' =% TRANSITION

For a quantitative evaluation of the influence
of level degeneracy effects on the properties of
the super-radiant pulse, one hasto solve the mas-
ter equation, and preliminarily to choose a basis
for the collective states. This choice is important
because the formal complexity of the equations de-
pends on the basis. In the general case of atoms
with two degenerate levels of angular momenta j
and j’, the problem of the choice of a “good” col-
lective state basis is complex and remains un-
solved. However in the particular case j=j'=3%,
and as long as symmetric states are considered,
it is possible to define with the help of group theo-
ry a basis which is well adapted to the solution of
the master equation: it is then possible to solve
it numerically for numbers of atoms which are
already significant.

A. Collective state basis

Let us consider a collection of N atoms with
two degenerate levels of angular momentum 3;
the monatomic states are represented in Fig. 2.
It is easy to show® that the whole set of collective
states forms a basis for irreducible representa-
tions of the SU(4) group whose infinitesimal op-
erators are sums of monatomic operators

Plom, wmy ™ O‘ZN 1 o) | (10)
(our notation is made explicit in Fig. 2). The im-
portance of this group—the cooperation group—in
the study of superradiance is due to the fact that
the operators R, and RI belong to its Lie algebra
and that consequently the evolution of the system
by collective spontaneous emission does not mix
different irreducible representations. Moreover
the components of the total angular momentum of
the atoms J, , which are

J‘ = Z mlP(*)m,(*)m+P(')m'(')m] »
" : (11)

.= Pyi/2s om1/2 PP (o172, (w1720

belong also the the Lie algebra of the cooperation
group; the group SUY(2) generated by 3, which is
an invariance group for the master equation, is a
subgroup of SU(4). Another invariance property
of the master equation is to be considered: the
invariance under permutations of atoms, which ex-
presses that, in the small system model, the atoms
are indiscernible for the radiated field. Conse-
quently the evolution does not mix different irre-
ducible representations of the permutation group
S . In the following, we shall restrict ourselves

to collective states which are invariant under per-
mutations and which form a single irreducible re-
presentation of SU(4), the so-called symmetric
representation {N}. In the two (nondegenerate)
level case this restriction would correspond to the
value 3N of the Dicke’s cooperation number #, that
is to complete population inversion. In the two
(degenerate) level case there exist nonsymmetric
states even for complete population inversion.
However, the assumption that the initial deasity
matrix is defined on symmetric states only pro-
vides important formal simplifications (we would
at the present time be unable to solve the master
equation for other representations of S). More-
over this is a rather natural restriction, as long
as the atoms can be really considered as indis- -
cernible—in particular for the excitation field.

A more rigorous discussion of this problem re-
mains to be done. It is not impossible that this
restriction might, in some cases, affect the de-
scription of the collective phenomenon itself.
However we notice here that such a discussion
would require a precise knowledge of the excita-
tion process. If the initial conditions are described
only by the mean values of the populations of the
upper states and of the coherence between them,
it is always possible to use an initial density ma-
trix defined on symmetric states only. The pecul-
iarity of such a density matrix will not appear inthe
expectation values of the intensity radiated with
the different polarizations but only on properties
such as the correlations between photons of dif-
ferent polarizations (see Sec. IIID5).

Since dealing with symmetric states, one is
allowed to use the second quantization formalism.
A pair of boson creation and annihilation opera-
tors,

+
Aym> Cgymo 12)

is associated to each monatomic state |(;t)m) and
they obey the usual commutation relations. The
sums of monatomic operators given by Eq. (10)
have to be replaced by

T
a(i:)mla(t)mz °

An obvious basis for symmetric collective states
would be the occupation number representation,
but this basis does not permit to take advantage
of the rotational invariance of the master equation.
It is more convenient to label the collective states
according to a chain of subgroups of the coopera-
tion group which includes SU7 (2). ‘

First it is straightforward to show that the an-
nihilation and creation operators (12) have ten-
sorial properties'® with respect to J; they are



the components of four tensor operators of rank
1

2

alyn= (@W)5%,

Asym™ (_1)1/2-m(a(*))(_1"/‘2) ‘
Operators commuting with J are thus obtained by
constructing scalar products of two of these op-

erators; in particular we define the following op-
erators:

.(13)

1
K, = —E {l(at,,)*/?) (a(,))“/z’]g"’

77 W
~[(at_)er2r. (a(_))(1/2)](§°>}
1 .
= 3 Z [az*)ma(*)m_ a‘('_)ma(_)m] ’ (14)
m

L= ﬁ[(af(*))(xlz) . (a(‘))(llz)].ém

= 1 .
- Z A mPEm
m

they commute with J and belong to the Lie alge-
bra of SU(4); the operator K, is closely related

to the Hamiltonian H, of the N atoms and one has
(see Ref. 8)

H0=E0K" (15)

X
I

where E is the energy difference between the two
levels of an isolated atom. In fact it is easy to
show that K,, K,, and K_ span a Lie algebra whose
commutation relations and unitarity conditions,

le’Kt]:: i_Kt’
[K+’K-]=2Kn (16)
(K,)' =K,,

(&) =K,
are those of an angular momentum K, commuting
with J. Thus the cooperation group SU(4) contains
the direct px;oduct of the two SU(2) groups corre-
sponding to J and K *5:

SU(4) D SUY (2) x SUX(2). 1

The Casimir operators J2 and K2 of the two SU(2)
groups can be shown to be identical and the reduc-
tion of the irreducible representation {N} of SU(4)

according to the chain (17) is given by:

Z DIx DY
T

if N
with J=4N,4N-1,iN-2,. .. ’{0 if N even

4 if N odd.
(18)

The symmetric collective states are thus char-
acterized by two commuting angular momgnta J
and K such that the eigenvalues of J2 and K2 are
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FIG. 4. Collective symmetric states of four atoms
with two degenerate levels of angular momentum % in
the basis | uJM); the energy of a state is proportional to
u, the eigenval_ge of J, is M and the values of J [the
eigenvalues of J2 are JW+1)] are indicated under each
point which represents one state; only 7 photon cas-
cades are represented.

both equal to J(J+1); if M and u are the eigen-
values of J, and K, respectively, one has, as
usual:

M,u==d, =J+1, =J+2,...,d. (19)

The states can finally be written IpJM); Jand M
characterize the total angular momentum of the
N atoms and u characterizes their total energy
[which is, cf. Eq. (15), E=E,u]. As an example,
all the states corresponding to N=4 are repre-
sented in Fig. 4. An important remark can be
made here: the operator X defined by Eq. (7) is
a scalar operator with respect to J and it obvi-
ously commutes with H; or K,; it is thus diagonal
in the chosen basis so that, as shown in Sec. IIC,
interferences manifest themselves on real emis-
sion only. In fact the basis |uJM) is exactly of
the type defined in Ref. 8 and all the formalism de-
scribed in this reference can be used.

B. Matrix elements of the collective dipole operator

Before solving the master equation, one has to
evaluate the matrix elements of the collective di-
pole operator. Since operators R, are components
of a tensor operator R, the Wigner-Eckart theo-
rem can be used but the evaluation of the reduced
matrix elements of R*? still remains complicated,
In order to do it we have found convenient to use
some more group theory. This part of the work is
quite unessential for understanding the following;
it is reported in the Appendix and here we just out-
line the procedure.

The annihilation and creation operators have
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tensorial properties with respect not only to J but
also to ﬁ._ Using these properties it is possible
to construct a Lie algebra commuting with J and
K, which is the Lie algebra of a noncompact
SU(1,1) group. In fact this group is quite anal-
ogous to a “quasispin” group.!® One introduces
then a larger noncompact group [containing the
direct product SU(1,1)x SUY(2)x SU¥(2)] such that
the symmetric collective states corresponding to
all possible values of N form the basis of only two
irreducible representations of this group.” Final-
ly for the evaluation of the matrix elements of R,
one may use three times the Wigner-Eckart theo-
rem [once in each group: SU’(2), SUX(2), and
SU(1,1)] and the evaluation of the corresponding
reduced matrix elements is then straightforward.

From the matrix elements of R_ it is easy to
derive the eigenvalues of the operator X, X(uJ),
which are proportional to the total intensity rad-
iated (in all directions and with all polarizations)
by the system in a state “lJM)', one has

X(W)=4ENN+4) - JU+1) = w(p=3)].  (20)-

The analogous quantity in the two (nondegenerate)
level case is!

x(m)=3N@EN+1) = m(m - 1), (21)

which is proportional to the intensity radiated by
a symmetric state (1’=%N). The quantum numbers
m and W are quite analogous since they character-
ize the collective energy levels. In the two (non-
degenerate) level case x(m) depends on m only
and is maximum for m =0 [x(0) ~3N?]. In the
3 —3 case, X(uJ) depends on J too and, for a given
energy level, it varies from its maximum value,
obtained with the smallest value of J(J = [ u l), to
its minimum value, obtained with the largest val- -
ue of J(J=4N); for u=0, in particular, it varies
approximately from £(3N?) to $(3N?).

Expressions (20) and (21) correspond to oper-
ator equations which are, respectively,

@®-R)=3[n@+4) - F-T-K,(kK,-3)], (22)
R,R=3NGEN+1) - R (R, +1), (23)

where I stands in each case for the total number
operator, of eigenvalue N; & ,, &_, and &, are

the spherical components of the Bloch vector in the
two- (nondegenerate) level case. These equations
can in fact be derived from more fundamental con-
servation equations. In the two-nondegenerate-
level case, it is known that the length of the Bloch
vector is conserved during the evolution:

% GE®, R+ R.R)+(RY))=0. (24)

From a group-theoretical point of view this equa-

tion expresses that the mean value of the Casimir
operator of the cooperation group SU(2) is con-
served. Of course the same property holds in the
$—~3 case. The Casimir operator of SU(4) can be
written, in terms of annihilation and creation op-
erators,
G= Z Tey eyt Tctynt Ao ymo (29)
(€)m, (e)ym' ,
where the sums run over indices of monatomic
states. It is easy to verify the operator relation-
ship
G=3n@N+2)+ (T F)+K2+3[R'-R)+(R-R").
(26)

The conservation equation which is the analog of
Eq. (24) is thus

d - e - - [ra— ,

7 KRB+ R-RD+ED+(T- D)) =0, (27)
This equation can be written in a form closer to
Eq. (24) if one defines, for each linear polariza-
tion, a vector which is the analog of a Bloch vec-
tor. Let us put

R =R-E,
RI=R'-E, (28)
Rzl=§[R;’RA] ’

EX beihg a unit vector. It follows that, for any E),

Z) z

R, =3K _ (29)

Equation (27) becomes
%(Z [5(R!R,+R,RY + (R2,)] +4(J" 5») ~0, (30)
pY

where the sum runs over three orthogonal polar-
izations. The conserved quantity is thus the sum
of the squared lengths of the “generalized” Bloch
vectors corresponding to three orthogonal polar-
izations and of one third of the squared length of
the total angular momentum.

C. Solution of the master equation

Because of the invariance of the master equa-
tion (1) under the SU’(2) group, the use of tensor-
ial formalism is very convenient. In particular
the density operator can be written as a sum of ir-
reducibie tensor operators; this is described in
detail for the j —j’ case in Ref. 8: one has

)= Y a,p®(t), (31)

k=0,1,2,...
q="Ry"k+lye00sk

where the a,, are constants, depending on initial
conditions only. The evolution of operators p‘®(¢)
with different values of k are independent and one
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(§ o X ) low @ -1 3 (—1)“’6+'=“{J5k"°}(#'J'MR‘“nqus)

Toidh

The great interest of development (31) is due to
the fact that the mean value of a tensor operator of
rank k&,

V@)= D (2k+1)TH(=1)T T

w oy, d

X a,_ (W 'lp® @) pel)

X (WIlIV® | prT ), (33)

involves reduced matrix elements of p‘*)(¢) only.
The evaluation of the mean value of a tensor op-
erator requires therefore the solution of Eq. (32)
for one value of 2. As shown in Ref. 8, the expres-
sions of the expectation values for the radiated
field can be written as linear combinations of mean
values of tensor operators. For the radiated in-
tensity the corresponding ranks are 0, 1, and 2
and for the quantum fluctuations of this intensity
the rank varies from 0 to 4. From the computa-
tional point of view this is a great simplification
since it reduces drastically the number of coupled
equations one has to solve. It has been thus pos-
sible to compute, for various initial conditions,

the quantum fluctuations for N up to 40, the radi-
ated intensity corresponding to the different polar-
izations for N up to 50 and the total intensity (which
involves £ =0 only) for N up to 110.

As a comparison, we have made the correspond-
ing calculations for the case where the level de-
generacy is supposed to be removed, that is using
the master equation (3) and the occupation number
representation. However in this case, the tensor-
ial formalism cannot be used and, for a given num-
ber of atoms, the number of coupled equations one
has to solve is much larger than for the degenerate
case: for this reason, the values of N have been
limited to N=20.

The initial conditions for the density matrix are
determined by the excitation conditions, in particu-
lar by the polarization properties of the excitation
light. We have considered cases of initial com-
plete population inversion and, as mentioned be-
fore, we have assumed that the initial density ma-
trix is defined on symmetric states only. More
precisely we have assumed that the distribution
of the atoms in the two states of the upper level
is given by boson statistics, that is,

J1J
X (WTI[RON p+ 1) (' + 1l pP (@) o+ 1) (32)
pO)= - aMipts g | N, N,00) (N, N,00 |
NI'NZ 1 2
(34)

(the states are written in the occupation number
representation, N, +N,=N and ¢ +8=1). It is easy
to show that the mean values of the populations of
the upper states and of the coherence N, between
them are, at¢=0,

(N )0)=aN,
(N,)(0)=8N, (35)
(N,,(0)=0.

Consequently three particular pairs of values of
«a and B can be interpreted as resulting from sim-
ple excitation conditions: (i) @=1,8=0; this sit-
uation could be obtained by pumping in o, circul-
arly polarized light from a third level of angular
momentum %; (ii) a= %,ﬂ= %; this could be obtained
by pumping in o, light also, but from a level of
angular momentum 3; (iii) @ =B=%; this could be
obtained by pumping in linearly polarized light
from a third level of angular momentum % or 3.

The states appearing in Eq. (34) are also states
of the | uJM) basis

[N, N,00) =|$N 3N M),
with (36)
M=3(N,-N,).

The values of a,, and of the reduced matrix ele-
ments of p'*’(0) are easily derived from Eq. (34)
[see Ref. 8, Eq. (29)]. In particular, a,, is zero
except for ¢ =0 and the nonzero reduced matrix
elements are (3N-3N||p*’(0)||3N £N). Since the de-
pendence on & of a,, is arbitrary, these reduced
matrix elements can be taken as equal to 1. With
these conditions, the reduced matrix elements of
p®)(¢) are the same for the various considered
initial conditions and only the a,, depend on a and
B. Let us remark that, because of the trace con-
servation of the density matrix, one has

A= (N+1)"1/2, (37)

The mean values of any scalar operator is there-
fore the same for the different initial conditions
considered; this is in particular the case of the
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0 100. N

FIG. 5. Evolution with N of the maximum I,, of the
total intensity emitted by N atoms with two degenerate
levels of angular momentum 3. As soon as N goes
above 30, I,, becomes proportional to N%a good approxi-
mation.

total intensity radiated in all directions and with
all polarizations.

D. Discussion of numerical results
1. General features

First of all, note that, although the computation
concerns small values of N, it appears that the
evolution of the various interesting quantities with
respect to N reaches an asymptotic behavior as
soon as N is of the order of 50 or 100. As an ex-
ample, Figs. 5 and 6 show the evolution with N
of the maximum of the total intensity radiated in
the 3 ~3 case and of the corresponding time delay.

Figures 7-9 show typical results corresponding
to initial conditions (i), (ii), and (iii). Let us em-
phasize that the relative values of the maxima of
the pulses corresponding to the different polariza-
tions are very different in the three cases and also

" different from the values for non collective spon-
taneous emission (which are given by the values at
t=0). Conversely, in all cases time delays cor-
responding to the different polarizations are close

NIt/

0 1 In(N)

FIG. 6. Evolution with N of the time delay £, of the
super-radiant pulse emitted by N atoms with two degen-
erate levels of angular momentum 3. As soon as N goes
above 50, t,, varies as (alogN +b)/N to quite a good
approximation.

11

0

.100+

o]

rt

FIG. 7. Intensity radiated with r, ¢., and o. polari-
zations by N =50 atoms with two degenerate levels of
angular momentum -é- for initial conditions (i). The state
diagram of one single atom and the initial mean values of
the populations of the upper states are recalled. The
values at t=0 correspond to noncollective spontaneous
emission: the o. intensity is twice the 7 intensity.
Note that the maximum of the o. pulse is much larger
than the maximum of the 7 pulse (by a factor of 7).

The corresponding delay times are not very different.
Note also the presence of a very small ¢, pulse, of
larger time delay.

together and the differences between them decrease
with N.

2. Competition effects

In order to discuss competition effects alone
(that is without interferences), we consider the
case where level degeneracy is supposed to be
removed. Interferences completely disappear if
the frequency difference v between the two 7 Zee-
man components is larger than the frequency width
of any 7 collective transition. This condition can
be written as 6y > $(3N)I" and is very severe for
large N. The “nondegenerate” case considered
here would be in fact difficult to observe: it is
however quite useful for the discussion.

For initial conditions (i) the upper state m=-%
is initially empty so that it is a case of competi-
tion between two transitions sharing a common
upper state, one transition (o.) being twice as
probable as the other one (7). As expected super-
radiance on the less probable transition is inhib-
ited and the ratio between the o_ and 7 pulse max-
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FIG. 8. Intensity radiated with 7, o+, and o. polari-
zations by N =50 atoms with two degenerate levels of
angular momentum % for initial conditions (ii). As in
Fig. 7, these initial conditions are recalled in a separ-
ate diagram. Notice that the relative values of the
maxima of the different pulses are quite different from
those of Fig. 7 and also different from the relatives
values at ¢ =0, which correspond to non collective spon-
taneous emission. The three time delays are quite close
together.

ima is much larger than the ratio of the transition
probabilities [see Fig. 7 (Ref. 18)]. In Fig. 10 is
shown a comparison of the o. and # pulses and of
the respective shapes they would have without com-
petition. The two pulses appear sooner and are
smaller than if alone. For the o. pulses these dif-

i1,

(N1>=I:l/2 (N22)=N/2

X

100+

3 4

l N
o 0.1 ; rt

FIG. 9. Intensity radiated with 7 and o, polarizations
by N=50 atoms with two degenerate levels of angular
momentum % for initial conditions (iii). As in Figs. 7
and 8, these initial conditions are recalled in a separate
diagram. The different intensities are equal to =0
(noncollective spontaneous emission) but the maximum
of the 7 pulse is noticeably larger than the maximum
of the o, pulses. Asin Figs. 7 and 8, the time delays
are almost equal.
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FIG. 10. Inhibition. Intensity radiated, in the 3—3%
“nondegenerate” case, by N=20 atoms for initial condi-
tions (i) (these conditions are recalled on the state
diagram of one single atom). The solid lines represent
the o. and 7 pulses. The broken lines represent the
shapes these pulses would have if each transition were
alone, that is the pulses emitted by 20 two- (nondegen-
erate) level atoms with transition probabilities equal to
%21" (0. transition) and éI‘ (m transition). Note that the
two pulses appear sooner and are smaller than if alone.
This effect is especially important for the 7 pulse: its
maximum is reduced by a factor of 2.5 and the time
delay is a little shorter than, instead of twice as large
as that of the o. pulse.

ferences are small and decrease with N but for
the 7 pulse it is the contrary. In fact, the m in-
tensity decreases as soon as the o_ pulse appears
and empties the upper common state. Let us add
that the inhibition increase with N. Precisely the
ratio between the o. and 7 maxima increases as
VN, at least in the explored range of N (N <50).

For the other two initial conditions, (ii) and (iii),
both inhibition and initiation effects are expected.
Inhibition appears always [as for initial conditions
(i)] between one ¢ component and one 7 compon-
ent and the ratio of their transition probabilities
is always 2. Initiation appears also between one
o component and one 7 component but the import-
ance of the effect depends not only on the ratio of
the transition probabilities, but also on the ratio
of -the initial populations of the upper states. The
role of initiation is thus different in the two cases
[let us recall that this effect does not appear for
initial conditions (i)].

For initial conditions (ii) the situation is com-
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FIG. 11. Iitiation. Intensity radiated, inthe 3—%
‘“nondegenerate” case, by N=20 atoms for initial con-
ditions (iii) (these conditions are recalled on the state
diagram of one single atom). The solid lines represent
the pulses corresponding to one m and one o, or o.
Zeeman component. The broken lines represent the
shapes these pulses would have if the corresponding
transitions were alone, that is the pulses emitted by
10 two- (nondegenerate) level atoms with transition
probabilities equal to 2T (¢ transition) and §T (r
transition). Note that the two pulses appear sooner
and higher than if alone. In particular the time delay
of the 7 pulse is reduced by a factor of 3.

plicated. Inhibition and initiation are mixed to-
gether and neither one nor the other is preponder-
ant. Their relative influence is different for each
Zeeman transition and nothing more will be said
about it.

For initial conditions (iii), it appears that in-
itiation effects are important and prevail upon the
inhibition ones (and all the more as N increases):
the ratio between the maxima of one ¢ and one #
component is smaller than the ratio of the transi-
tion probabilities and decreases with N. Figure
11 shows a comparison of the pulses corresponding
to one 7 and one ¢ component with the respective
shapes they would have without competition. One
recognizes the main features of the initiation ef-
fect: the two pulses appear sooner and higher than
if alone; in particular the time delay of the “in-
itiated” 7 pulse is greatly reduced and tends, as
N increases, to be equal to the time delay of the
o pulse.

3. Interference effects

The specific effect of level-degeneracy inter-
ferences can be seen in the differences between
the 3 —3 degenerate and “nondegenerate” cases.

First, for initial conditions (i), although the
upper state m=-3 is initially empty, a small o,
pulse appears (see Fig. 7). Consequently the mean

N\
11 m

o

(N,>=N/2 (N, )-N/2
1

M.

10+

I
Y rt
FIG. 12. Interferences. Comparison between the

3— 3 case (solid lines) and the corresponding “nonde-
generate” case (broken lines), for N=20 atoms and for
initial conditions (iii) (the initial conditions are recalled
on the state diagram of one single atom). The differ-
ences between the two cases are uniquely due to the in-
terference effects. Note that these interferences in-
crease the maximum of the m pulse (about 30%) and de-
crease a little the maximum of the o, and o. pulses.
They decrease very little the two times delays.

value of the population of this state must have in-
creased. This effect was expected and is a man-~
ifestation of the interferences on the emission and
reabsorption of virtual 7 photons. It is very small,
probably due to the inhibition of super-radiance on
the 7 transition; for the same reason the influence
of interferences on the 7 and o. pulses is also very
small for initial conditions (i).

For the other initial conditions the interferences
appear to be mainly constructive: the maximum of
the # pulse is larger and the corresponding time
delay is a little shorter in the degenerate case
than in the “nondegenerate” one (see Fig 12).
Moreover these effects increase with N; as an
example in case (iii) the ratio between the 7 and
o maxima increases much more rapidly in the
degenerate case than in the “nondegenerate” case.

4. Comparison with the two- (nondegenerate) level case

As shown before, interference and competition
effects are combined in such a way that the total
intensity has the same shape in the time domain
for all considered initial conditions. It is inter-

' esting to compare this intensity with the intensity
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FIG. 13. Ratios I,,/I!, andt,/t}, vs N; I, and t,, are
defined as in Figs. 5 and 6, and I, and ¢, are the value
and position of the maximum of the intensity radiated by
N two- (nondegenerate-) level atoms. I,/I}, reaches
quickly (as soon as N goes above 30) a value close to
2 and t,,/t,, tends approximately to 3.

radiated by the same number of two (nondegener-
ate) level atoms!®: the maximum is smaller, the
time delay is larger and the ratios between the
two maxima and the two delays tend, as N in-
creases, to be approximately equal to, respec-
tively, Z and 3 (see Fig. 13). [Note that these dif-
ferences between the 3 —~3 andthe two-(nondegen-
erate) level cases are important: the level degen-
eracy cannot be merely ignored.] Besides a com-
parison between the pulse shapes in the two cases
shows that they almost coincide if a suitable nor-

/\ﬂ
Iy 31, AN

1000+

0 o.01 rt

FIG. 14. The solid line represents the total intensity
I(t) radiated by 110 atoms in the £+ —% case and the
broken line represent the intensity I’ (¢’) radiated by
110 two- (nondegenerate) level atoms, normalized this
way: I’ is multiplied by £ and # by 3. Notice that the
two curves are very close together everywhere; in

particular the maxima and time delays are almost equal.
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malization is made for one of them (see Fig. 14).
In particular the full widths at half-maximum
(FWHM). of the two curves are approximately equal
(in the two cases, the FWHM tends, as N increases
to be nearly equal to the time delay). Finally this
comparison shows that, as far as the total inten-
sity is concerned, the 3 —~3% case can be well ap-
proximated by the two (nondegenerate) level case
provided the transition probability is changed
from I to ZI'.

This result is not surprising if initial conditions
(i) are considered. The larger N, the more the
super-radiance onther transition is inhibited and,
for large N, the total intensity is expected to con-
sist in a o_ pulse which has the same shape as if
alone. For the other initial conditions, when com-
petition and interference effects are mixed togeth-
er, the previous result is less obvious. A general
explanation can still be given, which is based on
an analysis of the partition of the population of a
given energy level between the different states of
this level.

Let P, ,(t) be the average value of the population
of a state | uJM) with given u and J, that is

P, 0= 5 3 (w6 g

=27 +1)72 (pdlp @)l pd); (38)

the expectation value for the total intensity I(¢)
can be written

1t)=1, 3, @I+1X(ud)P,,(t). (39)
ud
The quantities P, ; (¢) obey the differential equa-
tions

d

(ZE +TX( p.J))P;,(t)

=T 32 @I IIRDI B+ 1P Py s 10

(40)

the sum runs over three values of J': J+1, J,
and J—1. If N is large and if the variation of

P ;(t) with J is smooth enough one may introduce
the average value of P, ,, ;.(f) over these three
values of Eq. (40) becomes

(‘37 +TX( pJ)) P, ~TY(RINP, , 0y,  (41)

where Y (uJ) is the eigenvalue of the operator
Y= R R'=X-2K, . (42)
GZ a q 2z

X(ud) and Y (uJ) vary analogously with J: they
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FIG. 15. Evolution of populations, for N=110 atoms with two degenerate levels of angular momentum 3. The curves
represent the total population p, (¢) of a given energy level u vs p, for various values of . The diagrams show a com-
parison, for the same values of ¢, between the average population P, ;(t) of a state | uJM) with given p and J and the
average population of a state of the same energy level p which is given by Pu(t)=pu(t)/[§N+1)2~— u?. Each point of the
diagram corresponds to a pair (u,J) and the set of all pairs occupies a triangle | u|<J SéN. The dark areas corres-
pond to the inequality P, ()= 5P, (), the gray areas to P, ;(t)>P,(#), and the white ones to P,;(t)<P,(t). Concern-
ing the total population of the different energy levels, one can see that the population is progressively transferred from
the highest level (u=§N), inwhich all the populationis concentratedat =0, to the lowest one OL:—%N) which willbe the
only occupied level for infinite f. Note that the shape of the curves p, () varies considerably with ¢: at the beginning
or at the end of the pulse (¢ «<¢, or t>t,), very few levels are populated but for ¢ =¢, all levels are almost equally
populated [the evolution of the population of the energy levels in the two-nondegenerate-level case is qualitatively the
same (Ref. 19)]. Concerning the distribution of the population of a given energy level between the different values of
J, note that except for values of ¢ larger than t,,, the states for which J is close to | u| are by far the most populated.

are maximum when J is minimum (J=] u.l) and
minimum when J is maximum (J=3N), the ratio
between maximum and minimum being approxi-
mately equal to 2. Thus, for a given energy level
K, on the one hand P, () relaxes faster when J

is small, due to the X(uJ) term; on the other
hand, it increases when J is small also, due to
the Y(uJ) term. This latter effect is cumulative
since the average value of the right-hand side of
Eq. (41) is taken over values of J’ close to J. Fin-
ally the average populations of states ’uJM) with.
given u and J corresponding to small values of
J(Jmf u]) are expected to be much more significant
and more rapidly evolving than the average popu-
lations corresponding to the same value of u and
large values of J; moreover this phenomenon will
increase with N. This result can be verified for
rather small values of N by an exact calculation
of the populations. Figure 15 shows a comparison
between the average population P, ;(¢) and the av-
erage population of a state of energy level u. For
values of ¢ smaller or a little larger than the time
delay ¢, the most populated states of a given en-
ergy level are those for which J = [ M [ Since the
corresponding populations are the most rapidly
evolving, it is not surprising that the reverse re-
sult becomes true for larger values of {. However
the value of the total population of the different
levels is then very small except for u=~—3N and
the system does not radiate any longer: the dis-
tribution of the population in the different states
for large values of ¢ will not affect the pulse shape.

From Egs. (40) it is straightforward to derive

‘:\:(% +I‘X(uJ)) P,,(#)=T ;X(w LINP, 150 (@),

(43)

where the sums run over all values of J and J”’
compatible with the values p and u+1. One intro-
duces the average value of X(uJ) for the level u,

X ()= ‘J; @I+ D)X (uI)P,,(t)/ EJJ (2 +1)P, (1),

| (44)

and the total population of the level u,
p, ()= D (2J+1)P, ,(t). (45)

T .
Equations (43) and (39) become then
d. ,

(& +TR () 9,0 =TX(u+ 1)p, 0,

(46)

It) =1, 3 X(wp,(t).

As shown before, for large N and as long as the
radiated intensity is important, the states for
which J =~ I ;Lf are by far the most populated: it
follows that

X(w)=X(p|p))=3[EN2+N - p2+3@8u- |1 ])].
(47)

If one compares Eqs. (46) and (47) with the corre-
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sponding ones in the two-nondegenerate-level case
it appears that the only important differences con-
sists in a factor % in the expression of X(u). This
accounts, with a good approximation, for the dif-
ferences between the total intensity radiated in the
4—4 case and the intensity radiated in the two-
nondegenerate-level case.

Let us finally emphasize that the super-radiant
emission of the system keeps it in states for which

>
the mean value of J2 is close to its minimum value.

Equivalently one can say that the collective spon-
taneous emission populates the states that are able
to radiate the most: this phenomenon is quite an-
alogous to the creation of super-radiant states
starting from complete population inversion in
Dicke’s interpretation of the two-nondegenerate-
level case.

5. Quantum fluctuations

In a quantum model, the knowledge of the field
properties does not reduce to the knowledge of its
intensity. It is also interesting to investigate the
statistical properties of the field and the evolu-
tion of these properties during the super-radiant
emission. For this aim one can in particular
evaluate the quantum fluctuations of the intensity®°;
it is recalled that these quantities involve the in-
stantaneous value of a second-order correlation
function® and that they can in principle be mea-
sured in a photon-count experiment, by detecting
photon coincidences.

We have first calculated, for the various con-
sidered initial conditions, the squared relative
dispersion of the quantum fluctuations of the inten-
sity radiated with #, o,, or o. polarization. The
expressions of these quantities, 0'%, in terms of
mean values of atomic operators are given in Ref.
8. Since their calculation requires the solution of
Eqgs. (32) for & varying from O to 4, it has not
been possible to consider values of N larger than
40.

First one observes that the variation with ¢ of
o2 has qualitatively the same shape as the varia-
tion of the squared relative dispersion of the quan-
tum fluctuations of the intensity in the two (nonde-
generate) level case ¢%,.'° At =0, the emission
is noncollective and the photon statistics are
Gaussian (02 =~1). During the buildup of the sup-
er-radiant pulse, 0';‘1 decreases and has aminimum
in the high-intensity region. This is characteris-
tic of the cooperative effect: in this region, the
atoms radiate coherently and the state of the em-
itted field corresponding to each polarization is in
fact close to a Glauber cqherent state,*! for which
one would have 02=0. In the two- (nondegenerate-)
level case, the minimum of 02, reaches an asym-

ptotic value (about 0.09) as soon as N is approxi-
mately equal to 30.° In the 3 —~3 case, the asym-
ptotic behavior is not yet reached for N=40. A
few qualitative conclusions can however be derived
from these results.

First, for initial conditions (i), the minimum of
0% for the o. polarization is of the same order as
the minimum of 02, (0.13 for N =40, and still de-
creasing with higher values of N) For the 7 pol-
arization, the minimum of 0% is very shallow
(0.85 for N =40 and still increasing with higher
values of N). It appears thus that the emission
on the 7 transition has almost no cooperative char-
acter in this case and this confirms the fact that
superradiance on this transition is inhibited. For
the other initial conditions, (ii) and (iii), the min-
ima of o are generally rather small (between 0.13
and 0.41 for N=40, and all are decreasing with
higher values of N). This means that, in these
cases, the influence of initiation and interference
effects increases the cooperative character of the
emission and compensates, at least partially, the
influence of inhibition. One observes in each case,
(i), (ii), and (iii), that the order according to which
the minima of the different 0% are increasing is
the order according to which the corresponding
intensity maxima are decreasing: the same co-
operative effects are indeed responsible for the
height of the pulses and of the depth of the core-
sponding ¢ maxima.

We have also calculated the squared relative
dispersion, o2(¢), of the quantum fluctuations of
the total intesntiy I(f) radiated in all directions and
with all polarizations. This quantity can be mea-
sured, in principle, by detecting photon coinciden-
ces without putting any polarizer before the photo-
detector and averaging over all observation direc-
tions. One has

o) =[Q@) - I*(t) [/I*(), (48)

with .
Q=132 (R-O'R-INR-NR-D(), (49)
€,6¢

where the sums run over three orthogonal polariza-
tions. It is easy to show that Q(¢) can be written
as a linear combination of mean values of scalar
operators. As for I(t), Q(¢) is the same for the
various considered initial conditions and it has
been possible to compute the values of ¢? for N
up to 110. It appears that o2(¢) has also a mini-
mum in the high-intensity region, but the value
at =0 (0.56) is much smaller than 1 and the min-
imal value is a little smaller than that of o2,
(0.07 for N=110 and only very slightly increasing
with higher values of N).

Concerning the value at £ =0, the explanation is
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simple as long as initial conditions (i) are con-
sidered: the state of the field can then be repre-
sented by two independent Gaussian distributions,
corresponding to both # and o. polarizations, with
two different average values of the number of pho-
tons. For the other initial conditions, the situa-
tion is less simple. The calculated value of 02(0)
implies, in these cases, the existence of a corre-
lation between the emission of photons of different
polarizations; more precisely one may have

(R-ONR-ENME-€NR-)N0)
# (R TR N(0) (RN R-€))(0), (50)

for two orthogonal polarizations, €and €. We
stress here that the existence of such correlations,
at £ =0 that is when the emission is noncollective,
is in fact due to our choice of an initial density
matrix defined on symmetric states only. In any
case a study of the evolution during the super-rad-
iant emission of such correlations would be quite
interesting. In particular we already mention here
that a significant correlation between # and o_ pho-
tons exists in the high-intensity region even for in-
itial conditions (i), although in this case no such
correlation is present at £=0.

IV. CONCLUSION

In the present work it has been shown how the
small-system model gives a simple analysis of
the influence of level degeneracy on super-radiant
emission. It has allowed us to understand the
origin of the different types of level-degeneracy ef-
fects and to discuss their qualitative influence on
the properties of the emitted light. Moreover,
thanks to a formalism based on the invariance
properties of the master equation, the intensity
radiated on a 3~ 3 transition has been computed
for various initial conditions and for small but
already signifieant values of the number of atoms.
These results have shown how both competition and
interference effects can be important. Concerning
competition the two different expected effects,
inhibition and initiation, have appeared to be pre-
ponderant for different initial conditions. Con-
cerning interferences, we have noted that, through
an exchange of virtual photons by the atoms, they
are able to increase the population of an upper
state, although no real absorption is considered.
These interferences are in general constructive
so that they increase the maximum intensity and
decrease the time delay of the concerned pulses.
More generally it has appeared that all level-
degeneracy effects are always combined in such
a way that, for a given energy level, the most
populated states are those.which are able to radi-

ate the most. As a consequence we have shown
that the maximum of the total intensity is smaller
(factor ) and the corresponding time delay larger
(factor 3) than if level degeneracy is merely
ignored. Quantum fluctuations of the radiated in-
tensity have been computed too and they also show
the influence of level-degeneracy effects; for
example, the emission on an inhibited transition
is no more cooperative and the statistics remains
approximately Gaussian in the high-intensity
region. In addition, these calculations permit
one to study the correlations between photons of
different polarizations. A detailed study of the
evolution during the super-radiant emission of these
correlations remains to be done, but it can already
be mentioned that such correlations may appear
in the high-intensity region.

The possibility of using these results for inter-
preting an actual experiment is limited by the
validity of the small-system model itself. As is
well known it is not realistic, it ignores dipole-
dipole interactions and it is purely Markovian.
Now, as shown in Ref. 11, the observation of
pure Markovian super-radiance would imply quite
severe conditions on the total number of initially
excited atoms. Moreover the geometry of the
system in this model is quite different from the
geometry encountered in all the experiments per-
formed. For pencil-shaped systems, super-radi-
ance appears with two different polarizations only;
in the j=3—j’ =3 case for example it would be pos-
sible, with a suitable choice of the quantization
axis, to calculate the radiated intensity without
considering competition nor interference effects.
However, even for pencil-shaped systems, these
effects have surely to be taken into account for
other values of j and j’ and their individual in-
fluence on the super-radiant emission can be esti-

.mated from the analysis of the results obtained

here. This allows us to predict that level degen-
eracy can play an important role and that it should
be taken into account in a detailed theoretical in-
terpretation of experiments. In particular, one
has to expect polarization effects, concerning
mainly the heights (more than the time delays) of
the pulses corresponding to different polarizations
and depending upon the polarization properties of
the excitations light. Besides the maximum and
time delay of the total intensity radiated can be
quite different from those one would obtain ignoring
level degeneracy.

Let us finally recall that a quantum model only
describes rigorously how the super-radiant emis-
sion starts. As shown in Ref. 11, the Markovian
approximation is always valid as long as few
photons are emitted. This work should thus pro-
vide a good starting point for a rigorous study of
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the early Markovian stage of super-radiance be-
tween degenerate levels.
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APPENDIX: GROUP THEORETICAL EVALUATION OF
MATRIX ELEMENTS OF THE COLLECTIVE DIPOLE
OPERATOR

A. Preliminary group-theoretical study

Annihilation and creation operators (12) have
also tensorial properties with respect to the angu-
lar momentum ﬁ; they are the components of two
double tensor operators of rank 3 with respect to
both (commuting) angular momenta J and K

T
a(+)m

=@,
a‘{_) - (a'r)(l_/z 1/2)
a(+)m - ( 1)1/ Z‘m(a)(l/_i/lé 2 ’

@y = (= 1)1/2+m(a)('1"/12;/2)’

(A1)

(the first rank refers to J, the second one to ﬁ).
Starting from the different double scalar products
of these tensor operators, a Lie algebra commut-
ing with J and K can be constructed. Precisely,
one has

% {(a*) (1/21/2) (a)“/ 21/ 2)}(00)

+ {(a)u/z 1/2 (a'r)u/z 1/2 }(()go)]

[y

t T
1 (81 n@ oom + C rm@lrm
- :

1 t
+ {308 ym + E oy oy 5 (A2)
= 1) ( )
Q,= —{(a ) 1/21/2)(a1)(1/21/2 }(()go)

= 1/ 2=m,t 1
- z : (_1) 2 (2 ym@ (ym »
m

Q_={(a)(1/2 1/ 2)(a)(1/2 1/2)}(()30)

= 2 (_1)1/ 2-ma(a')ma(-)m ’
m

and the commutation relations of the Lie algebra
spanned by @,,Q,, and Q. are these of an angular
momentum. @, is closely related to the total num-
ber operator

w=21

and its eigenvalues are @ =3N + 1; @, and Q. clear-
ly do not belong to the Lie algebra of the coopera-
tion group: they do not conserve the total number

Ay m@ oym + Almy @ =y (A3)

of atoms. The unitarity conditions of this Lie
algebra,

(QZ)T=sz (A4)
(Q*)le -Q:,

are different from these of an angular momentum
and show that it is the Lie algebra of a noncom-
pact SU(1, 1) group; the pseudoangular momentum
Q defined by Eqgs. (A2) is quite analogous to a
quasispin operator.!®

The annihilation and creation operators appear
finally to be the components of one triple tensor
operator of rank 3 with respect to the three (com-
muting) angular (or pseudoangular) momenta J,
ﬁ, and 6; it means that they form a basis for a
product of three irreducible representations
DY2xDY2xD(3) of, respectively, the groups
SU7(2), SU¥(2), and SU(1, 1) (the last of the three
representations?®® is defined by the same commuta-
tion relations as the first two but is nonunitary
since SU(1,1) is noncompact)' this can be written

o — () a ),
Am= (a)mlx//zzll//zzl/ 2, = (@)43 ;/13 e
a(+)m= (_1)1/2-m(a>f’1"/~§;-4-211/./22) ’ (A5)
om= (PR

We then define coupled triple-tensor operators
XG0 {(q)@/21/21/2) s (q)0/21/21/ VK1 . (A)

the commutation relations of these operators show
that they span, for k+/+x odd, the Lie algebra

C, of a noncompact Sp(8) group?® (with the notation
of Ref. 24). The collective symmetric states of
all possible numbers N of atoms form the basis of
two unitary irreducible infinite dimensional repre-
sentations of this group, one for N even, one for
N odd. The three groups defined above are sub-
groups of Sp(8) and one can use the chain

Sp(8)> SUY(2) X SUX(2) x sU(1,1). (A7)

The three Casimir operators of these subgroups
prove to be identical and the reduction of the irre-
ducible representation of Sp(8) corresponding to
N even or odd leads to

> DIXDI X4 +1, (A8)

7

J taking all nonnegative integer values if N is even
and all positive half-integer values if N is odd;
the notation 4Q,, due to Miller,?® represents a
unitary infinite-dimensional irreducible represen=
tation of SU(1, 1) which is bounded below: the
eigenvalues of @, for such a representation are

Q=Q,, Qu+1, @Qy+2,...,+>, (A9)

and the eigenvalue of the Casimir operator is
Qo(Qo - 1)-
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According to this reduction, a symmetric state
of N atoms can be labeled by J and its projections
in the three subgroups, that is M, u, and @ =3N
+1, with

M or p=d,J=1,J=2,...,-J+1,-J, (A10)
Q=3N+1=J+1,J+2, ..., +%.

We shall write these states |D M, D7y, AJ + 15N +1)
or, more simply, |NuJM).

B. Evaluation of matrix elements of the collective dipole
operator

The components of the energy-decreasing part
of the collective dipole operator R, can be written
as components of a triple-tensor operator

R,=(/V3)XELY. (a11)
The matrix elements of these operators can thus
be evaluated by using the Wigner-Eckart theorem
three times: in SU’(2), in SU¥(2) and in SU(1, 1).
For the last group, since it is noncompact the
finite dimensional representation (1) to which
operators R belong is nonunitary. Clebsch-Gordan
coefficients of SU(1, 1) have been studied®®*.—and
shown to be closely related to these of SU(2)—but
in the case of three unitary representations only.
In the considered case, however, it is not difficult
to obtain by recurrence the general expressions of
matrix elements of the type

(4QIQ' D) - Q[1Q,Q), (a12)
with £ non-negative integer (see Ref. 27, for
example). It appears from these expressions that
the @ and @’ dependence can be formally derived
from the expressions of 3-j symbols

4
J Bod ’ (A13)
-M'" M'-M M
with the following correspondence
J,J'=Q,-1,Q,-1, (A14)

M,M'~@Q,Q",

however, in the normal 3-j symbol one has |M|
<J, whereas the relationship between @, and @
gives @ = @,: the formal expressions of the 3-j
symbols contain square root of some terms which
can become negative when correspondence (A14)
is made, and one has to replace these terms by
their absolute value. Finally the Wigner-Eckart
theorem in SU(1, 1) can be written in the following
form (which fixes our definition of the reduced-

A. CRUBELLPER AND M. G. SCHWEIGHOFER 18

matrix element)

(1QIQ' |D(®)Q’ - Q|1Q.Q)

(Q{) -1 3 Qo - 1\2 1/2
-9 Q@ -Q @
x (1Q} | D) [|4Q,) (A15)

(¢ being a nonnegative integer). Consequently the
matrix elements of R, can be written

= (_1)%-00*0'-0[

(Np - 1J'M +q |R,|NpJM)

=(—1)J1-M'“*-7"u+1+.7'-.r J’ 1 J
-M-qg q M

J’ 1 J
X

-+l =1 u

’ . 2
x[ J 1 J
N -1 0 3N+1
(A16)

and one has only to compute the reduced-matrix
elements (formulas for 3-j symbols containing one
angular momentum equal to 1 are given, for ex-
ample, in Ref. 28). We have performed this cal-
culation by evaluating the matrix elements of the
operator

1/2
|,

() _ T
X = (/2 a1, 80172 = Chrr) By

L RYVE TRIYPE ) SR PN
(A17)
between particular states written both in the occu-
pation number representation |N,N,N,N,) (see
Fig. 2 for the notation) and in the basis |N pJIM);
one has '
[2JJJ)=|2J000), (A18)
and the developments of other states IN wJM) in
the occupation-number representation are obtained
by operating J_, K., and @, on both members of

Eq. (A18). Finally the reduced-matrix elements
appearing in Eg. (A16) are

(J+1”X(111)"J)= (Jllx(lll)llJ+1)

=[(2J+1)2(2J +2)(2J +3)2]V/ 2
@llxa |0 =[2@J)(@J +1)3@JI+2)]2, (A19)
and the reduced (with respect to J only) matrix

elements of R are obtained by explicitly writing
the first two 3-j symbols of Eq. (A16):
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(uJ“R“’”u+1J+1)=-< 3GT+0)

Vepw@+p+1)QJ+1)

(uJ||R“’||u+1J)=(%N+1)< 5T0+1)

20+ p+ 1)+ u+2)(%N—J)(%N+J+2)>1/2

>1/2 , (A20)

1) -
(wI||R “/.L+1J—1)——< 7

20— p)J = p=1)EN=J+1)GN +J + 1)>1’2
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