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A self-consistent-field approximation is elnployed to treat bound states in spinor electrodynamics. The
proposed method avoids the classical self-interaction of bound quanta arising in variational approximations
based on coherent trial states. Relativistic Hartree-Pock equations are obtained and imphcations for the
calculation of atomic structures are discussed.

I

I. INTRODUCTION

gn recent yeax's VRr1RtlonRl RpploRches hRve fx'6-
quently been employed to treat the bound-state
problem in quantum field theory. -'- In pa, rticular
using a semiclassical variahonal approximation
Baxdeen et a/. ' investigated in great detail the
possibility of describing hadrons as bound states
in a strongly coupled field theory. As it turned
out, however, the quantum corrections to the
semiclassical treatment are large and can not be
treated economica, lly as a. perturbation in the
strong- coupling case. Therefore the applicability
of the approach of Bardeen et aE. seems to be re-
stricted to the weak-coupling regime.

In this paper we discuss a va, riational approach
to bound states in quantum electrodynamics (QED),
a weakly-coupled field theory. Vfe do this for two
reasons: firstly the variational approach to bound
states in QED is interesting because of its applica-
tions to atomic physics; secondly the experimental
and theoretical knowledge being available for QED
provides a test for variational approximations. In-
deed we find that the ansatz of Ba,rdeen et aE. which
is based on a coherent trial state is not appropriate
for the description of bound states in QED.

Exlstlng RtoIDlc-structux'6 cRlculRt1ons Rre
mainly based on relativistic self-consistent-field
(SCF) equationi". Although there have been great
improvements in the technique of handling these
equations during the last years it is stiLL an un-
solved problem how to incorporate magnetic inter-
actions and radiative effects in the self-consistent
procedure. " This question is of particular im-
portance in the case of heavy atoms where the
Coulomb repulsion of the electrons, their mag-
netic interactions, and radiative effects are all
of the same order of magnitude. It should be pos-
sible to answer this question by applying a SCF
approximation to the bound-state problen-. in QED.

The paper is organized Rs follows: in Sec. H we
present a variationa. l ansatz for bound states in.

QED and derive the corresponding relativistic
Hartree-Fock equations. In Sec. ID these are
applied to calculate the bound-state energy of
heliumlike iona with large nuclear charge S. The
calculation employs an expansion in powers of 1/
Z. In particular the order of magnitude of terms
arising in second-order perturbation theory is
discussed. This leads to general implications ft)r
the calculation of atomic structures which we con-
sider in Sec. V. Section IV deals with the varia, -
tional approach employed by Bardeen et ul. We
conclude with e, discussion of our reGults in Sec.
VI.-

[y"(i9„-e& „'"- eA„)—m ] tfr
=0,

t-lA„=ety„k~

(2.2a)

(2.2b)

The theory is quantized by imposing equal-time
commutation. relations on the field operators at
a fixed time which we take to be t=o. Adopting
the Gupta-Bleuler formalism for the quantization
of the vector field these commutation relations are

f P~ (0, x),(~(o,x')) = 5 ~5(%-% '), (2.3a}

[A„(o,-),A„(o, )]= g„„~(--) .
The Hamiltonian which generates the equations of
motion (2.2) is

(2.3b)

%6 will illustrate our variational approach to the
bound-state problem for quantum electrodynamics
in a time-independent external potential A„(x).
Starting from the Lagrangian in the Feynman
gRuge

&= —~B„A„8~A"+ P [y"(is„—eA„'"—eA„)—m] P,
(2.1}

the equations of motion are
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x —-,'A. A~+-,' ~;A.

+ g [—iy '8, + m + e y" 2'*+ e y"4„]$) .
(2.4)

~U (x)y p. (x) = d'~ V„(x)y'V.(x) =~„.,

d'xU„x yoV x =0 .
(2.5}

Our alnl is to describe the bound state of elec-
trons and positrons interacting with one another
and with the external potential A,(x). Physically
one expects that in the Hilbert space there exist
eigenstates of the Hamiltonian corresponding to
stable ground-state configurations and other states
characterized by complex expectation values of the
Hamiltonian and representing unstable excited
configurations. As we are unable to construct
these states explicity in a given Foek-space basis
we are forced to use some approximation which we
choose to be the self-consistent-field approxima-
tion. In addition we will neglect the interaction of
the electrons and positrons with the radiation field;
this implies that in our approximation excited
states are placed on. the same footing with ground
states.

The SCF approximation is frequently used in non-
relativistic quantum mechanics. ' There it means
the approximation of an N-electron wave function
Q(x„.. . , x„)by a single antisymmetrized product
of N orthogonal functions p,.(x,) (i =I, . . . , N),
whereas the most general form of the wave func-
tion is a linear combination of all n-fold products
of a complete orthonormal set of functions. The

P,.(x,.)'s are then determined by requiring them to
be a stationary point of the expectation value of
the Hamilton operator in the product state. This
ansatz for the wave function is based on the fol-
lowing physical assumption: the interaction of
the various bound quanta with one another and
with the external potential can be represented by
some self-consistent-field in which each con-
stituent moves independently of the others.

This procedure can be applied to quantum field
theory in a similar way. Let us consider a state
!N, M) corresponding to a configuration of N
electrons and M positrons. In the SCF picture
they are represented by N spinors U„(x)and M.pinors V„(x)which are positive and negative
energy solutions of the Dirac equation in the self-
consistent-field obeying the orthonormality rela-
tions

The bound state !N, M) can then be generated by
the creation operators

Bt = d'x x y'U„x

d'xV x x
(2.6)

~„!o&=n„!o&=o . (2 8)

For the state N, M) of N electrons and M posi-
trons we ean now write

!X,M& =!n„,,n„;m„.. . , I„&e!X(X,M)&,

n„.. . ,n„;m„.. . , rn„&=II . . .a„D„.. .D„!O&,Ny 8p flay tSgg

(2.9)

where ~A(N, M}) is a p. hysical photon state repre-
senting the interaction between electrons and
positrons. We assume this photon state to be
completely determined by the fermion quantum
numbers B~q. . . q vl~.

The next step of the variational procedure is to
ca1.culate the expectation va, lue of the Hamiltonian
in the trial state (2.9). To do this it is not nec-
essary to specify the photon state !A(xV, M)) in
terms of a given Fock-space basis. As we will
show it is possible in the chosen approximation to
reduce the expectation value of B to expectation
values of products of the fermion field operator.
In this way the dependence on the state !&(N,M))
disappears.

Integrating Eq. (2.2b) we obtain for the Hamil-
tonian

which satisfy the canonical anticommutation rela-
tions

(2.7)

To obtain the bound states in the SCF approxima-
tion the creation operators O'„,B~ have to operate
on a no-particle state 0) which represents the
va, cuum in the self-consistent-field a,nd which is
defined by

d'z --,'A„xA" x +-,'A.„xA" x + x -iy'e, +m+gy"A. '„" x x
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Assuming ~N, M) to represent an eigenstate of II we have

(N, M(i„(x)hr,M) =(N, Mls&(x)IN, M) =o. (2.11)

Expression (2.10) contains three terms involving time derivatives of the photon field. Because of Eq. (2.11)
only "off-diagonal" intermediate states contribute to the expectation values of these terms with respect to
~N, M) Th. erefore it is reasonable to neglect these contributions to the expectation value of K This, of
course, means to neglect contributions arising from the interaction of the bound quanta with the radiation
field. One thus obtains

2 3 3

&Ã, MlielÃ, M& &i(, MI f=d'*( ( )[-ie'e, em eee"A e'(x)]'t(x) e&
" ",-( (x)ye((x)( tx')Xe('tx')lÃM&.

(2.12)

The right-hand side of Eq. (2.12) does not depend on the photon state
~ A(N, M)) and can be evaluated using

Eqs. (2.8a) and (2.5)-(2.9). We assume the operator products occurring in Eq. (2.12) to be normal-ordered
with respect to a basis of spinors including U„(x),. . . , V (x). The result is

N

( (l(Ml t,it&(=ME ,f d'e t((x)[-iy' eem +eyeete (x)]tt„(x)
)=1

-Q f rp e(tx)[-i i ,ye+emyAe' (x)]eV, (x)
j=l

2 3 3

+—,— g [U„(x)y U (%)U„(x')y„U„(x')-.U (x)y U„(x)U„(x')y„U„(x')]

( .14)

—y f8y, +-m+ey"A'„*(x)+
4

y"
~

PU (x')y„U„(x')-gV„(x')y„V(x') V (x)
n~ m~ P m~

N 3 2 3

+g —y'y",—U„(x')y„V„(x')U„(x}—P —y y",V„(x')y„V„(x')
~ V„(x)=E„V„(x).

(2.15}

The eigenvalues E„,E appear as Lagrangian multipliers enforcing the normalization of the spinors. It

is easy to check that for every solution of Eqs. (2.14) and (2.15) the spinors U„(x)and V„(x)are ortho-
Nj

gonal to each other, i.e., the orthonormality relations (2.5) are fulfilled.
The obtained variational equations are relativistic Hartree-Fock equations: every particle moves in the

field generated by the external charge and all the other bound quanta; in addition exchange forces appear.
Equations (2.14) and (2.15) are similar to variational equations used for atomic-structure calculations. A

detailed comparison will be given in Sec. V.

+ g [V .(x)y" V„,(x) V. (x')y„V.,(x')- V„(x)y"V„.(x) V..(x )y„V„,(x )]
9 l

-2 [U„{x)y"U„(x)V„.(xi)y„V„(x')—U„(x)y"V„(x)V„,(x')y„U„(x')]~
.

(2.13)
The spinors U„(x)and V„(x)are now determined by requiring them to form a stationary point of the func-
tional (N, M[H k, M). This leads to the variational equations

2 N

y -zy'5 +m+ey"A'," (x)+ y", I QU„(x')y„U„(x')-gV (x')y&V (x')
~

U„(x)

e' & 'x' 2 3

y y" II, U„(x')y]tU„,(x') U„(x)+g —y y", V' (x')y& U„(x')~V„(x) =E„U„(x),
2

III. HELIUMLIKE IONS KITH LARGE Z

In this section we consider a simple application of the obtained Hartree-Fock equations. %e will cal-
culate relativistic corrections io the ground-state energy of heliumlike ions with large nuclear charge Z,
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For large Z we can use the familiar expansion in powers of 1/Z. ' The results of this calculation will lead
us to some-general conclusions concerning the calculation of atomic structures which will be discussed in
Sec. V. Choosing N =2, M =0, A'" (x) =(-Ze/4)]r, 0) we obtain from Eqs. (2.12) (c( =e /4)]', r = ~x[)

3, )' (y(B(+m- y + —(Zx)y" *, ()„(x')y)U„(x'))(}„(x)
3 r

——(Z())y'y"I, rr„(x') yV)„( x))rr„(x)=Z„(((x), (S.)x)

y l(-(y'X, + ~) — y ~ —Ãn)y" -""-, (((x )„y'((()x)() (x)

——(z())y y"(f, (1 (x')y„U„(x'))U„(x)=E„U„(x).(3.(b)

The electron-electron interaction is suppressed by 1/Z with respect to the electron-nucleus interaction
and one can therefore solve Eqs. (3.1) using perturbation theory. Wave functions and eigenvalues are ex-
panded in powers of 1/Z (3 =1,2). :

U„(X)= y&;&(x) + (1/Z) y&,"(x)+ (I/Z)'y&;)(x) + ~ ~ ~,

(0) + (I/Z)&(1)y (1/Z)3&(3)+ ~ ~ ~

ng

(3.2)

Inserting the expansion (3.2) into Eq. (3.1a) one obtains up to order (1/Z)3:

[y'(- i y'S, +333) Zo[/-r - e&;)] y&,
') = 0, (3.3a)

[y'(-iy'F), +m) Za/r-—0,"] (]~[,)"+(Ze) yy0"I, (I))[3'y]((I)" (t)t"-(Z~)y0y"
I&

y p3"y](p&' I

d s
~x -x'( (x -x')

x y(0) e(1)y(0) Q (3 3b)

d'x' d
[y ( (y x y)x) g(x/y x()] (( &y(3(x}y y ( (( &y ((& (()+(p())y y&

* . ( ( &y (()+( ( )y (&(&)(()

(gx)yy&( (()y(() (() gx)yyl( (()y ((&~(()y ((&)(() x(&(() x(&(()—0

(3.3c)

d 3gp (0) 0p(0) (3.4a)

(3.4b)

interchanging the indices 1 and 2 in Eqs. (3.3)
yields the analogous equations which follow from
Eq. (3.1b)'. The orthonormality relations (2.5)
imply up to order (1/Z)'

wave function with spin up and down for p[1

(Ref. 4):

(2mZo, )3/3 1+'y 1/3

g 4v 2I'(1 + 2y)

x(2mZo. r))' 'e " ~

(3.4c)

In zeroth order Eqs. (3.1) reduce to the Dirac
equation in a Coulomb potential. As we want to
calculate the ground-state energy of heliumlike
ions we have to choose the hydrogen ground-state

1-y cos3
gH

. 1-y .singe' @

ZQ
(3.5)
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Coul + magn foul magfi (3.8a)

x(2mzo. r))' 'e

0

x i —— ~ singe '@, , y=[1 —(Za)']'~' ~

ZN

d'xd'~'—
y

(o) up(o)@ (o) @(o)
X —X

= —',m(zo. )'+ —, (1 —In2)m(Z{). ) +O((zo. ) },
(3.8b)

main Z
d +d +

~ (0) i~(0)~ (0) ~(o)
X —X

1-y-z cos3
ZQ =',—m (Zn)'+ O((Zo. )'}, (3.8c)

The corresponding eigenvalues are
( o) ( o) [1 (Z }2]

1/2

=m [1 ——,
' (Zo. )' - —.

' (Zo. )'+ O((zn)'}]. (3.6)

From Eqs. (3.3) one obtains for the first-order
correction of the eigenvalues

( j.) (~)
1

d /deecoo) Z
& & ~(o) o~(o)@(o) o~(o)

X—

d" d'x'—
X —X

(3.8d)

(3.8e)

d' 4'
(~ (o) u~(o) ~ (o) ~(o)

x -x'

y
(o) u y(o) y

(o) y(o) )1 Xy, 2

(3 7)

The integral (3.7) may be split into four parts: a
direct term and an exchange'term both of which
contain a Coulomb and a magnetic contribution.
Using the wave functions (3.5) we obtain after
some algebra

For Z & I/n the dominant contribution is given, of
course, by the Coulomb repulsion of the electrons;
this is the only part which contributes to the non-
relativistic binding energy. 'The Coulomb inter-
action as well as the magnetic interaction yield a
relativistic correction proportional to (Z(r)' and
one should note that all contributions are of the
same order of magnitude.

From Eqs. (2.13), (3.1}, (3.2), (3.6), and (3.8)
we obtain for the total ground-state energy

= m(2 —(Z{))'[I—» + O(1/Z ')] ——,
' (Zo)'[I —(5 - 3 ln2) —+ O(1/Z ') ]+0 ((Zo)'}].1

(3.9)

This result is in good agreement with calcula-
tions using the Breit equation. The two ap-
proaches differ only on the term of order (Zn)
(1/Z). The Breit equation yields the coefficient
0.90 (Ref. 7) whereas Eq. (3.9) gives —,'(5 —3 ln2)
= 0.73.

We now discuss the order of magnitude of the
corrections in second-order perturbation theory.
In accordance with Eq. (3.4b} we choose the func-
tions P', "orthogonal to p&"). Using Eqs. (3.3} this
leads to

I ]
(2) Z

. -

[y (o) u~(o)~ (o) ~(1) + @(o) u~(x) +~ (x) u ~(o)y(o) ~(o)
X —X

~ (o) ~u( )o~ (o) ~(&) (~ (o) u~(&) +p
(&) up(o))p (o) p(o)] (3.10)



18 VARIATIONAI. APPROACH TO BOUND STATES IN QUANTUM. . . &789

Let {)I)„].denote those solutions of Eq. (3.3a) with
positive and negative eigenvalues A.„which are
orthogonal to PI". The functions p, ') may then
be expressed as linear combinations of the g„'s
where one has to sum over the discrete as well
as the continuous part of the spectrum. From
Eq. (3.3b), we obtain

(I)(,"(X)=Q c,„({„(mZax),

3 3; pZls d xd x g (p) )) {p)— (p)c(n e(0) [x~ )fz) (0 2 Y 4'2 $n Y)) $1

8 3 -I+A d gd x ~
—(p) ~ (p)~ (0)

y(0)y)(p(0)g y y(0))

(3.11)

Similar to Eqs. (3.8) one can split the functions
(t)(') into two parts p(') '"' and (I)(') ""one of
which is determined by the Coulomb interaction
while the other one is generated by the magnetic
interaction. For &,

' we then obtain four contribu-
tions: the Coulomb part with the Coulomb correc-
tion of the wave functions p(') '"' (e(') '"' ~ '"'}, the
Coulomb part with the magnetic wave-function
corrections p({' ""(eP "'"' ""), the magnetic
part with (I)

' '"' (e(,' "" '"') and the magnetic
fy) magn I (2)magn magn qpa wl

For positive eigenvalues ~„the lower compo-
nents of the spinors g„aresuppressed by Zn with
respect to the upper components, and the dif-
ference e,(') —)(„is of the order m (Z(),)', for
negative g„the upper components are smaller
than the lower components by Zz and the differ-
ence g,"—A„is of the order yg. Using these pro-
perties of the wave functions' one easily finds that
the four contributions to &,

' defined above are of
the following order of magnitude:

)c ) 'c ) =O((Zn)a} e(2) cou), )))4()"=O((Ze) },
nlll ll

O((Z )4) (2) () gtl —O((Z )8}

(3.12)

The magnitude of the first and the third terms are
as one may have expected. The contribution of the
last term, a second-order magnetic correction,
is smaller than the leading radiative correction
yielding the Lamb shift which is of order o, (Zo()4 inc(
Therefote if one neglects radiative corrections
one can calculate the ground-state energy sys-
tematically as a power series in Z& only up

IV. COHERENT-PHOTON TRIAL STATE

The variational approach to the bound-state
problem in a strongly. coupled field theory .has
been investigated in great detail by Bardeen
qt a). The method described in Sec. II is simi-
lar to the procedure developed by these authors.
There is, however, an essential difference. In
Sec. II we avoided specifying the photon part of
the trial state and preferred to reduce the prob-
lem to a self-interaction of the fermions. By way,
of contrast Bardeen et al. assume the quanta of
the field producing the binding to be in a coherent
state. As we will show this ansatz yields varia-
tional equations essentially different from Eqs.
(2.14) and (2.15).

Let us expand the photon field in terms of plane
waves

j.
A (x)= )3~,

d'4
(2~k()'~'

3

ck, A. e k, A e'

+at(k, )()e „*(R,)()e '" "],
(4.1)

where

e„*(k,)(.)~)'(k, )(') = 5,„,;

the operators a(k, )()and a') $, ){) satisfy canonical
commutation relations

(4.2)

[a(k, )(.},at(K;)(')] = -g„~,6(k —k') . (4.3)

Then the photon vacuum state ~0) is characterized
by

a(k, )).}~0)=0.
A coherent-photon state, parametrized by a
classical field a„(X),is defined as

la) = exp(i a'xa" (%)A„(&))(0) .

(4.4)

(4.5)

Requiring ~a) to be a physical photon state, i.e.,

to order (Z(x)4, and second-order magnetic cor-
rections have no meaning as was pointed out
by Bethe and Salpeter. ' However, the second
term in Eq. (3.12) shows that one is not allowed
to neglect the magnetic corrections to the wave
functions completely because these yield contri-
butions to the. energy of order o'(Zo)'. Further
it is interesting to note that the contribution of
wave functions with negative ~„tp &~'~ is of order
o, '(Zn}4 which again is negligible compared to
radiative corrections.
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8„A"[' ](x)l a) =0 (4.6) ~
N, M; a) = ~n„.. . , n„;rn„.. . , m „)(3)

~ a}, (4.8)

8„au(%)=0. (4.V)

The ansatz of Bardeen et aI. for a bound state
of N electrons and M positrons is given by

yields the Lorentz condition for the field a„(x) where the fermionic part of the trial state is un-
changed with respect to Eq. (2.9).

The expectation value of the normal-ordered
Hamiltonian (2.4) can easily be calculated. It is
a functional of the spinors U„(%),V„(x),and the
vector field a„(%}:

N

(NM; a] H] iV, M; a) = d' x('S, a„.('x-)S'a'()() + P U„(x)[iy .S; +-m+'ey "4'„"()()+ey"a, (R)] rr (x)„
i= 1

v (x)[—(y'8&+m+ ey~A"(x)+ey"a„(x)])'„,(x)) . (4.9)

Requiring the expectation value of the Hamiltonian to be a minimum with respect to all variations leaving
the norm of the spinors invariant we obtain the variational equations

y [—jy 8(+ yn+ ey"A'„"(x)+eyuau (x)]U„(x)=E„U„.(R),

y [ iy'8—;+m+eyuA( (x)+eyua (jf)]V .(x) =E„.V .(x)

(4.10a)

(4.10b)

-~a, (X) = g eU. (x)y„U„,(x) —p eV„,(x)y„v.,(x).
i=1 j=l

(4.10c)

Integrating Eq. (4.10c) yields

2 3 / Af

i= 1 j=l
(4.11)

2 d3 i N N

i=l j=l
(4.12)

In contrast to Eqs. (2.14) and (2.15) the variational
equations (4.1'1) and (4.12) do not contain exchange
terms. In some cases this can be a reasonable ap-
proximation. In the same way the Fock equations
are often replaced by Hartree's equations in non-
relativistic quantum mechanics. Equations (4.11}
and (4.12), however, do not just neglect exchange
forces, in addition they give rise to a classical
self-interaction of the bound fermions which is
not observed in nature. This becomes most ob-
vious in the case of one single electronbound in an
external field. Choosing N = 1, M =0 Eq. (4.11)
reads

~Ql

+ m+ ~yP~ex x

(4.13)

For an external Coulomb field, for instance, Eq.
(4.13}does not even yield the correct nonrela-
tivistic binding energies.

The problem of a classical self-interation of the
matter-field quanta is typical for the treatment of
bound states in field theory. It was first discussed
in 1927 and 1928 by Jordan and Klein" and by
Hartree. " Hartree simply omitted the self-
coupling contributions; Jordan and Klein eliminated
these terms by a normal-ordering prescription.

Because of the appearance of the classical self-
interaction terms we conclude that coherent trial
states are not appropriate for the des.cription of
bound states in weakly couplied field theories.

V. ATOMIC4TRUCTURE CALCULATIONS

Restricting ourselves to the case of K electrons
moving in the Coulomb potential of a nucleus Eqs.
(2.14) yield
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d3 g N
y' —iy'8, + m- +ny", U„x'y„U„x'U„x

al

+ci) 0'c~) .
2 ~i~

(5.2)

@[,&'.=(y'y)«& and p«&. =y'&,.
&

act on the spinor
$„(x&)of the Slater determinant.

Recent relativistic calculations of atomic struc-.
tures are based on equations which differ from
E[js. (5.1) in two respects. The first difference
concerns a simplification adopted for actual cal-
culations. Instead of the unrestricted Hartree-
Fock scheme yielding e(luations of the type (5.1)
one uses a restricted Hartree-Fock scheme, i.e.,
one fixes the angular dependence of the spinors in
the Slater determinant and solves variational equa-
tions for the radial wave functions only. The
second difference lies in the choice of the elec-
tron-electron interaction Hamiltonian. For the
magnetic part the Breit-Hamiltonian is employed
so that the total interaction between two electrons
i and j is given by

~Coul + IImagn+ ~retij i.I jj (5.3a)

H;&'"' = n/ / x; —%& /,

~ggn ~ 0
i j

(5.3c)

(5.3d)

H, , "' and H,.&'~ corresp'ond to the electrostatic and
the magnetostatic interaction between the elec-
trons; H'. &t represents the retardation effect of

E[luations (5.1) are similar to relativistic Hartree
Fock equations used for atomic-structure calcula-
tions." Indeed they follow from the variational
principle by choosing for the wave function a
Slater determinant of Dirac spinors and by as-
suming the Hamilton operator of the N-electron
system to be

gg'&I—in, &V .&+)9 . m ——[(i) (i) (i)
i el i I

tbe electromagnetic interaction to leading order
in an expansion in powers of Zu. The correct way
to compute relativistic binding energies is assumed
to be the following: firstly wave functions and
eigenvalues are determined from the variational
equations containing the Coulomb interaction
H,.&'"' only; in a second step the expectation values
of II",&'~ and II;'~" are calculated to obtain the total
energy. In this way the Breit interaction is treated
in first-order perturbation theo'ry only. To include
it in the self-consistent procedure is claimed to
be incorrect. '"

By way of contrast E[ls. (5.1) neglect the re-
tardation part of the interaction and include the
magnetic part in the self-consistent procedure.
The absence of a retardation term is not too sur-
prising. The SCF method is a static approxima-
tion and applying it to field theory should only
yield the static part of the interaction. In the SCF
approximation for the wave function employing the
static part of H, &

only could even yield a better
estimate of binding energies than using the total
Hamiltonian being inconsistent with the physical
picture of the approximation. The question which
interaction Hamiltonian shouM be used can only be
answered by a numerical analysis.

The rule not to include the magnetic interaction
in the self-consistent procedure is generally justi-
fied by the work of Bethe and Salpeter who observed
that second-order magnetic corrections are incon-
sistent w'ith a perturbation theory based on quantum
electrodynamics. ' This is in agreement with the
result of Sec. III showing second-order magnetic
contributions to be of order c['(Zn)', calculcating
binding energies systematically as power series
in Za these corrections have no meaning when
radiative effects are neglected. In a numerical
calculation, however, there is no reason —except
for simplicity —to omit higher-order magnetic cor-
rections because even in lowest order the binding
energies are infinite power series in ZQ, . In addi-
tion, as shown in Sec. III, n-ot to include the mag-
netic interaction in the calculation of the wave func-
tions means to neglect contributions to the energy
of order n'(Zo, )' which can be large compared to
radiative corrections which are of order n(Z(&.)'inn.
Vfe therefore conclude that one has to consider the
magnetic interaction in the self-consistent pro-
cedure as is the case in Eqs. (5.1).
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VI. DISCUSSION

%e have considered variational approximations to
the bound state problem in quantum electrodynam-
ics. The variational approach based on a coherent-
photon trial state is not appropriate because it
gives rise to an unphysical classical self-interac-
tion of the bound constituents. The SCF approxima-
tion presented in Sec. Q avoids this problem and
takes exchange forces into account.

The obtained relativistic SCF equations include
the magnetic interaction of the bound electrons .

which is not the ease in Hartree-Fock equations
used so far in atomic-structure calculations.
This leads to magnetic corrections of the wave
functions. The calculation of the ground-state
energy of heliumlike ions demonstrates the im-
portance of these corrections as emphasized in
Sec. V.

For very heavy atoms radiative effects are as

important as the electro- and magnetostatic inter-
actions. It remains to show' how to include radia-
tive effects in the self-consistent procedure. This
problem ean be solved using more complicated
techniques. Dashen, Hasslaeher, and Neveu have
obtained bound-state equations of Hartree-Fock
type in a two-dimensional-model field theory em-
ploying functional integration methods. " In a
similar way the functional integral can be used
to derive equations describing bound states in
quantum electrodynamics which include radiative
effects." The results will be presented in a forth-
coming publication.
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