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Geometrical and computational interpretations are offered for configuration-mixed c(1s 2s'2p ) +.
P(1s 2p + ) (where d = 0 or 2) valence states based on new profiles of I.-shell mixing coefficients,
correlation energies, and pair-function angular distributions for both ground and excited states. When viewed
for species having the same degree of ionization Z-g, the profiles constructed for the internal and semi-
internal "nondynamical" correlation energies computed by Sinanoglu's "non-closed-shell -many-electron
theory" are found to display a striking, approximate particle-hole symmetry with respect to total L-shell
occupancy. Near-degeneracy-type correlation energy for 'P and 'D levels of C-like atoms becomes exactly
degenerate when the same radial functions are used for both states. The mixing structure for all I.-shell
states is described accurately by an 1V-electron operator A(N) = X;„.(A, —A,.) with single-particle SO(4)
generators 3, like the Runge-Lenz vector. A(N) represents an approximate "correlation invariant" for I.-
shell mixings.

I. INTRODUCTION

Most atomic and molecular structure theory is
explained first with a single configuration for
states. Accurate energies and wave functions be-
yond Hartree-Fock (HF) for the states, however,
require electron correlation effects due to Cou-
lc mb repulsions. ' Although correlation describes
a relatively small part of the total energy, it be-
comes crucial for explaining more sensitive probes
of the many-electron wave function such as ac-
curate radiative transition probabilities, ' electron
aff inities, ' bond energies, hyperf ine interactions, '
photoionization and inner-shell processes including
multiple excitations, ' "' ' and scattering re-
sonances, to name just a few. Particularly strong
correlations may prevail when near-degeneracy
interactions occur for orbital configurations in
either ground or excited states, causing a severe
breakdown of the single-configuration classifica-
tion for states. %hen this happens the usual per-
turbation approach becomes inadequate, and states
must be classified more or less empirically by
the relative signs and magnitudes of a few, domi-
nant mixing coefficients in multiconfigurational
states computed by direct energy matrix diagon-
alization. Near-degeneracy mixings have been
described for molecular diatomic valence bind-
ing, ~ doubly excited atoms including electron af-
finities, "and excited states of polyenes, " illus-
trating only part of a more widespread and com-
plicated phenomenon.

It would yrove extremely useful for these prob-
lems to have at one's disposal an alternate method
for generating the dominant configuration mixings
of states, thereby avoiding the usual detailed,

direct energy computation. Such a procedure
might involve, say, an approximate "configura-
tion-mixing invariant" constructed from Lie al-
gebra generators for single-particle states taking
into account physical attributes of only the cor-
relation part ef the problem, rather than total
energies. In this way we would have a method for
classifying the actual configuration-mixed states
beyond the usual sets of quantum numbers pro-
vided by the exact symmetries for rotations, spin,
parity, and molecular point groups. Even rough
estimates of coefficients by this indirect method
would be valuable for interpreting interference
effects in computed transition matrix elements
(propensity rules), or as a convenient starting
point for more accurate energies by perturbation
approaches.

Methods of this type. involving SO(4) Lie algebras
for atomic orbitals have already been described
for two electrons in hydrogenic valence orbitals'~"
and Hydberg configurations, '0*" channel couplings
occurring for actual He isoelectronie series in-
cluding new SU(3)-type quantum numbers for radia-
tive and autoionization transitions, """"and
very generally for angular correlations of an iso-
lated atomic electron pair. " Some of the channel
aspects" of these problems are analogous to the
extremely useful angular momentum decoupling
schemes for atom-diatom collisions, ' and have
brought substantial new order and insight to an
otherwise complicated spectrum. Can similar
methods be developed for many-electron (i.e.,
more than 2) systems? The present paper shows
for the first time how to do this for the long-
standing problem of 2s'2P —2p "near-degeneracy
valence mixings for first row atoms and ions.
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Along the way we uncover some fascinating new
aspects of electron correlation including previously
unnoticed accidental degeneracies for different
states. The general nature of the physical origins
for these new results may have strong implications
for future classifications of correlation in atoms
and molecules, as well as existing problems for
nonergodicity" of correlations in classical sys-
tems.

Previous studies"" of L-shell mixings by way
of mathematically coupled SO(4) representations
of states failed to identify the proper configuration
mixings except by direct energy calculation. Here,
we successfully describe accurate mixing coef-
ficients for all L-shell states using a many-elec-
tron "correlation invariant" constructed with
single-particle SO(4} generators in a pairwise
fashion. In order to view the significance of this
new result with a proper perspective we offer
first, in Sec. II, a detailed numerical analysis
of L-shell configuration mixing and correlation
energies. In Sec. III we then explain these ob-
served trends with more physical terms involving
antisymmetry and coupled-pair function angular
distributions. The group-theoretical description
of states then follows in Sec. IV.

Near-degeneracy-type mixing of configurations
1s'2s'2P and 1s'2P~" is cpmputatipnally well
established. " The term "near-degeneracy" refers
to an exact hydrogenic degeneracy of the two con-
figurations in the nonrelativistic high-Z limit. "
For all values of Z the 2s'-2p' correlation sub-
stantially improves the energy for the lower state.
Sinanoglu' s "non-closed-shell many-electron
theory" (NCMET) provides mathematically for
distinguishing the different types of pair correla-
tipns in thepretical cpmputatipns beypnd HF. '2

The theory casts the exact nonrelativistic wave
function and energy into a sum of terms

NR 'HF+XINT Xp+XVt

+E[gT +E~+Ep

representing separate contributions from HF plus
"internal" plus "semi-internal" plus "external"
pair correlations. Both E,~T and E~ are "non-
dynamical" in the sense that they display a strong
state dependence with nuclear charge (Z} and
number of electrons (1U). E~ on the other hand
is "dynamical, "representing the short-range por-
tion of the pair-interaction potential which changes
slowly between different states. The near-de-
generacy mixing constitutes the major portion of
the internal correlation, and we use these terms
interchangeably. Luken and Sinanpglu" have pro-

vided tables of accurate nondynamical "charge"
wave functions and energies of many L-shell
states, based on restricted HF as the initial start-
ing point.

In view of the rather extensive literature for the
internal near-degeneracy correlation, what more
remains to be explained? Our present analysis
brings to light several new results and interpre-
tations:

(i) Because 2s'-2P' correlation is nondynamical
it has usually been described" " "for either
fixed Z, fixed N, or for ground states on a state-
by-state format. We construct new diagrams which
show an overall configuration-mixing "profile"
for all L-shell states having the same degree of
ionization, g =-Z —N. With this new perspective
we discover some interesting "accidental" de-
generacies for different nondynamical correlation
energies for iso-q' species. Moreover, E~ and
E»T are found to display similar changes betueen
states, indicating that these correlations may not
be as independent as is generally thought. The
results may have implications for a more general
version of NCMET. " We show that E,» has an
exact degeneracy for 'I' and 'D states of the C-
].ike 1s'2s'2P' configuration when the same re-
stricted basis is used to describe both states.
Splitting of this "correlation degeneracy" is found
to be small for actual states, and originates with
general considerations of antisymmetry and pair-
wise additive potential, rather than any specific
details of Coulomb potentials.

(ii) New computations of similar profiles are
made for internal correlation energies of doubly
excited states, taking into account a Feshbach
projection" for continuum stability. Multiply
excited resonances are known for collisional ex-
citations, '~' beam-foil spectra, "and radiative
double excitations at low Z.e ' "Similar states
would also occur for direct inner-shell ionization
processes including possible simultaneous shake-
up. ~' While accurate correlation energies are
not yet available for multiply excited L-shell
states, our present results show that the internal
correlation may play a significant role for sta-
bility of anions. -

(iii) Just as 2s-2P interaction accounts for sim-
ple molecular bond angles, 2s'-2p mixing de-
scribes a relative angular (i.e., 8») hybridization
for electron pair correlation in isolated atoms. "
We construct a density function p(e») for pair
correlation by first subtracting out "exclusion
effects" due to antisymmetry exchange with other,
noncorrelating electrons. The remaining dis-
tribution function shows that the two correlating
electrons are squeezed closer together as ad-
ditional valence electrons fill up the HF spin-
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TApLK I. Term symbols and phase convention for 2s 2p and 2p states of the seven I.-shell. cases, neglecting the
(ls )i9 core. For notation, (ss01) represents a normalized Slater determinant for the product wave function
2s(l i)2 (r2)2po(r3)2pi(r4) +i~2+3+4 ~

Case Term 2s 2p 2p"

(ss)

(ssl)

(ss01)

1~ [(-11)-(00)-(-11)]
vS

—1~ [(-111)+(001)]
v2

(-1011)

's ~ [(ss —11)—(ss00)-(ss —' ll)]
vS ~ [(-T0Oa)-(—10Of. )—(-1—Tlg]

W3

(ssll) —(001T)

Zpo [(ss —111)+(ss001)]
W2

(-10011)

[(ss —1001)-(ss—1001)-(ss—1—111)]v3 (-1—10011)

orbital sea. Further "geometrical" interpreta-
tions are provided by the SO(4) model in Sec. IV.

II. NUMERICAL ANALYSIS OF L-SHELL MIXINGS

A. 2 X 2 matrix representation

For each I., 8 symmetry the wave functions for
1s 2s'2p and Is~2p "are designated Q~ and ps,
respectively. Only filled (d =2) or vacant (d =0)
E shells will be considered. The near-degeneracy
mixings are described by a mixed wave function

4=&4~+Pks

with coefficients normalized by a'+ P' =1. Due

to symmetry constraints only 7 out of 38 possible
L-shell valence terms can exhibit this 2s'-2P'
correlation. An important part of our analysis
(Secs. III and IV) will be to derive the mixing co-
efficients n and P by methods avoiding direct en-
ergy computations. In order to compare these
different approaches in a consistent fashion we
herewith adopt the specific phase convention for
states displayed in Table I. Energy matrix ele-
ments E&, &~, and E» have been described with
the usual radial integrals'-' in several
sources. ' ' '" We can reexpress those results
in a concise fa, shion here for the configuration
mixings by means of the combinations

and

E„+Es=2I(2s) +2(m +1)I(2p) +F0(2s, 2s) +2mFO(2s, 2p) —m G,(2s, 2p) +(m'+m +1)F (2p, 2p)

+110+10m —Sm' —2I (I.+1) —12S(S+1)}F,(2P, 2P) +d[2I(ls) +F0(ls, 1s) +2F (1s, 2s)

+2(m +1)F,(ls, 2p) —G,(1s, 2s) —(m +1)G,(1s, 2p)],

E„-Es = 2 I(2s) —2I(2p) + F (2s, 2s) + 2m FD(2s, 2p) —m G,(2s, 2p) —(2m + 1)F (2p, 2p) + 10(m —1)F (2p, 2p)

+ d [2FO(ls, 2s) —G (1s, 2s) —2FO(ls, 2p) + G,(ls, 2p) j.

The terms in square brackets vanish when the K
shell is empty. The off-diagonal energy is given
by

other excited states of the same symmetry, and
are not well described by this approximation. The
model yields the lower energy (E) directly as

E» = —vevG, (2s, 2p) (4) 2E = E„+Es —[(E~ —Es)' +4E„s]'~,
with appropriate values of m displayed in Table I.

Only the lower-energy state will be described
for each case. Upper roots tend to interact with

depending generally on all three parameters E»,
&&+E» and &~ —EJ3. The configuration mixing
coefficients on the other hand are determined by
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only two of the parameters in the ratio

ti =(E~ —Es)/2E~s. (6).

INT
-EAB ( l /~) 1 (8)

representing the energy lowering E —E„for the
two-state model. Equation (8) continues to apply
for wave functions containing additional configura-
tions beyond P„and Qs chosen according to NCMET
constraints. The mixing ratio (P/a) does not
change much when going from p to a larger con-
figuration basis. Valence states for all other L-
shell terms not contained in Table I are described
by single configurations, and therefore have E,»
=0. McKoy and Sinanoglu"'" have described E»T
for ground states. The present analysis will take
a more general view of things, treating both
ground states (cases 1-3) and excited states (cases
4-'I) on the same footing for each degree of ioniza-
tion g'.

B. Filled K-shell states

Figure 1 shows the characteristic "profile" of
the mixing coefficient u for 1s'2s'2P case by case
across the first row. Here for neutrals cases
I-'7 represent Be('S), B('Po), C('P), C('S), C('D),
N('P ), and 0('S), respectively. These values
were computed from tables of configurational wave
functions in Ref. 2V. Other calculations" for

I.OO

with g positive in our phase convention for states.
Consequently o. and P always have the same phase
for the lower state, with their ratio given by

(0/~) = -n+(I +n')" (I)
The resulting configuration mixing is "weak" if
g-~, so that P-0. The strongest possible mix-
ing for the lower state would occur when g =0, in
which case n = P.

The near-degeneracy. correlation energy con-
tribution to E,NT is given generally as

various members of the profile yield similar val-
ues. The fairly sharp changes occurring for n
between states illustrate the "nondynamical" as'-
pect of internal correlation. The profile remains
fairly stable with respect to degree of ionization,
represented here by the notation A' (p = Z —N
= —1, 0, 2, . . .). Values for finite q & 0 have been
omitted from Fig. 1 for greater clarity, as they
all lie between the curves for A and A". At high
Z, A" describes mixings for the Coulomb re-
pulsion operator

in a hydrogenic basis. " The mixings become
stronger at low Z because of a larger 2s, 2P radial
overlap for HF orbitals in comparison to hydro-
genic overlap (cf. Sec. III). A stronger radial
overlap enhances the possibility for angular cor-
relation of electrons, thereby giving rise to more
2P' character in the wave function.

Figure 2 shows the profiles of E»T for anion,
neutral, and positive ions. For consistency be-
tween different cases we have adapted all of these
values from Ref. 2'V. For point of reference, the
four values of EI» at case 3 represent (Is'2s'2p')'P
states of 8, C, N' and 0". The nondynamical
behavior of the correlation is clearly evident, al-
though the overall shape of different profiles re-
mains fairly stable, with increasing values of Z.
The hydrogenic theory" predicts a linear depen-
dence for E, at high Z, with -E, /Z given by
0.32, 0.19, 0.08, 0.33, 0.08, 0.15, and 0.20 eV,
respectively, for the cases 1-7.

C. Multiply excited states
r

Similar profiles are now computed for 2s'2P
doubly excited configurations. Although energies

A q

A'
I-
K

UJ -2

A

A+

0.95 I I I I I I I

I 2 3 4 5 6 7
CASE

FIG. 1. Mixing profile for states e(1s 2s22s )
+ P (1s22p~ 2). Values of 0. for neutrals (A) are adapted
from NCMET charge-wave functions of Ref. 27. The
hydrogenic limit (A' ") is from Bef. 21(c). Table I and
the text describe term symbols for cases.

I I I I I I

2 3 4 5 6 7
CASE

FIG. 2. Internal (near-. degeneracy) correlation en-
ergy profiles for 1s22s 2p iso-q species, q

=—Z-N,
constructed from NCMET energy tables of Ref. 27.
High Z values are described in the text.
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are available for many two- and three-electron
species, '' there has been no systematic treat-
ment of correlation energies of all the multiply
excited I,-shell states at a level comparable to the
NCMET results for ground and valence excited
states. This is partly due to the fact that cases
1-V are now autoionizing resonances embedded in
high-energy single- and double-ionization con-
tinua, and their computed wave functions suffer
the usual stability problems. Chacon et al."have
computed hydrogenic Coulomb repulsion mixings,
but that approach fails to recognize the different
changes for 2s and 2P at low Z. Therefore, in
order to provide better estimates of the near-de-
generacy correlation we have determined anion,
neutral, and singly charged states variationally.
Values of the multiconfigurational energy E were
optimized with a restricted radial basis including
at first one STO(n=2) per orbital. The internal
correlation energy was then computed as the dif-
fer ence E»T =E —E„. This value does not change
significantly when E and E& are optimized sep-
arately. In order to prevent a collapse of the 2s
orbital exponent, and at the same time to effect
an approximate Feshbach projection" against the
single-ionization continuum, we Schmidt-ortho-
gonalized the 2s orbital to an unscreened hydro-
genic 1s orbital for each Z. This procedure gives
an exact Feshbach projection for case 1 (i.e.,
2s'-1s+e ), but it becomes more arbitrary for
cases 2-V in view of possible screening for the
unoccupied ls orbital. Values of the total energy
are sensitive to this screening, and therefore have
uncertain accuracy. E,NT however, is found to
vary only several percent over large changes in
1s screening, and should provide more reasonable
estimates for the internal correlation. Further
refinement of the radial functions is not justified
here.

The internal correlation is largely responsible
for binding of the doubly excited 2s' state of H
relati've to the threshold for H(n =2) +e at 10.20
eV. A sing]. e configuration approximation for 2s'
gives 10.34 eV, just above threshold. The con-
figuration-mixed state (P) moves below threshold
to 9.62 eV, closer to the experimental re-
sonance "at 9.56 eV (width=0. 04 eV). A third-
order Z-expansion formula for the multiconfigura-
tional Hartree-Fock energy" yi elds 9.84 eV.
Most of the total correlation energy can be at-
tributed to the 2s'-2P' interaction. Similar, strong
mixing effects for two electrons are found for
higher she11s" where internal correlation domi-
nates because of large separations between elec-
trons. For He we find the (2s'2P)'P' state at
58.2 eV, a full 1 eV above experiment and more
accurate theory. ' ' " Part of this discrepancy is

0.9—

0.8—

I 2 5 4 5 6 7
CASE

FIG. 3. Mixing profile computed for e(2s 2p )
+ p (2p~' ) doubly excited states for neutrals (A) and
hydrogenic limit (A "). Curve B shows the Coulomb
repulsion mixing profile when the same radial function
is used for 2g and 2p, illustrating strong radial
overlap.

caused by our limited basis and the unscreened
1s orbital. To illustrate this effect more clearly,
we note that our calculation becomes capable of
reproducing the experimental value ' 57.2 eV if
we use an effective 1s orbital exponent Z' =1.5
instead of the unscreened value Z' =2. However,
our calculations for E»T purposely omitted the
other types of correlation, E~ and E~, which
become more important for anion binding as N
increases. '+

Mixing profiles for a are displayed in Fig. 3.
Those for E»T are shown separately in Fig. 4.
For reference, the anion profile reads H ('S),
He ('P'), Li ('P, '8, 'D), Be ('P'), and B ('8) from
left to right. The effect of the empty K shell is to
strengthen the 2s'-2P' correlation. This is illus-
trated by a stronger linear dependence for E»T
in the high-Z hydrogenic limit, where we find
—E,„T/Z given by O.V5, 0.41, 0.1V, 0.60, 0.1V,
0.2V, and 0.33 eV for cases 1-V, respectively.

I

I
'I I

/

I I
I I

I I I i I I I

I 2 5 4 5 6 7
CASE

FIG. 4. Internal (near-degeneracy) correlation
energy profiles computed for doubly excited 2p 2p
states. Eiigh Z values are described in the text.
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These values are roughly twice those appearing
in Sec. IIB for the filled K shell.

The hydrogenic Coulomb repulsion mixings once
again have the largest values of n, coincident with
their weak 2s-2P radial overlap. To see this effect
more clearly we computed Coulomb repulsion
mixings using a single unscreened Slater orbital
for 2~ and 2P with no 2s-ls orthogonalization, thus
maximizing radial overlap to unity. This profile
is shown near the bottom of Fig. 3, illustrating
a strong mixing of states. When 2s is ortho-
gonalized to ls (e.g., hydrogenic 2s) the curve
shifts upward, and at the same time the 2s-2P
radial overlap weakens.

D. Accidental correlation degeneracy

The shapes of the internal correlation energy
profiles in Figs. 2 and 4 suggest an interesting ap-
proximate particle-hole type symmetry with re-
spect to the number of electrons occupying L-
shell orbitals. The nondynamical aspect of these
profiles is strongest between cases 3-5 for 'P,
'S, and 'D levels of the 2s'2P' C-like valence con-
figuration. Sinanoglu' has described the different
correlation energies for these states. Here, we
focus on a curious accidental near-degeneracy for
E, (not total energy!) in the 'P and 'D levels,
which has apparently gone unrecognized until now.
The degeneracy grows stronger with increasing
Z, eventually becoming exact in the hydrogenic
limit. Both states have L+S=2.

The degeneracy has a relatively simple explana-
tion wjth the two-state model in Sec. II A. Equa-
tions (6}and (8) show E,» as a function of only two
parameters, E~& and E&-E&. Notice, however,
that the difference E„—Es as described by Eq. (3)
depends on only the state variable m, and not the
values of L and S. Relative values of E»T for C-
like states are thus strongly controlled by E»,
which turns out to be identical for 'P and 'D. Val-
ues of E»T are therefore exactly degenerate when
the same radial basis is used to describe both
states, as illustrated by the hydrogenic limit. In
actual atoms the radial functions become different
for 'P and 'D, but the splitting introduced to the
correlation degeneracy turns out to be small in a
restricted orbital basis.

It is important to note that this degeneracy is a
direct consequence of only three factors leading
to the energy matrix elements: (i) pairwise ad-
ditive potential, (ii) antisymmetry, and (iii) re-
stricted 2s, 2P spin-orbital basis. The precise
form of the pair-interaction potential is unim-
portant here, except to determine splitting of the
correlation energy. Whether these results can be
explained by a higher symmetry classification of

correlation beyond the usual atomic O(3) ISSU(2)
invariance for energies remains to be seen. In
view of the approximate particle-hole symmetry
for E,», equivalent hybrid orbitals might provide
a more reasonable starting point for describing
the atomic correlation"*" in a restricted basis.
A similar profile of NCMET correlations for higher
shells" would also be helpful.

E. Semi-internal correlation

Whereas internal correlation describes the
2s'-2p' interaction, the remaining semi-internal
part of the nondynamical correlation includes
virtual pair transitions expelling one of the elec-
trons out of the Hartree-Fock sea. Values of E„
are generally nonzero for open-shell states even
when E»T vanishes. For this reason the two types
of nondynamical correlation are usually described
separately. '4 Figure 5 shows a new profile for
E& constructed by the present approach. The re-
sults display three striking features: (a} the same
approximate particle-hole symmetry continues
to apply for E~; (b) E~ varies in direct opposition
to E,NT between neighboring cases; and (c) states
having the same value of L +S have nearly de-
generate values for E~. All values of energies
have been adapted from the tables in Ref. 27. At
first sight there seems to be no obvious explana-
tion for the results based on the usual NCMET
pair approach, since the total semi-internal en-
ergy represents a sum of several different pair
energies.

Although E,NT and E~ tend" to decouple in com-
putations, it may prove convenient to view the
present results in the light of electrons correlating
in the couPled state P, rather than the single HF
configuration Q„. Are there, instead of the usual
semi-internal correlation Q„„-y~, modified
virtual transitions of the type P -X~ taking into
account a strong 2s'-2P' correlation at the outset' ?

I I I ( I

I 2 5 4 5
CASE

FIG. 5. Semi-internal correlation energy profiles
for 1s22s 2p states, constructed from NCMET energy
tables of Ref. 27. For clarity only neutral (A) and
doubly charged (A 2) are shown.
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In this way g~ mould directly reflect the overall
mixing structure of P, including antisymmetry
exclusion effects (cf. Sec. III) and the correspond-
ing L-shell mixing profiles. Silverstone and
Sinanoglu" have described a more general approach
to NCMET along these lines. A detailed analysis
of dipole transition moments for these states as
to interference between different nondynamical
contributions might show trends similar to those
described here for +INT

III. GEOMETRY OF THE PAIR CORRELATION

Term

ig
2po

3P
ig
iD
2pO

ig

0.8660
0.9045
0.9487
0.8321
0.9487
0.9045
0.8660

0.5000
0.4264
0.3162
0.5547
0.3162
0.4264
0.5000

TABLE H. Mixing coefficients for low-energy states
n(2s~2p~)+p(2p +

) predicted by a "rigid" pair correlation
function with c =1/ 2 in Eqs. (10)-(12).

Near-degeneracy correlation for first rom

ground states has been described with "exclusion"
and "immersion" effects. "~ Exclusion describes
the decreasing availability of unfilled 2P orbitals
for virtual 2s' -2P' transitions as additional elec-
trons are a,dded to the valence shell. Immersion
describes changes in the correlation due to the
variable HF potential for different states. W'e can
show these effects separately for cases 1-V by a
representation of the state Q which is more con-
sistent with the notion in Sec. IIE for a strongly
coupled pair. Rather than exclude possible con-
figurations from p»T initially"'"' we construct the
I.-shell mixings in the following way:

P = g, [p(12)u(3 ~ . N)j.

Equation (10) contains three distinct parts: (i)
an antisymmetrized 'S pair wave function P(12)
describing 2s' —2p' mixing; (ii) an antisym-
metrized wave function u(3 N) for additional
electrons in ls and 2P orbitals coupled for I., 8
symmetry; and (iii) the antisymmetrizer 8 for
coupling of two electrons with N- 2 electrons.
Using the same notation for Slater determinants
and spin orbitals from Table I, we can define the
coupled-pair function generally by means of the
mixing coefficient ~ in

0(12) =(» ) +(c/~3)[(-11)—(oo) - (-11)j.

for values of u in Table I. To see this effect,
Table II shoms mixing coefficients computed with
the same pair function Q(12} for all seven cases.
This model supposes (incorrectly!) a "rigid" pair
correlation independent of all other electrons ex-
cept by antisymmetry. The. single value & = I/v 3
used here describes an ideal angular pair cor-
relation hybridization. " The method reproduces
the correct signs for n and P, as well as some of
the oscillations in Figs. I and 3.

Immersion effects cause the actual pair function
P(12) to flex slightly from state to state as more
electrons are added. They appear in the energy
matrix elements via the difference EI, —F-„, repre-
senting a promotion energy for the 2s'- 2P' transi-
tion in the many-electron environment. From
Eq. (3) we see that this energy increases linearly
with valence-shell occupation, thereby weakening
the overall mixing. The combination of these ef-
fects produces the chara, cteristic profiles in Figs.
1 and 3. In order to see the effects of immersion
separately, me have computed values of & in Eq.
(12}which reproduce the exact values of (P/a)

The remaining portion u(3 N ) is then de-
scribed by various single-configuration states in
Table I including possible ls' occupancy. In this
way the coupled wave functions for cases 2-'7 may
be viewed as resulting from successive coupling
of independent 2P electrons to the pair of correlat-
ing electrons.

Exclusion effects occur when the factor 8 annihi-
lates terms in the product function $(12}u(3 ' N)
having two electrons in the same spin orbital.
This affects only the 2P' portion of Q(12), causing
a renormalization of the mixing ratio to

(p/ )= ( /3)" (12)

0
I I I J

4 5 6
VALENCE ELECTRONS

FIG. 6. Pair-function mixing-ratio coefficient c «r
Eq. (11), fitted to the many-electron mixings of Figs.
1 and 3. Here curves are labeled l(2s22p, neutral),
2(2s 2p, hydrogenic), 3(ls 2s 2p, neutral), and
4(ls 2s 2p, hydrogenic).
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I.OO (hydrogenic, filled K shell). These values for
8„'" decrease approximately 2"-3' for each extra
electron added to the valence shell, with the
largest changes occurring for the doubly excited
states. Overall these results indicate additional
"squeezing" of the correlating electron pair as
the HF sea fills up around it.

Q.96
I 2 5 4 5 6 7

CASE

FIQ. 7. Mixing profile for states e(].s 2s 2p )
+ P (lg 2p ) computed with new SO(4) operator Jt (N)
shown as ( ), compared to hydrogenic Coulomb
mixings (-—-).

for states in Sec. II. Values for neutrals and the
hydrogenic limit for both filled and empty K shells
are shown. together in Fig. 6. As expected these
mixings weaken as additional electrons cluster
around the correlating pair.

The values for determine much of the geo-
metry of the spherical pair correlation distribu-
tion along the coordinates ~» ~» and 8». Geo-
metries of this type are known for isolated
pairs. "' Here we consider the average angular
distribution p( 0»)d8» defined by integrating

~ P(12) ~' over all spin and space coordinates for
1 and 2 except the interelectron angle 8»..

p( 0») = po sin 0»(1 —2XS' +X'),
with

(13)

X= co 3 cos 8„,
and radial overlap

s=
0

(14)

The constant p, = 1/(2 +2 c') is chosen for norma-
lization

p(6»)dg» =1.
0

The restricted HF orbitals of Ref. 27 give 8
-0.95 for neutrals. This value decreases slowly
for higher Z, eventually approaching the exact
hydrogenic value S= VS/2-0. 86. Our doubly ex-
cited functions yield a similar trend, starting
with 8-0.95 for anions and approaching the same
hydrogenic limit. The angular distribution peaks
at 8=90'when &=0 for uncorrelated 2s electrons.
The peak moves to higher angles for physical
states c&0, due to pair hybridization by cos8».
The maximum densities for two valence electrons
(i.e., case 1) occur 'at the following angles Om, '":
133'(He, empty K shell), 130'(hydrogenic, empty
K shell), 123'(Be, filled K shell), and ll"f'

A. Single-particle states

The SO(4) Lie algebra is defined here for the
usual single-particle states

~
nlm) by the orbital

angular momentum I, and a vector Awhich satisfy

[I„r.,j =i~,, I. , [I.„a„]=is„u,
[x,, x,j=i~„,.l.. (16)

The Casimir invariants on this basis are given by
I.'+A' =n' —1 and (L .A) =0. We adhere to pre-
vious' '" phase conventions for generators and
states, with A defined by

A mls) =:0

A, i2s) = i2PJ, A., i2PJ = i2s),

a, I2P„,) =0.

The Hunge-Lenz operator provides a concrete
representation for A in a hydrogenic basis, char-
acteristic of the I.ie algebra for rotations on a
four-dimensional hypersphere in Inomentum
space. '~ Here we can represent A in a form

A =n(pQ —rP), (16)

similar to a generalized angular momentum. Now,
however, Q is the infinitesimal generator for scale
transformation s,

q=(r p)

while I' denotes a conjugate momentum"

s =-i[q, aj
=p —1 'Y

(20)

(21)

IV. COMPARISON WITH MIXINGS PREDICTED BY
AN So(4) CORREI.ATION INVARIANT

Since much of the nondynamical behavior of the
I.-shell correlation is apparently controlled by
factors (i.e., antisymmetry and number of valence
electrons) other than the explicit form of the Cou-
lomb potential itself, it is reasonable to expect
similar mixing trends for other pairwise inter-
actions. We now show that one such operator con-
structed from SO(4) Lie algebra generators of
single-pa, rticle states gives an excellent approxi-
mation to the actual L-shell mixings, thereby
providing a new geometrical interpretation of
states.
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for the hydrogen atom energy (atomic units)

(22)

I.O

Average values of P vanish for hydrogenic states
on account of the well-known virial theorem for
sca].ing." Geometrical characteristics of the
hydrogenic SG(4) generator A are evident in the
following operator replacements (for constant n

only):

r=gnA,

r =(I/n)A,

(23)

(24)

(25)r = (1/2)(2n' + 1+A'),
x' =(n'/2)(2n'+4+34') (26)

B. Many-e1ectron states

The exact nonrelativistic N-electron states have
spin and total angular momentum (L, +L, + ~ - .
+L„)'=L(I.+I) conserved. The usual single-con-
figuration states have the commuting one-electron
operators

(2"l)

representing a pairwise additive "harmonic" in-
teraction between SG(4) generators for different
electrons.

A(N) as defined in Eq. (2'I) is not a many-elec-
tron invariant in the usual mathematical sense
for Lie algebras. Previous studies" of L-shell
mixings have looked into the possibility" that such
mathematically coupled states for a diagonal Lie
algebra Casimir invariant might somehow give
the correct many-electron mixings. They didn' t.'

dia, gonal. In order to describe configuration mix-
ings between different states having the same
quantum numbers L, 8, and parity, we introduce
coupling between single-particle states having
different values of l. Whereas the exact energy
involves an infinite tensor expansion of the Cou-
lomb repulsion, valence states for two electrons
are found to be well represented by the eigen-
states of the simple operator (A, —A.,)' over a
wide range of values for n and L '2*" States having
larger values of (A, —A,)' offer a more favorable
spatial correlation for the electrons. "' ""Our
analysis in Sec. III suggests that similar results
should hold for N electrons, with differences in
the pair correlation resulting mainly from the
effects of antisymmetry for additional, noncor-
relating electrons. We therefore construct the

operator

Z 5 4 5 6 7
CASE

Flo. 8. Mixing profi].e for states e(2s 2p )+P (2p~ )
computed with new SO(4) operator A(N) shown as
( ), compared to hydrogenic Coulomb mixings (----).

In contrast, we find here that eigenstates of A(N)
are considerably more physical. Profiles of mix-
ings computed with A(N) are displayed in Figs. 7

and 8 for comparison with the corresponding hy-
drogenic Coulomb repulsion profiles. The close
agreement is striking, and shows that A(N) indeed
represents an approximate, L-shell correlation
invariant. At first sight the different mixing pro-
fileg for filled and unfilled E shell states might
seem puzzling, since the SG(4) generators in Eq.
(17) do not connect states in different shells. In
order to explain this behavior, we expand Eq. (2I)
to

A(N) =(N-1) QA'; -2+A; A;.
i&j

(28)

The first term is diagonal in the configuration
basis, and scales linearly as the number of elec-
trons increases. The second term, however,
describes the 2s'-2P' interaction and has the same
matrix elements whether the K shell is filled or
not. The configuration mixings therefore tend to
become stronger as the K-shell electrons a.re re-
moved. The method also describes an exact cor-
relation degeneracy of A(N) for cases 3 and 5.

The simple 2 x 2 matrix representation of L-
shell correlation makes it possible to describe
the exact mixing structure for each of the seven
cases by fitting a single parameter y in the follow-
ing generalized version of A(N):

Ay=y+A; —2+A) A~.
i i&j

(29)

The corresponding configuration mixing parameter
for matrix elements of A ~ is q = y/Win, from which
values of z for each case are extracted using g
in Eq. (6). In this way we find that the hydrogenic
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Coulomb repulsion mixings for the entire I. shell
can be described with a single formula

(2

for doubly excited states (N=m +2), or alterna-
tively

y = Po(N+2. 260)

when the K shell is filled (N=m +4).
In a similar fashion we can evaluate y for a pure

harmonic oscillator potential between electrons.
By Eqs. (23) and (26) we find that for N electrons
in the same shell the potential becomes

lHo = Z(r; —r~)'

=N('N- l)n'(n'+2) +(—,
' n)'A „,

with y = (N-1) for all values of n. When n =2
the harmonic oscillator potential predicts slightly
stronger configuration mixings than A(N), with

values of o. 2%- 5% lower than those in Fig. 6 for
doubly excited states.

V, CONCLUDING REMARKS

New questions and interpretations for electron
correlation have been brought to light, based on
available theoretical values for nondynamical
correlation energies for first row atoms. The
present SO(4) model potential adequately describes
these mixings. A more general group theory for
correlation designed along the lines of NCMET
would hopefully elucidate a possible higher sym-
metry for most of the nondynamical part of the
fluctuation potential in a restricted HF sea plus
finite semi-internal basis. Similar studies of this
type for higher shells and molecular ~ structures
would offer additional insight to underlying prin-
ciples governing configuration mixing phenomena
and pair interactions.
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