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Is photon angular momentum important in molecular collision processes
occurring in a laser field?

Paul L. DeVries and Thomas F. George
Department of Chemistry, The University of Rochester, Rochester, New York 14627
(Received 1 May 1978)

The importance of the rigorous treatment of photon angular momentum in molecular-collision processes
occurring in the presence of intense radiation is investigated. An alternate approximate treatment, which
essentially neglects the angular momentum coupling between the photon and the molecular degrees of
freedom by averaging over the angular dependence of the interaction matrix elements, is presented and
applied to a model calculation. The degeneracy-averaged results of this calculation compare remarkably well
with the results of a rigorous calculation, from which we conclude (with reservation) that the explicit
consideration of photon angular momentum coupling in molecular-collision problems is unnecessary.

I. INTRODUCTION

Recently,' the quenching of fluorine by xenon in
the presence of intense radiation from the KrF
laser was investigated. Since this was the first
calculation of its sort, the collision dynamics
and, in particular, the angular momentum of the
photon, were treated in a simplified manner. (We
hasten to add that the calculation as performed
was far from trivial. Only through the use of
such simplifications was the problem computation-
ally tractable.) The proper treatment has been
derived® within a close-coupled equations for-
malism, although the resulting system of equa-
tions is somewhat complex and constitutes a far
more difficult (and time consuming) numerical
problem than the corresponding field-free one.

In this Comment we discuss, in terms of numeri-
cal solutions of a model problem, the importance
of these additional complications and hence the
importance of rigorous, explicit consideration of
photon angular momentum in molecular- (atom-
atom) collision problems.

In Sec. II, we discuss the nature of the compli-
cations involved in the full treatment of photon
angular momentum. The matrix element of the
interaction Hamiltonian and an alternate treat-
ment of photon angular momentum are discussed
in Sec. III. The model calculation is described
and our results reported in Sec. IV, In Sec. V,
our conclusion concerning the importance of
photon angular momentum in collisional problems
is presented.

II. NATURE OF THE COMPLICATIONS

Before discussing the complications arising
in rigorously describing molecular collisions in
a field, let us review the description of molecular
collisions in the absence of a field. The states

used to describe such a collision are usually in-
dexed by eigenvalues of the total angular momen-
tum J and its space-fixed projection M. Due to
rotational invariance of the Hamiltonian, J and M
conserved. The only allowed transitions are thus
within the JM sets, i.e., transitions from a state
in the set JM to a state in the set J’M’, J#J’ or
M #M’, are forbidden. Furthermore, the close-
coupled equations show no dependence on M so
that the probability for the transition a— 8 in the
set JM is exactly the same as for the a— 8 tran-
sition in the set JM’. This equivalence is used
to advantage in the derivation of the degeneracy-
averaged cross section and gives rise to the

2J +1 factor in the usual expression.

Now consider the complications arising from
the field. The states used to describe the system
are a direct product of the field-free states,
indexed by J and M, and the states of the radia-
tion field. For simplicity, we will assume that
the field is single mode (which we represent by
an occupation-number state), and interacts with
matter only through the dipole operator. An
appropriate set is then indexed by J, M, and =,
but none of these need be conserved in a radiative
transition since the system as a whole is no
longer rotationally invariant., Consider the tran-
sition from a state in the set of JMn to a state in
the set J'M’'n’ by absorption of a photon. Since
there is now one less photon in the field, »n’ is
given.as n’ =n - 1. The projection M’ is simply
the sum of the initial projection M and the pro-
jection of the photon angular momentum o which
is merely the photon polarization expressed in
spherical coordinates. The final total angular
momentum J is obtained from the vectorial
combination of the initial angular momentum T
and the photon angular momentum, so that J’
satisfies the inequality |J—1|<dJ’<J+1. To be
fully general, we should also consider the next
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level of complexity, a subsequent photon absorp-
tion to a state in the set J'’M’'n’’. But even with-
out doing so, the complexity of the problem is
obvious. The dimensionality of the problem has
been considerably-increased (over the field-free
one), and since the difficulty of a numerical solu-
tion goes as N3, this is of considerable concern.
But of even greater concern is that the system is
no longer rotationally invariant, so that the close-
coupled equations are no longer independent of M.
Thus each set of equations indexed by initial M
must be solved independently, i.e., the summation
giving rise to the 2J +1 factor in the field-free
degeneracy-averaged cross section cannot be
performed analytically, but must be performed
numerically. (Actually, symmetry considerations
decrease the number of independent M’s by one-
half, but this hardly compares to the 2J+1 re-~
duction in the field-free case.)

III. INTERACTION MATRIX ELEMENT

The complexities discussed in the previous sec-
tion all arise from the matrix element of the
interaction Hamiltonian,

H™ =HM 3" (@50 +ad V}) ¢y)
, ¥
where Hf,“' is a collection of the appropriate con-
stants, a, and a;' are annihilation and creation
operators for the photon number state »ln,), Ve
is the oth component of ¥V, (in the space-fixed
coordinate system), and the j summation is over
all electrons. (For convenience, we henceforth
define V, =3, V;.) We denote by |jQ) a body-
fixed diabatic basis for the electronic plus spin-
orbit Hamiltonian which is an eigenfunction of j
(the sum of all electronic orbital angular mo-
menta and spins) andj, (the projection ofj on the
internuclear axis). A field-free total angular
momentum wave function can then be written as

12
\I259) = (2‘2;1) DEu(0,-6,-0)li®), ()

so that the matrix elements of interest are of the
form

(el ' M’ |H ™ agV o | TMjQ) [ng)
=H" (nlas|ny' M'3'Q | Vo |TMjS)
=H™ (n,)26(n}, ng - 1)
X (J'M'§'Q |V |TMIQ) , (3)
and a corresponding matrix element for aI V.

Relating V, to its body-fixed components, the
matrix element of V, can be written as

M5 | Vo |TMGQ)
=(J"M'Q| D DheV,|IM)Q)
n

[T +1)(2J7 +1)]V2 “
LI V@I O 5~ f g by, Df g
: n

X (' [Vl 58

’ 12 >
__{[(2J+ I)Z;I +1)f fDé:; D‘g,;n_,,u;{,dR]

X &6(M’, M +0)j'Q |Vaeal i)

2J7 +1
X 8(M', M+0Xj'Q | Varg|i®). (4)

2
- [( 2J+ 1 ) CWL; Q, Q' - Q)CWLI"; M, cr)]

It should be clear that all the complexities that we
have discussed stem from quantities such as that
contained in the square brackets of Eq. (4).

To assess the importance of these complexities,
it is necessary to compare the results of the
full treatment, as in Eq. (4), with those of another
treatment which in some sense ignores photon
angular momentum. The alternate treatment
chosen for discussion in this Comment consists
of the replacement of the square bracket in Eq.
(4) by a simpler form. First, C(J1J’; Mo) is
replaced by its root-mean-square average Cy:

1/2 1 (y'+1>1/2

(1 1o ) = 2 +1
é”—(2J+1 }M: CULI’; Mo) ) A

®)

By introducing this average we have essentially
imposed rotational invariance upon the system
(e.g., the M quantum number no longer appears
in any of the matrix elements). The remaining
Clebsch-Gordon coefficient could be replaced in
a similar manner, but this would not lead to any
simplifications. Rather, we shall truncate the
basis to include only those states with J’ =d,

but include in the interaction matrix element the
effect of the interactions to all J’ states by re-
placing the Clebsch-Gordon coefficient by its
root-sum-square Cy.:

2
Cp= ( > CULT; R, Q" - 9)2) =1, (6)
J"

(In making these averaging approximations, we
recognize that we have discarded certain parity
information in the original Clebsch~-Gordon co-
efficients.) Thus Eq. (4) becomes

' M5 |Vo|JMjQ) = 6(J, J')8(M', M + )
X (@/V3NH'Q | Var-al i) ,
(7
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where ®, a quantity having unit modulus, has been
introduced to preserve the correct parity of the
matrix element. In the actual calculation a parity
basis is introduced which simplifies both the full
and the alternate treatments. The close-coupled
equations, with appropriate scattering boundary
conditions, can then be solved by the standard
methods leading to transition probabilities and
cross sections. We note that, since our alternate
treatment was derived by an averaging procedure,
it would be inappropriate not to average the final
results. Hence only degeneracy-averaged cross
sections will be reported in this Comment.

IV. MODEL CALCULATION

To perform a comparison of the two treatments,
a model system was chosen for numerical calcula-
tions. Although this model does not represent any
specific physical system, it mimics the collision
of a halogen with a rare-gas atom, i.e., a 2P-state
atom colliding with a !S-state atom. The various
parameters appearing in the model were chosen
purely for convenience. The electronic states
arising in such a collision are of Z and II sym-
metry, and for these potentials we chose (in a. u.)

V(Z,R)=exp[-3(R - 2.5)],
V(H*,R)=exp[—1.5(l?,—2.5)_]. (8)

Note that a superscript has been added to IT to
distinguish between the two degenerate states.

We chose the dipole moment to be a Gaussian func-
tion peaked at 6 bohrs, with a maximum value of

2 a.u. After making the appropriate conversion of
units and introducing the field intensity (in W/cm?),
the interaction matrix element is given in a.u. as

Hy" (nglaln, + 1(1% R|V,|Z, R)
=5.34x10"°VT exp[-(R - 6)*]. (9)

The radiation field is provided by the 10.6-um
line of the CO, laser with a photon energy of
0.0043 hartree. The 2P-state atom was chosen

to have a spin-orbit splitting of 0.002 hartree, and
the reduced mass of the system was taken to be
2500. These parameters, together with the in-
tensity of the field, suffice to define the model
system.

The transition of interest is the quenching
process 2P, - 2P,, (for a halogen the 2P, state
lies at a higher energy than the 2P, state).

Rather than the lJMjQ) basis, the parity basis
|gMjl2le) is actually used in the calculations. For
nonradiative processes, only transitions between
states of the same parity are allowed, while a
change of parity accompanies a radiative tran-
sition. This parity selection reduces the number

of states to be considered simultaneously, and
hence reduces the difficulty of the problem. In
this Comment, we consider only those states
coupled to the even-parity state correlating to
2P s, [IM, 3, |3l , €=1)|n,). This state is coupled
to the states

lJM’ %, I%L € :1>lna> s
lIM, 3, |3, € = 1ylng) (10)

by nonradiative coupling and, in the full treatment
of photon angular momentum, to the states

l7+1,M=-0,3, |3l e==Dn,+1),
[J+1,M=0,3 |3, e==1)|n,+ 1),
|7, M=o, % 3], e==1)|n,+1),
|J, M=0,3,|3], e==1)|n, + 1),
|J=1,M=-0,% |3, e==1)lng+1),
[J=1,M=0,3 |3, e==1)|n,+1)

(11)

by radiative coupling. From our discussion in
Sec. II we see that this nine-state problem must
be solved repeatedly for various M’s, and the sum
over M (in the degeneracy-averaged cross section)
must be performed numerically. Some savings in
effort is realized by recognizing that for linearly
polarized radiation ¢ =0, the transition probabil-
ities for —~M are the same as for + M, and so only
the positive M’s need be numerically considered.
(An analogous situation exists for circularly po-
larized light.) In our alternate approximate
treatment of photon angular momentum, the state
|JM, 3, |3], € =1)|n,) is radiatively coupled to the
states

|7, M=0,3% |3], e==1)|n, + 1) (12)
and
|J,M=0,3 3], e==1)|n,+1y. (13)

However, the potential curve for the second state
never approaches the potential curve for the
initial state, so that it should not contribute sig-
nificantly to the quenching process. This state
will be excluded in our calculations. Further-
more, although the initial state is collisionally
coupled to both states of Eq. (10), we assume
that || is conserved in these nonradiative tran-
sitions and will include only the state

IJM’ %y‘% ‘7€=1>|n0> (14)

in our calculations.

It should be clear that our alternate treatment
of photon angular momentum in this collision
problem is considerably less complicated than the
full treatment. This will be dramatically shown
by a comparison of computational times required
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TABLE I. Partial cross sections for quenching by linearly polarized 10.6-ym light.

Cross sections (32

Field w/cm?) J  Collision energy (eV) Exact? Approximate®  Approximate®
0 % 0.1 0.3329(—1) 0.3335(=1)
0.2 0.6890(—2) 0.6380(—2)
2.3 0.1 0.7287(~2) 0.2597 (—2)
0.2 0.8716(~1) 0.8521(~1)
10° .'Z'. 0.1 0.4202(~1) 0.4159(~1) 0.4153(=1)
0.2 0.7523(~2) 0.7271(~2) 0.,7781(~2)
22§ 0.1 0.2089(~1) 0,1502(~1) 0,1971(~1)
0.2 0.9494(-1) 0.9214(-1) 0.9409(~1)
1010 .;. 0.1 0.1085 0.1077 0.1076
0.2 0.1469(—1) 0.1449(~1) 0.1499(~1)
s 0.1 0.1312 0.1177 0.1224
0.2 0.1450 0.1433 0.1452

2Exact nine-state results, numerically summed.

b Approximate three-state results.

¢ Approximate three-state results, modified by the additions of the difference of the field-free

cross sections.

for solution. In fact, the full treatment is suf-
ficiently time consuming so that we shall present
partial cross sections (degeneracy-averaged) at
only two collisional energies and at two (nonzero)
field intensities. The results for quenching in the
presence of the radiation field, presented in
Table I, indicate that the alternate treatment does
surprisingly well. Only for J=% at the lower col-
lision energy is there a discrepancy of more than
4% in the cross section. Our results can be
improved with trivial effort if we ascribe this
discrepancy to the fact that a collisionally cou-
pled state was ignored in the approximate treat-
ment. Assuming that the ignored state represents
a totally independent channel (unaffected by the
presence of the field), its contribution to the cross
section is simply the difference between the exact
and approximate results at zero-field intensity.
Adding this contribution to the approximate cross
sections, the values exhibited in the last column
of Table I were obtained. None of these cross
sections are in error by more than 7%.

This remarkable agreement is even more sur-
prising when we consider the computational time
required. (Our algorithm, based upon the R-
matrix method of Light and Walker,® is divided
into preparatory and actual scattering calcula-
tions. The time required for preparation repre-
sents an “overhead” which should be averaged
over the number of collision energies used, so
that the average time for a calculation is dependent
upon the number of calculations performed. Thus
we will exclude the preparation time, and only
report the average time required for the actual
scattering portion of the calculation. Since the

same step-size parameters were used for both
the full and approximate treatments, a valid
comparison of times can be made.) For the J=%
calculations, the full treatment required 28
times more effort than the approximate treat-
ment. The full treatment for J=2, requiring
solutions of the nine-state problem for all 12
positive M’s, required 81 times the effort of
the approximate treatment. To compute all the
cross sections through J =2, almost 100 times
more effort would be required for the full treat-
ment of photon angular momentum as compared
to the approximate treatment., Furthermore, it
appears from the values in Table I that this would
not be sufficient to obtain converged total cross
sections.

V. CONCLUSION

From the results of Sec. IV, it is apparent
that cross sections in error by only a few percent
can be obtained with orders-of-magnitude less
effort than required by a full treatment of photon
angular momentum. With certain reservations,
we conclude that the explicit consideration of
the angular momentum coupling between the pho-
ton and the molecular degrees of freedom in
collision problems is unnecessary. Our reserva-
tions pertain to the fact that this conclusion is
based upon a very limited number of calculations.
It is quite possible that our approximate formal-
ism would not perform as well on some other col-
lision system, or at different collision energies
and field intensities. In particular, it is expected
that at very high intensities, alignment effects
of the colliding system due to the radiation field
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would become important and invalidate our averag-
ing approximations. However, that a formalism
~as crude as the one we have presented should
work at all tends to lend support to our conclusion,
and we suspect that a more sophisticated treat-
ment might be more generally applicable while
still avoiding the shortcomings of the full treat-
ment of photon angular momentum in collision
problems.
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