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Finite-perturbation calculation of static quadrupole and mixed dipole-octupole polariebilities
for the ground states of the first-row atoms
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Static quadrupole and mixed dipole-octupole polarizabilities are calculated from correlated wave functions
for the ground states of the first-rom atoms with estimated uncertainties of less than 3%. The following
mean quadrupole polarizabilities are obtained for the atoms Li through Ne (in atomic units): 1428; 301.8;
14S.7; 64.20; 30.72; 21.20; 12.69; 7.726. Correlation contributions are found to range from —12%%uo (Be)
to +20% (0).

It has recently been demonstrated that the finite-
perturbation method, when applied to sufficiently
correlated wave functions, is capable of producing
static dipole polarizabilities of atoms"' and small
molecules'with high accuracy: in all cases, where
precise experimental values are available, the cal-
culated values were found to deviate by less than
2%. Here we apply this method to calculating
atomic quadrupole and mixed dipole octupole po-
larizabilities. These properties are practically
inaccessible to measurement but there is neverthe-
less considerable interest in these data. In parti-
cular, the long-range potential for scattering pro-
cesses between atoms and ions or molecules with
large permanent moments may be strongly affected
or even be dominated by the induction interaction
which depends directly on the atomic polarizabil-
ities. Furthermore, accurate static quadrupole
polarizabilities may be very useful for estimating
the long-range dispersion attraction and provide
a valuable check for the more difficult calculation
of dynamic polarizabilities by means of many-body
perturbation techniques.

In the finite-perturbation method, the polariz-
abilities are obtained from moments calculated un-
der the presence of finite external fields by numer-
ical differentiation with respect to the field
strength. In the case of atoms one needs only con-
sider external potentials of the form

V=gr'P, (cosS) fg,

and obtains the polarizabikity constants

where g(V) coincides with the state ~AIM) for V
=O. Nonzero constants result only for I+i' even

and ~f —f'~ & 2I . The response of an atomic sys-
tem to a general external field can be obtained —to
second order in the perturbation —from the above
defined polarizabilities by means of the Wigner-
Eckart theorem. Since we have not found a com-
pact treatment of the general case in the liter-
ature, the pertinent formulas are given in the Ap-
pendix for the readers convenience. The induced
interaction with a distant moment of order k de-
pends on the distance R like R ~"'"~ '. Although
the mixed-pole polarizabilities (f el') do not con-
tribute to the orientation averaged interaction
since the mean polarizabilities, o', , =Z„&,, (&I~)/
(2I. +i), are nonzero only for / =l', they are sig-
nificant for the orientation. dependence of the inter-
action. Indeed, as our calculations show, the di-
pole-octupole anisotropy is about twice as large
as the anisotropy of the quadrupole polarizability.

The advantage of the finite-perturbation method
for polarizability calculations lies in the fact that
well-established standard techniques for unper-
turbed systems are directly applicable. As in our
previous investigations on dipole po1arizabilities,
our wave function is obtained from the coupled
electron-pair approximation based on a configu-
ration expansion in terms of pseudonatural orbit-
als (PNO-CEPA). ' Since the essential features of
this method regarding its application to polariz-
ability calculations have previously been discussed
in detail' we need only mention here some special
points of the present work.

ithin the region of field strength which were re-
quired for sufficient numerical significance of the
calculated moments, the nonlinearity of the induced
moments appeared to be considerably larger for-

the quadrupole perturbation thap was observed in
the dipole case. This is not surprising since, on
the one hand, due to the x' dependence of the per-
turbing potential the polarization effect is strongly
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TABLE I. Exponents g of Gaussian type basis func-
tions.

Type of
orbital Exponents

7/ gp" from Huz inaga g f g
0 369 g f 0

f) f 7)5 from Huzinaga '
rj 6= q 5/2. 5; q7 ge/2 ~ 5

For Li and Be values of 8 scaled by 0.277 and

0.581, respectively.

gf =4 67'))0(s) g2=4 r))~

ng =2ng(P)' q, =~3g, ; g, = q, /2. 88

From Ref. 5.

concentrated in the outer fringes of the charge dis-
tribution, which are relatively difficult to describe
in a numerically stable way and thus require a not
too small f. Qn the other hand, a basis set de-
signed to describe well the wave function in the
outer regions may then extend into the'saddle-
point region of the effective one-electron potential,
the distance of which behaves in the quadrupole
case like f ' '

Experimenting with various polynomial fits we
found that the numerical errors in the polariz-
ability could be kept below 0.5% by choosing five
equidistant fields with the largest producing a
relative deformation of about 1%%uo

—2%%uo, and by fitting
the moments with a polynomial of degree 3. (For
states with M =L this implies only two independent
calculations, of course )Wit.bin the above de-
fined region, the nonlinea. rity is not larger than 10%%uo.

The second derivatives of the moments are not
considered to provide useful information about the
hyperpolarizabilities since the basis sets have not

been adapted to give this quantity.
Several basis sets of Gaussian-type functions

have been constructed with the d and f exponents
roughly optimized to give maximal polarizability.
The basis sets finally adopted are of size 1II.s, VP,
M, 3f, and are obtained from Huzinaga's optim-
ized atomic 10s, 5p sets' as described in Table I.
The convergence of the calculated quadrupole po-
larizabilities with increasing size of the basis sets
follows closely the pattern observed for the dipole
polarizability and it is estimated that the remain-
ing basis set errors are smaller than 1%%uo. This
applies as well to the convergence with respect to
the threshold values for selecting singly and doubly
substituted configurations and to the inclusion of
off-diagonal PRO configurations. The total error
is thus estima. ted to be smaller than 3'%%uo.

The results of our calculations are given in Ta-
bles II-IV. Comparison of our self-consistent
field (SCF) mean-quadrupole pola. rizabilities with
recent coupled Hartree-rock results' shows de-
viations of less than 1'%%uo with the exception of 0('P)
where our value is larger by 4%. This substan-
tiates the above given error estimates. The cor-
relation contribution behaves qualitatively in the
same manner as that for the dipole polarizability so
that the discussions given in Ref. 2 applies for the
quadrupole polarizability as well. That is, for the
left half of the row angular correlation is dominant
and leads to a shrinking of the charge distribution
which results in a reduced polarizability whereas
for the right half of the row there is strong in-out .

correlation leading to an expansion of the charge
distribution and an increased polarizability.

As far as known to us, the only other calculation
including electron correlation is a many-body per-
turbation treatment of the rare-gas atoms by Dor-

TABLE II. Mean static quadrupole polarizabilities &~=&&+22(XLM)/(2L+1) (a.u. =0.041505
A').

Method Li. N 0

SCF

CEPA, valence
Shell cor relation

1481.0 339.1 133.9 54.76 25.66 16.90 10.40 6.464

304 3 145 7 64 20 30 72 21 20 12 69 7 726

CEPA, included
~/I shell correlation

1428.0 301.8

Correlation contribution -3.7% -1&.6% 8.1% 14.7 jp 16.5% 20.3% 18.0% 15.9%

Coupled HF

MBPT

134.0 "' 55.2 25.6 16.3 10.3 '
342.1

6.457

6.46

6.416

Reference 6.
Reference 12.

Coulomb approximation: 1397.0 167.9 '

"Reference 10.
Reference 11..

Reference 7.
Reference 13.
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TABLE III. Anisotropies (0'~ &- o~ 0) of the quadru-
pole and mixed dipole-octupole polarizabilities (a.u. ).

Li

Method

SCF
CEPA

B 0

-65.1 19.55 -5,56 2.53
-62.32 20.21 -7.28 3.23

SCF —110.5
CEPA -130.7

32.08 -10.85 4.41
33.36 -14.39 5.43

2-.

an. ' His value for Ne is about 15% lower than ours
and is even smaller than our SCF value and other
coupled Hartree-Fock (HF) values (including his
own). On the basis of the systematic behavior of
the correlation contributions, as obtained in our
investigations, we consider Dorans correlation ef-
fect as highly unlikely. It may be noted that a 15%
correction of the static quadrupole polarizability
asks for a similar correction of the dynamic po-
larizability and thus for Dorans C, value for Ne.
This point is further discussed in a study on the
Ne-Ne Van der %aals potential. '

Following a suggestion by Gislason and Rajan'
who expect a linear relationship between logo. , and
loge~ we have plotted lnB, vs lnB„ in Fig. 1, 6 de-
noting o.'/n„, „„;a least-square fit yields Inn,
= 1.264 inn„+ 1.372. This can be understood as
follows: according to Kirkwood and Vinti" n„
—(P)' and a similar treatment of a, leads to 6,

(r4)'/(8). From our previous calculation' we
find n~ = (7')'"' and from a calculation for Be and-
Ne (r') =(r')"". Thus one obtains n, = (7')'656
~ ~2~ 656/ 2o 107 ~ y lo 261

d
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APPENDIX

An atomic system subjected to an external po-
tential may have the multipole moments p, ,
=(PIQ, Ig), where

&2~+1~

FIG+ 1e 1n( q/s~~~ye ) vs 1Q(&g/s~~ ~)~) IQ R,u,

Expanding the potential as V=K, Q~rf, , the po-
larizability tensor may be defined as o.». =(8 p. , /
Bfg')z, . According to second-order perturbation
theory, the tensor components a„, are associated
with the operators

TP, , =Q,R„~QP +Q, , 'R~~Qg,

where

R„~ =
I

1 —g IALM)&/iLMI I/(&/LLMIHIALM) —H) .)u

The quantization axis for the atomic states
IALM) can be chosen in such a way that the first-
order interaction matrix is diagonal only in the
case L, =1 or for special forms of the external po-
tential. In general, the nondegenerate eigenfunc-
tions will have the form +~„c„IALM) and the calcu-
lation of the second-order (induction) energy re-
quires all matrix elements (ALM

I TP, , IALM').
Then, as usual, ' we may introduce the standard

components of the tensor operator T„, by

T-", „=g&u m(m m)II.~ &T~--~'

and all matrix elements (/tLM
I TP, ALM') can be

calculated by the Vfigner-Eckart theorem from re-
duced matrix elements

TABLE IV. Static quadrupole moments q
= &XLO(g)+P,(cosa, iPCLO) (a.u.).

y.LM|T;„"IALM &

=(2L+1)-~ 2&LI M m LM&&ALIIT», , IIAL&.

Method

SCF
CEPA

2.550
2.413

-1.544
-1.447

0

0.921
0 ~ 990

-0.669
-0.701

If we now define the standard polarizabilities by

tv. v' =( ) '' '"' '&AL IITrv, ~- IIAL&

arbitrary matrix elements of T are given by
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x f„„,„.„,&z,I.M(-M)'I'l"I -I')
x(ll'mm' ll"m +m') o.»

Nonzero contributions require E" even and

ll l' ~ l" & min(l+l', 2L).

The standard polarizabilities n», ,„are directly
connected with the mean polarizahilities (l" = 0)

and polarization anisotropies (l" e 0). Thus, for
the former, one finds

K», (AI. ) = (-) (2I, +&) ' g WI.M
I
7'„. (A~)

(21, +y)-&&2(21. y])-~~

The anisotropy for I. = 1 states is usually defined
as
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