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Kinetic theory of the shear viscosity of a strongly coupled classical one-component plasma

Jean %allenborn and Mare Saus
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We present an approximation to the linearized colhsion operator or memory function of the exact kinetic
equation obeyed by the correlation function of the phase-space density of a classical one-component plasma.
This approximate collision, operator generalizes the well known Balescu-Guernsey-Lenard (BGI.) operator to
finite wavelengths, finite frequencies, and finite couphng constants. It, moreover, satisfies the necessary
symmetry relations, leads to appropriate conservation laws, and fulfills its first sum 'rule exactly. Next we
use this operator to compute the shear viscosity g for a series of coupling constants spanning the whole fluid
phase. For weak coupling we make contact;, with the BGI. theory, while for strong couphng we confirm, at
least qualitatively, the results of Vieillefosse and Hansen, who predicted a minimum in g as a function of
temperature. We also demonstrate the important role played by the sum rules in the quantitative evaluation
of a transport coefficient such as g.

I. INTRODUCTION

In the past decades, the kinetic theory of plas-
IDas has been concex'ned mainly w1th we8kly
coupled systems where &, the inverse of the num-
ber of particles in a Debye cube, 7) = tens/n, is small
(& «1). More recently, an impressive number of
numerical results, mainly due to Hansen et al. ,'
have been obtained for the simplest plasma model,
the classical one-component plasma (OCP) with
an inert neutrabzing background. These results
cover the whole range of ~ values belonging to the
dense phase (&& 1) and as such have stimulated a
number of recent theoretical works on strongly
coupled Coulomb systems. '" ' In a series of papers,
Ichimaru et a/. ' have considered a number of ap-
proximate calculations of the static and dynamic
properties of a classical GCP which extend some
of the known results to second order in the plasma
parameter A. Gould and Mamenko~ have presented
a fairly general theory for the single-particle
motions of the GCP in relation to the molecular-
dynamics results for the self-diffusion constant. "'&
Oneof us (M.B.) obtained' a number of exact long-
wavelength results for a variety of-Coulomb sys-
tems, substantiating some of the previous numex-
ical and theoretical works.

In this paper, we present a kinetic theory for the
collective motions of the GCP and apply it to the
calculation of the shear viscosity g of a stxongly
coupled GCP. %e present a simple approximation
which qualitatively describes the macroscopic vari-
ation of the shear viscosity over the whole Quid
phase including the minimum of q as a function of
temperature obtained by Vieillefosse and Han--
sen. '" '

In Sec. II, we have summarized the main kinetic
theoretical steps, referx'ing the reader to the ex-
isting literature for the details, but clearly exhib-

iting the intrinsic simplicity of the theory as com-
pared, for instance, to the traditional Chapman-
Enskog scheme for weakly coupled systems.
Gur approximation to the collision operator is pre-
sented in Sec. III, while its properties are re-
viewed in Sec. IV. The present kinetic theory is
applied to the study of the shear viscosity in Sec.
V. Gur numerical results are presented in Sec.
VI where we also compare them with the known
results. Section VII contains our conclusions.

II. KINETIC THEORY

As our starting point, we consider the exact
kinetic equation obeyed' ' by the two-point equil-
ibrium correlation function

S(r- r', t- t', p, p') = &i)f(r, p, t)y(r', p', t')&

of the equilibrium fluctuation &f=f- (f) of the
space density

= iS(k, t = 0; p, p'), (2.1)

where we have used a $'ourier-I aplace transform
defined as follows:

s(k, z;p, p')

dr dte'" "'S(r t. p p'). Ims&0 (2 2)
Q 0

The kinetic equation (2.1) is an exact property of
the system and has been the object of a number of
recent studies. ' ' Here, we have adopted the nota-
tion of Ref. 5(a) where more detailed expressions
of the known initial condition S(k, t = 0;p, p') and the
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general memory function Z(k, z;p, p') can be found
together with a derivation of Eq. (2.1) from first
principles. The general memory function Z can
be split into three parts, Z =Z'+ Z'+ Z', the free-
streaming term Z'(k, z; p, p') = k v ~(p - p'), the
self- consistent field term

Z'(k, z;p, p') =-k vy(p)c(k)

[where, as in Ref. 5(a), p(p) is the Maxwellian
normalized to one and c(k) the dimensionless
direct-correlation function], and the genuine mem-
ory function [see Ref. 5(a) for the details of the
notation which will not be needed here]

Z'(k z'p p')=('5k p) ILQ(z QLQ) QL I6f(k p'»

~ [~v(p')] ', (2 3)

which will also be referred to as the nonlocal col-
lision operator, for reasons which we will explain
in Sec. III.

The objects containing the macroscopic informa-
tion about the system are the hydrodynamic cor-
relation functions

G, (k, z) =(ilS(k, z)(ny) '
l.j)

which obey the hydrodynamic transport equations""

5

zG;)(k, z) —g Q, ~, (k, z)G~. ,(k, z) =iG'„.(k),
~ p ]

(2.4)

,(k, dpdp'~;. p~; p'S(k, z;p, p'), (2 5)

where g-„denotes a unit vector perpendicular to
k, nm is the mass density, and p '=k„T. Be-
cause of the rotational symmetry of the system,
G, is completely uncoupled from the remaining
correlation functions G,

&
and Eq. (2.4) yields im-

mediately G,(k, z) =i [z —fl,(k, z)] '. Furthermore,
because of momentum conservation, we can write

Q,(k, z) =-ik'(nm) 'i)(k, z),

introducing a nonlocal shear viscosity i)(k, z) from
which the ordinary shear viscosity g can be ob-
tained as i) =- q(k =O, z =0). The kinetic-theoretical
expression for g obtained in this way is seen""
to split naturally into two parts, q= g,. +q,.„„

where i and j run over the five hydrodynamical
states (the density i =n, the energy i = e, the
longitudinal momentum i =l, and the two trans-
verse momentum states i = t, and t, jointly designed
as i=i). Here we will be especially interested in
the (normalized) transverse momentum correla-
tion G,(k, z) =G„„(k,z),

q . =nmlim (I/O')(zliZ'(k, z =0) ls),

q. =nm lim (I/k')(&
l
[Z'+ Z'(k. , 0)]Q[iQ Z'(0, 0)Q] 'Q[Z'+ Z'(k, 0)] l-L),

(2.6a)

(2.6b)

which, following Ref. 6, we designate as the direct
[Eq. (2.6a)] and indirect [Eq. (2.6b)) part of the
shear viscosity g. This separation of the viscosity
is not to be confused with the sepa, ration of g into
a kinetic and potential part, familiar from the
Green-Kubo expression for g. Indeed, whereas
the kinetic part of q is completely contained in

g,„d, both g,„„and g~. contribute to the potential
part of q. To conclude this introductory section
we make the important remark' that when the
collision operator iZ' is positive definite both

gd, and qI„,will be separately positive as seen
from Eq. (2.6).

III. APPROXIMATE COLLISION OPERATOR

The general expression given for Z' in Eq.
(2.3) involves N-body constructs like the I iou-
ville operator L and, as such, is convenient when
invoking, for instance, the conservation laws of
the system, but rather inconvenient as a starting
point of an approximate kinetic theory. We pre-
fer instead to start from the following alternative
but equivalent form of E'-- completely expressed in

terms of few-body constructs'".

iZ'(I, 2; t)ny(p, )

dl' d2' LI(ll')Lg(22')C(ll', 22', f), (3.1)

where 1 —= (r„p,), d 1—=d rid p„etc., while L~(1, 2)
is the two-body interaction operator

L,,(12)=- —V(lr-, —r-, l)~-
~pz - ~p2

(3.2)

V being the Coulomb potential. In Eq. (3.1),
C(1 1 ', 22', f) represents a contracted four-point
correlation function whose detailed expression
will not be needed here but which can be construct-
ed with the aid of the three- and four-point gener-
alizations of the two-point correlation function
S(1,2;f) of Eq. (2.2). The details of the derivation
of the alternative expression (3.1) can be found in
the literature. " The basic justification for calling
Z' either the memory function' or the collision op-
erator' also stems from Eq. (3.1). Indeed, after
substitution of expression (3.1) for Z' into Eq.
(2.1), we can integrate the momentum variables
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by parts and freely transform the function, Eq.
(3.1), into an operator acting on the momentum
variables. As such, Eq. (3.1) also forms a con-
venient starting point for a kinetic theory. Indeed,
following Mazenko' we split the contracted four-
point correlation function C(11',22', t) into a con-
nected (Cc) and a disconnected (C~) part C = C~ .

+C~. The disconnected part C~ can be simply
written in terms of the ordinary two point function
S:

C~(ll ', 22', t) =S(1,1',t)S(2, 2', t)

+S(l, 2', t)S(2, 1', t), (3.3)

while no such relation exists for C~. Now sub-
stituting C =Cc+C~ into Eq. (3.1) we obtain ac-
cordingly Z'=Z ~+Z~ each term of Z' having a
simple physical meaning. Indeed, from Eq. (3.3)
we see that Z~ describes a collision process in
which the interacting particles propagate, during
the collision process, through the medium with
their exact propagator 8, while Z~, on the con-
trary, describes a collision process during which
the colliding particles stay close together. As in-
dicated previously'(b) ~ 5") Z ~(k, z) is already an inter-
esting approximation to Z'(k, z} as it generalizes
the linearized Balescu-Guernsey-Lenard (BGL)
collision operator' to finite values of k, z and the
coupling &. We will come back to this point in
Sec. IV.

We are now ready to introduce our basic approx-
imation to the collision operator. First, we will
assume that we can neglect the connected contri-
butions to the dynamics, i.e., we take C(t) =C~(t)
in Eq. (3.1). Since such a neglect of the close-
collision contributions to C(t) will lead to defects
for strong coupling, we try to remedy this by
keeping their contribution to the statics and the
short-time behavior. Hence, as a second condi-
tion, we will require that the approximate colli-
sion operator still satisfies its first sum rule, ' a
property which is known to imply' that the first
three sum rules for S will be satisfied. We now
look therefore for an approximation to Z'(t) which
starts from the exact initial value Z'(t =0), so as
to guarantee its first sum rule, but which neglects
the close-collision processes at the later times.

In order to realize this approximation scheme,
we first renormalize the collision operator Z'
along the lines developed in Mazenko's fully re-

normalized kinetic theory (FRET).' In a nutshell,
this renormalization procedure consists in replac-
ing C(t} in Z (t), Eq. (3.1), by, omitting notation-
al details,

C(t) = 2[A-A 'C(t)B 'B+BB 'C(t)A 'A],

where A and B are some, as yet unspecified,

(3.4)

corresponding to the disconnected approximation
of the renormalized propagators C~(0)C(t)
=C~~(0)C~(t) and C(t)C '(0) =C~(t)cg(0). With this
choice of A and B we cannot eliminate the potential
completely since now one of the vertices (L~B)
remains unrenormalized (B =I). This choice has,
however, the advantage that, both the approximate
and exact expression of Z'(t) do have the same in-
itial value Z'(t =0) guaranteeing thereby that our
approximate Z'(t) satisfies its first sum rule.
Our choice of A and B and the disconnected ap-
proximation leads to the following expression for
the collisional part of the memory function

static correlation functions. After substitution
of Eq. (3.4) into Eq. (3.1), L~A, L,B and A 'C(t)B ',
B 'C(t)A ' can be interpreted, respectively, as re-
nor'malized vertices and renormalized propagators.

In his FHKT Mazenko did take A =B = C(t =0) in
which case the renormalized propagator becomes
C(t) =C '(0)C(t)C '(0), while the renormalized ver-
tex L,C(t =0) has the interesting property of being
entirely expressible in terms of static correla-
tion functions eliminating thereby any explicit
reference to the bare interaction potential. The
kinetic equation (2.1) becomes then an exact rela-
tion between dynamic and static correlation func-
tions. Although this choice of A and B is very ap-
pealing from an aesthetic point of view, it does
lead to some difficulties if we approximate the
dynamics C(t) by its disconnected part C~(t)
= C~'(0}C~(t)C~'(0). Indeed the approximation of
C(t) by Ca(t) amounts to replacing C(t) in Eq.
(3.1) by C(0)cn(t)C(0). Since C(0)C~(0)C(0) 4C(0),
the approximate collision operator Z'(t) violates
its first sum rule because the exact and approxi-
mate expressions for Z'(t) tend to different initial
values as t-0. In order to restore the sum rule,
we will make the less symmetric choice A = C(0)
and B =I in Eq. (3,.4). In the disconnected approx-
imation, we now replace C(t) in Eq. (3.1) by

—,
' [c(o)c-,'(o)c,(t)+ c,(t)c-,'(o)c(o)],

k (k t p„p, )kp(p ) —
kp f, f dp f dp [) 8T p, c())'V, S(k — tp, p()S( t )p, p)

+1.&,(k —1) ~ s2 c(1)V.„;S(k- l, t;p„p, )S(l, t;p„p,)

+k 9, I s3 a(l, k —1)VI S(k —1,t;p„p, )8(l, t)((()(p,)y(p~}

+ (1-2)], (3.5)
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where V-„= 4ve'/h' and c(k) are the Fourier trans-
forms of, respectively, the Coulomb potential
and the direct correlation function, in the notation
of Ref. 5(a). In Eq (3. .5) we have also introduced

S(l, t) = dp dp'S(l, f; p, p')

and a(l, k —I) defined as

a(l, k- I) =D(k, -l)[1-c(l)] [1—c(k —I)]
—c( 1)c(k —I),

where

D(k, -i) =n'[1 —c(k)]

(3.6)

x dr dr'8 r r', 0 exp i r —l ~ r',
(3.7)

with n the number density and

B(r,; r„r,) =g,(r„r„r,)
-g, (r2 —r,}[g,(r, —r, )+g,(r, —r„)—1],

(3.8)

g, and g, being the two- and three-body equilibrium
correlation functions. '

Substitution of the Laplace transform of expres-
sion (3.5) into Eq. (2.1) yields an approximate
closed kinetic equation for S(k,z;p, p ) which con-
stitutes the basic kinetic equation of this paper.
This equation improves the existing (linearized)
kinetic theories in various aspects as can be
learned from its properties reviewed in Sec. IV,
where we also indicate its relation to the unre-
normalized kinetic equation we used previous-
ly sib), 5&c)

metric under a permutation of p, and p„(iii) even
under the transformation of (k, ~) into (-k, -a&),
and (iv) invariant under rotations and reflections.
The proof of these properties follows immediately
from the fact that similar properties hold' for the
S(k, t;p„p, ) functions entering the right-band side
of Eq. (3.5).

B. Collisional invariants

Direct computation of fdpu(p)Z'(k, z;p, p') from
Eq. (3.5) for u (p) =(1,p, p'J shows that 1 is a col-
lisional invariant for all k and z values, p is a
collisional invariant for all z but vanishing k,
while p' is a collisional invariant only when both
k and z vanish. These properties insure then that
the adequate conservation laws of the number,
momentum, and total energy of the particles will
be satisfied. '

C. Sum rule

The first sum rule states that

~ ip&yp2 9' pp

=iZ'(k, t=0;p„p2)y(p2), (4.2)

where the initial value Z'(f =0) can be computed
exactly""' in terms of the equilibrium properties:

iZ'(k, f =o;p„p,)m(p. )

3,. l'-»(~) I ' 8 I s [V(p ) —~(p, —p. )1 V'(p. ,

(4.3)

IV. PROPERTIES OF THE APPROXIMATE COLLISION
OPERATOR

The general properties of the exact collision
operator, Eq. (3.1}, have already been reviewed
by Forster. ' It is convenient to express them in
terms of the Fourier transform in time of iZ'(t),

1'(k, &u;p, p') =i dte'"'Z'(k, t; p, p').
eo

(4.1)

A. Invariance and symmetry properties

Equation (3.5) leads to a function I'(k, +, p„p,),
defined by Eq. (4.1), which is (i) real, (ii) sym-

For the approximate collision operator given
by Eq. (3.5), some of the general properties are
still trivially satisfied while others need a more
careful investigation. %e now review the proper-
ties of Eq. (3.5)

where h(h) and c(h) are related to the static struc-
ture factor"" by S(h) =1+h(h) = [1 —c(k)] '. By
direct computation one can show that Eq. (3.5) sat-
isfies this first sum rule exactly, i.e. , computing
the right-hand side of Eq. (4.2) from the approx-
imation, Eq. (3.5), one finds the right-hand side
of Eq. (4.3). As a matter of fact, this property is
guaranteed here by the very construction of the
approximation given by Eq. (3.5). The first sum
rule for Z'(f), Eqs. (4.2) and (4.3), guarantees
then, in turn, that the first three sum rules for
S(k, t; p, p ) will be satisfied and hence that the
statics S(h} and the short-time behavior of S(k, t)
remain exact.

It is important to note that if we had used Mazen-
ko's symmetric vertex renormalization, together
with the disconnected approximation for C, the
sum rule Eqs. (4.2) and (4.3) would have been vio-
lated (see for instance Eqs. (3.11) and (3.12) of
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Ref. 4(b)). For problems where the short-time dy-
namics is important, this will constitute a major
defect.

(f I'(k, (g) [f)

dp, dp, p, l, ~p„p, yp *p, -o,

D. Positivity

The system's stability is related to the positive-
ness of I'(k, &d;p„p,} defined in Eq. (4.1). There-
fore we would like, for an arbitrary function f(p),
that

(4.4)

would still hold for I'(k, &u) as obtained from Eqs.
(3.5} and (4.1). We have not succeeded in treating
the general case, Eq. (4.4), but instead have con-
sidered the local and Markovian case k =0, ( =0
for which we obtain from Eq. (3.5)

«I~&0»«& , f,„-f, .»,
''

«~;ls&&. &I~&«lh&, &I»-&~;l~&&, &l»&&l~&&. &I~», (4.5)

where we have put E;=1 ~ (8/Bp}f(p},

B(T, &d;P„P,) =S(1,«&;P„P,) [nV'(P, }]',
S(1,e;p„p, ) being the Fourier transform in time
of S(l, f;p„p,). Since (f~S(1, ~)

~ f) ~ 0, for all f,
Schwartz's inequality for the scalar product (4.4)
ensures that the factor between brackets in the
right-hand side of Eq. (4.5) is positive. Hence the
condition

(f (r(o, o}~f) o, (4.6)

E. Vertex and propagator renormalization

The relation of Eq. (3.5) to our previous unre-
normalized kinetic theory" '~'~ is quite straight-
forward. Indeed, without the vertex renormaliza-
tion the c(l) factor in the first two terms on the
right-hand side of Eq. (3.5) would return to their
f&are-potential values: c(l)- -nPV, . Moreover,
without the propagator renormalization the third
term in the right-hand side of Eq. (3.5), which de-
scribes the necessary readjustment of the initial
condition, will also be absent and Eq. (3.5) is seen

for all f, will be satisfied as long as the direct
correlation function c(l) does not change sign, or
else does so in a region of / values which contri-
butes little to Eq. (4.5). Note that both for weak
coupling and for small I, c(l) tends to -nPV„ i.e. ,
c(l) (0. When one of these conditions on c(l) is not
satisfied no general statement about the validity of
Eq. (4.6) canbe made and &2 fortiori, about Eq. (4.4).

to reduce then to the unrenormalized collision op-
erator of Eq. (3.la) of Ref. 5(b).

In Ref. 4, Gould and Mazenko consider the sin-
gle-particle motions of a classical one-component
plasma and use the symmetric vertex renormaliz-
ation and the disconnected approximation. It is
shown that their approximation leads to incorrect
short-time dynamics. If we adapt the approach of
Ref. 4 to the present case, the third term in the
right-hand side of Eq. (3.5) would be slightly mod-
ified, while the bare potential V, in the first two
terms of the right-hand side of Eq. (3.5) would be
renormalized to -c(&|)/nP.

F. Relation to the BGL collision operator

The linearized BGL theory is concerned' with the
local Markovian collision operator Z'(k= 0, z = 0)
for weak'ly coupled systems. Our approximate col-
lision operator of Eq. (3.5) is seen to depend on the
one-particle propagator S(k, t; p, p ) which is given
self-consistently in terms of the collision operator
by Eq. (2.1). In order to obtain Z' for a weakly
coupled system, we first compute Z' with the aid
of the expression for S obtained from the collision-
less kinetic equation, i.e, Eq. (2.1) with the col-
lision term Z' deleted from Z. This collisionless
kinetic equation is nothing but a linearized Vlassov
equation including, however, the exact statics.
Substituting this result for S(k, f;p, p') into Eq,
(3.5) we obtain in the limit of vanishing k and z

v5 (1 ~ v, —1 v,) 0'(P,)0 (P,) —5(P, —P,) 0 (P,) dpi' +5(1, ~ v& —1 ~ vz) y (pz)
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where the dielectric constant e-„(z) is defined as

c(k) k ay(p)cga =I-
P z-x v

(4.8)

If we now also approximate the static properties
by their weak-coupling limiting value, we have to
replace the direct correlation function c(k) by its
weak-coupling Debye-Huckel expression c(k)
= cps(k) = -nPV„. Substituting this result into Eqs.
(4.V) and (4.8), the collision operator of Eq. (4.7)
is seen to reduce exactly to the linearized BGL
operator. Hence it is justified to call Eq (3..5) a
generalization of the BGL theory to finite values
of k, z as well as to strongly coupled situations.

Before closing this section let us indicate an in-
teresting property of Eq. (4.7). As stated above,
in the BGL theory one takes c(l) = -PnV„and
hence the I integral of Eq. (4.7) is seen to diverge
for large / values. From the computer results of
Hansen et al. '"~ we know, however, that

c(r=o) = 8, c(l)
dl

is finite and hence c(l) has to decrease at least as
I ' " (n) 0) for large l, in which case the l inte-
gral of Eq. (4.7) is seen to be convergent, repair-
ing one of the major defects of the BGL theory. '

r = — z = —' ~(3r)'".3Z 2~3

3 4w
(5.l)

Notice also that akD= (3r)'~'. Substituting now Eq.
(3.5) into the right-hand side of Eq. (2.6a) we ob-
tain for the direct part of g~

'Od~ —7igg /Ro- ~g(~) ~

with the dimensionless integral I, defined as

(5.2)

V. SHEAR VISCOSITY

The approximate collision operator given in Eq.
(3.5) will now be used to evaluate the shear viscos-
ity defined by Eq. (2.6). Very fortunately, the
third term in the right-hand side of Eq. (3.5) in-
volving the equilibrium triple correlations does
not contribute to the viscosity for symmetry rea-
sons. Let us first introduce a dimensionless vis-
cosity g*=q/q, with go=nm&u~k, ', where k, is a
characteristic wave vector which we will take
equal to the Debye wave vector kD when using A.

= k~/n as coupling constant, whereas it is more
convenient to put k, equal to a '= (4, mn)'~' when
comparing with the results of Hansen et a/. ' who
use I'= e'Pa ' as coupling parameter. We recall
that for a OCP of number density n, charge den-
sity en, mass density mn, and temperature 7
=(Pks) ' we have +~=4vne'/m and O'D=4vre'np,

whereas the relation between the two coupling pa-
rameters A. and 1 reads

00 2

dtc(l)G„„(l, t)(Z 1) p G„„(l,t) k —V, + k ~V, k. G„„~(l,t)8w' &1 Bl 91
(5.3)

where k= k/~k~, while 7 denotes a unit vector Z'= I
orthogonal to k. In Eq. (5.3), we have put moreover
V, =ko/l' and 6„„(l,t) =(I/n) J dp J dp'S(l, t;p, p')
which denotes the dimensionless density-
density correlation function. Notice that in Eq.
(5.3) and this section we will leave the scale factor
k0 undetermined, a procedure which allows an easy
translation between the X —I" and kD -a ' lan-
guages.

In order to compute the indirect part of the shear
viscosity q ~, defined by Eq. (2.6b), we have to
invert Z'(0, 0) in the subspace orthogonal to the hy-
drodynamical one. If we expand Z'(0, 0;p, p') into
a Hermite polynomial basis with respect to p and
p', the first nonzero contribution to Qz'(5; 0) Q
will come from the pressure-tensor states (-P;P;).
If we stop the expansion of Qz' Q at this first non-
vanishing contribution, which is equivalent to a
one-Sonine polynomial expansion, one can easily
invert Qz'Q and compute Eq. (2.6b) to be

q. , = nm Iim k-'(i~ Z'+ Z'(k, O) ~& i)
k~0

&&(«~tz'(0, o)~it) -'
&& (iI~ZD+Z'(k, 0)[i), (5.4)

where ~l i) = ~i l ) = k ~ p7 ~ p(nzP 'n' ') ' is the only
surviving component of the pressure states. %e
proceed now by evaluating the right-hand side of
Eq. (5.4) with the aid of the approximate collision
operator (3.5) and obtain for the indirect part of
rg +

q, [I+~ 1,(~)]'
n. ~.(~)

(5.5)

dt l.u'l. ~ 'c„„l,t
&& [s, G„„(t,t)]t —[V,c(t)],

(5.6)

where we have introduced two more dimensionless
integ rais

I =' ~-
2 y 0

D
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I3- -2 ko (ue 3 dtc I l' 0

G, (l, t)=p(nn2) ' dp dp'e pt. p'S(l, t;p, p').

The evaluation of the total (reduced) viscosity )7*

=g~„+g*.~ is now seen to depend on the value of the
three integrals I„ I„and I, defined, respective-
ly, by Eqs. (5.3), (5.6), and (5.7). Each of these
integrals contains information about the static and
dynamic properties of the system. In order to
separate them completely, we put G„„(l,t)
= S(t)G„„(t,t) with G„„(l,t = 0) = S(l) = 1+ h (t) = [1
-c(l)] ' denoting the static structure factor,
whereas G ~(l, t) = G~ (t, t), because G ~ (t, t = 0) = 1.
Using these forms in the expressions of I» I.„
and I„we see that all the information about the
statics can be expressed in terms of the static
structure factor S(t), whereas all the information
about the dynamics is contained now in the two cor-
relation functions G„„(l,t) and G, (t, t). Both func-
tions G„„(t,t) and G~(t, t) have the same limiting
values: G„„(t,t = 0) = G~(t, t = 0) = 1 and G„„(t,t = ~)
=G~(t, t=~) =0. With the help of this information
we can perform the time integration in I„Eq.
(5.6), with the exact result

ko
2 60@2

dx (2[S2(x) —1]+ [1-S(x)]), (5.8)

where we have put x =t/0, . Hence, from Eq. (5.8),
I, is seen to be independent of the dynamics. For
the evaluation of I, and I„we need, on the con-
trary, to specify the dynamics through the time
integrals of 6'„„(l,t) and G„„(l,t)G~(l, t). The pre-
cise way in which these integrands drop from one
(at t=0) to zero (as t-~) will depend on the value
of the coupling constant A, . The only available ex-
pressions for G„„(t,t) and G~(t, t) concern their
(a) free-particle limit, (b) random-phase approxi-
mation, and (c) hydrodynamical limit. ' ' A closer
inspecti'on of I, and I, reveals that the domain of
the l integrals corresponding to small and very
large values of L contributes little. Hence the ma-
jor contribution to I, and I, comes from the inter-
mediate I small t region because for later times
the integrands start to oscillate rapidly. There-
fore our basic approximation for I, and I, will
consist in taking the simple free-particle (FP) ap-
proximation for the dynamics (ur2 = )'2Dv, )

G Fp(t t) -(I/2)( lv2t) (5.9a)
.GFP(t t) e-(1/2)(lv&t) (5.9b)

x G„„(t,t)G (t, t) . (5.7)

$n Eq. (5.6), G~(t, t) denotes the dimensionless
transverse momentum correlation function

while keeping the statics S(l) exact.
Because of the long range of the Coulomb poten-

tial, the static properties become of overwhelm-
ing importance and, hence, we are forced to use
the numerical values of S(t) as input. As far as
the dynamics are concerned, our approximation
treats them correctly for short times especially
because as a result of the sum rule (4.2) we start
from the exact initial condition, . Hence, the major
uncertainty of our calculation resulting from the
use of Eq. (5.9) stems from the neglect of the os-
cillatory tails iri the time integrals of Eqs. (5.3)
and (5.7). Note, however, that in the intermediate
/ region, which contribution dominates, these os-
cillations are strongly damped, as are the plasma
oscillations which give rise to them. This re-
mains true for all values of A. , the coupling con-
stant. Hence, we expect our approximation to re-
produce, at least qualitatively, the behavior of g
as a function of A. over the, whole range of A. values
belonging to the fluid phase.

If we now proceed to compute I, and I, with the
help of Eq. (5.9) we obtain from Eq. (5.3)

Fp 1 ko

60 "' u D

and from Eq. (5.7)

1f FP = „, dxx[1-S(x)].
0

(5.10)

(5.11)

To obtain Eq. (5.10), we have used the general
properties S(l =0) = 0 and S(l =~) = 1. Most re-
markably, I,"' is independent of the statics. To
proceed with I, and I, we have to use a numeri-
cal integration, the results of which are presented
in Sec. VI.

VI. NUMERICAL RESULTS

In order to compare our results with those of
Hansen et al. ,

' we take the scale factor &o equal
to a ' = (—2'vn)'/' and measure the coupling with the
aid of I' of Eq. (5.1). To proceed with the evalua-
tion of I„Eq. (5.8) and I, , Eq. (5.11), and hence
of )7* through Eq. (5.2) and Eq. (5.5), we need the
values of S(k) which we will take from the litera-
ture.

S(x)=, +, for x~ 1,x~
X' XT

(6.1)

where )('r/Xr is the ratio of the isothermal com-

A. Large l": 2~& I" ~&160

For the I values in the range 2& I' & 160 we have
used the Monte Carlo results of Hansen et al.""""
for S(x) with x =)'2a & 1. For x ~ 1 we have used the
analytic result"" ""'
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I, = (1/6Ov')(0. 49 2.22r-'~'),

I,"= (1/10 'I')(2.411'/'),

whereas Eqs. (5)-(10) yields exactly

IF'= (1/60 'I')(1/sr) .

{6.2a)

(6.2b)

(6.8)

From Eqs. (6.2), (6.8), (5.1), (5.2), and (5.5) we

see that both gd*„and g,*,„are separately positive
for all I' values as they should be' and that, as
expected, "d' g~~„ increases while g,*,~ decreases
with increasing I'. Hence q* = g~„+q,*,~ is bound
to exhibit a minimum as a function of 1". The pre-
cise values of q* are given in 'Table I, whereas
the variation of g* with I over the whole fluid
phase 2 ~ I" ( 16O is pictured in Fig. 1. We have
also compared our results with those of Hansen
et g$."" The overall agreement is rather good,
whereas the existence of a pronounced minimum
is also confirmed here. 'The position of the mini-
mum is, however, rather sensitive to the various
approximations. We have located the minimum
at I'= 8 corresponding to q*„=O.OVO, whereas

pressibilities of, respectively, the perfect gas
and the OCP. We have computed y~ from the equa-
tion of state given by Galam and Hansen, "" The
right-hand side of Eqs. (5.8) and (5.11) have then
been computed analytically in the range O ~ x ~ 1
and numerically in the range 1 ~ x ~ ~. To test
the precision of the numerical integration, we have
compared our results for the integral f, Ck'[1
—S(x)] which appears in I„Eq. (5.8), with the
Monte Carlo results for the correlation energy
density'~'~ to which this integral is proportional.
We found the error to be less than 1/g for all the
values of I' listed in Table I. We also found that
the numerical values obtained in this way can be
fitted to within a few percent to those obtained for
7i* (but not for I, and I~F ~ separately) from the fol-
lowing power laws:

B. Intermediate I'. O.I ~~I' ~~ 2

In this domain of I' values no Monte Carlo re-
sults for S(k) are available. Here, we have used
the values obtained for S(k) by Hansen' through
numerical solution of the hypernetted-chain equa-
tions" for 0.1 «I ~1. In this region, the fits pro-
vided by Eq. (6.2) are no longer valid while we do
not possess as yet sufficient I' values to present
fits adequate for the intermediate l" values.

It is interesting to note that in this region we
are not yet allowed to use the Debye-Huckel ap-
proximation for the statics or the BGL approxi-
mation for the dynamj. cs. Indeed, the use of the
Debye-Huckel approximation for S(k) leads, for
instance, to correlation energies which are too
large by a factor of 4 at, for example, I' = 2. As
far as the dynamics is concerned, let us recall"
that q*, as computed from the Landau kinetic
equation [with cutoffs taken as usual at k = kD and

k = (e'ti) '] would read

5~'~2
t)* =—= (~ inc ') '

3I' 2
(6.4)

where e =- X/4n" can be related to f' by Eq. (5.1).
Similarly, the value of g* as computed from the

0.6-

Hansen et a/. found the minimum at I -2O with
a slightly higher value of q*„. For I'=152.4 an
independent estimate of q~, based on a molecular-
dynamics'"' result, didyield g~= O.25, as indicated
by the isolated point in Fig. 1.

TABLE I. Reduced shear viscosity q*=q/emu&a2 for
2 ~ I' ~160 as calculated from the present kinetic theory.
The results obtained by Vieillefosse and Hansen I.Ref.
2(e)j for q* are denoted by pan and compared to the
kinetics-theoretic results.

0.4-

0.2-

0.1-

3
4
6

10
20
40

100
160

0.29
0.15
0.10
0.074
0.072
0.097
0.14
0.22
0.29

0.19

0.12

0.083
0.078
0.088
0.12
0.14

0.8

0.9
1.2
1.6
1.8
2.1

0--
1

I i
2 3 4 6 10

I

20 40 70 100 160

PIG. 1. Reduced shear viscosity g~=q/nm~&a2 as
a function of I' for 2~ l"» 160. The solid hne (WB)
de~otes the present kinetic-theory results. The dashed
line (VH) corresponds to the results of Vieillefosse
and Hansen [Ref. 2(e)], while the isolated point (cross)
at &=152.4 is taken from Hansen, McDonald, and
Pollock [Ref. 2(c)] .
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BGL equation [with a cutoff at k = (e'P) '] is"
0.346

~BGL ~L ~+ l ~ 1 (6.5)

malization Eq. (5.11) is replaced by

, [1-S(x)]'
$3 10 3/2 dt's

g( )
1 (6 6)

These approximations of p~ are still inadequate
for the intermediate ~ values as can be seen from
Table II. At the lowest possible value j[.

"=0.1,
these weak-cou. pling theories lead to g„*= 93 and

q~~o~ =-83, whereas we obtain @*=86. The agree-
ment here is already rather good in view of the
cutoff uncertainty in Eqs. (6.4) and (6.5) and in-
dicates that we are approaching the region where
the weak-coupling theories become adequate.
Our values of g~ for the intermediate I' can be
found in Table II, whereas Fig. 2 indicates the
transition from weak to strong coupling. In the
weak-coupling region I' ~ 0.1, no values of S(k)
are availabj. e but the agreement found at ~ = 0.1
seems to indicate that for I' ~ 0.1 Eqs. (6.4) and
(6.5) should yield reliable values of ri.

C. Importance of first sum rule

At various stages we have insisted on the im-
portance of using an approximate collision opera-
tor Z'(k, f) which still starts from the exact initial
condition Z(k, f=0) given in Eq. (4.3). The shear
viscosity is determined by the zero-frequency
collision operator Z (k, z =0) which is the time in-
tegral of z'(T, t); z'(T, z = 0) = f, dfz'(T, f). Be
cause of the damped plasma oscillations which
show up in Z'(k, f) at later times, the value of

f, dtZ'(k, f) is very sensitive to the short-time
behavior of Z'(k, t) and hence to its initial con-
dition Z'(k, t= 0). As our approximate collision
operator of Eq. (3.5) does satisfy the sum rule,
Eqs. (4.2) and (4.3), J.ts initial value is exact.
As discussed in Sec. III this would not have been
the case if we had used RJazenko's symmetric
renormalization. To estimate the quantitative
importance of the sum rule we have compared the
kinetic shear viscosity gr*= (U, )

' as computed
from both theories. In the present theory, the
kinetic shear viscosity p~ is determined by IF
as given in Eq. (5.11). With Mazenko's renor-

where x = 0/0, . The ratio of ri„, computed with the
aid of Eq. (6.6), to riz, computed with Eq. (5.11),
is given in Table III. We see that q~ systematically
exceeds g~ by a factor of about —,'. This ratio is
of the same order of magnitude as the one between
the values of the self-diffusion constant computed
by Gould and Mazenko to the molecular-dynamics
values. We conjecture that a modification of their
calculation that retains the exact first sum rul. e
for Z' might bring their calculated values closer
to the molecular-dynamics ones. Note also that
at the edge of the weak-coupling region jI. =0.1,
the ratio qr/7)+=1. 35 is still significant, whereas
our value of q~ already compares favorably with
the BGI value. In the weak-coupling region j."«1,
all theories should nevertheless become equiva-
lent. .

VII. CONCLUSIONS

We have set up a microscopic theory capable of
studying the transport properties of strongly

100- '-X

10-

0.1
0.5
1
2

86-
3.7
1.0
0.29

0.35
0.19

TABLE II. Seduced shear viscosity q*= g/nm(d&g2 for
0.1 ~ P «2 as calculated from the present kinetic theory
and compared with the results from the Landau (g&) and
QQL theory (q&+GL) and from ref. 2(e) (gvH).

r 71 gpGL RVH

0.1 -'

0.1

FIG. 2. Reduced shear viscosity q* = q/em~&a2 as a
function of 1 in the transition region from weak to
strong coupling 0.1 & I'& 4. The solid line (WB)
denotes the present kinetic-theory results. Thedashed-
dotted line (L) and the dotted line QGL) represent the
weak-coupling results given by the Landau and BGL
expressions of, respectively, Eqs. (6.4) and (6.5).
The dashed line (VH) corresponds to the strong-
coupling results of Vieillefosse and Hansen. [Ref. 2(e)), .
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coupled plasmas when the equilibrium properties
are used as input. To this end, - we have used a
general kinetic theoretical setup, summarized in
Sec. II, which follows closely the previous studies
of Forster' and Mazenko' as adapted by one of
us'"' to the case of Coulomb systems. It provides
an elegant scheme for the study of the equilibrium
fluctutations and transport properties of the clas-
sical OCP. In order to perform explicit calcula-
tions, an approximate expression of the collision
operator Z'(k, z) is, however, needed. Such an
approximate collision operator was derived in
Sec. III ori the basis of a slightly modified version
of Mazenko's FRKT.' The result, Eq. (3.5), rep-
resents a rather straightforward generalization
of the BGL theory. It does, however, satisfy a
number of additional requirements, correcting
thereby a number of well-known defects of the
BGL theory. Amongst them we cite the fact that
no divergent integrals appear, that both the wave-
length and frequency dependence of the collision
operator is retained, and that the collision process
is reasonably well described even for finite coup-
ling constants A. =k~/n For .instance, at t=o the
collision process is described exactly to all orders
in X.

To test our approximation, we have computed
the shear viscosity of the OCP over a wide range
of X values covering the fluid phase. Here, besides
the standard one-Sonine-polynomial approximation
for computing the inverse of the collision operator,
other approximations have been necessary. We
took the point of view that the behavior of q as a
function of A. could be rendered, at least qualita-
tively, for all X, when keeping the static proper-
ties exact while using a rather naive approxima-
tion for the dynamics. This point of view is based
on the observation that, in the presence of the
long-ranged Coulomb forces, the static proper-
ties become, indeed, of overwhelming importance,
while, on the other hand, the dynamics mill al-
ways lead to compensating plasma oscillations
which emphasize therefore the short-time dynam-
ics which, in turn, is treated exactly within the
present approximation.

From Table I and Fig. 1 it can be seen that the
results of this rather simple kinetic theory, with-
out adjustable parameters, compare at least
qualitatively with the results obtained by Vieille-
fosse and Hansen"" from the formalism of gen-
eralized hydrodynamics with a Gaussian approx-
imation for the memory function of the shear
viscosity and fitting the parameters of the Gaus-
sian with the aid of sum rules. These authors
also used the superposition approximation for the
triplet equilibrium correlation function which ap-
peared in their second sum rule. For smaller

TABLE III. Reduced kinetic shear viscosity g&= gz/
nmco&a2 as computed from Eq. (5.11) compared with the
results gz~ obtained from Eq. (6.6) based on a symmetric
vertex renormalization.

0.1
2
6

20
100

87
0.35
0.058
0.0089
0.000 75

117
0.53
0.086
0.012
0.000 97

1.35
1.54
1.47
1.38
1.30

values of the coupling than those considered by
the previous authors we have obtained, moreover,
the transition from the strong- to the weak-coup-
ling regime which in turn can be adequately des-
cribed by the BGL theory as seen from Table II
and Fig. 2. Finally the importance of keeping
the description of the short-time collision process
exact for all X values is shown quantitatively in
Table III.

As a by-product, we also obtained a simple ex-
planation" ' of the appearance of a minimum
in g~ as a function of X, one of the most striking
features of the results of Vieillefosse and Han-
sen."" Indeed, within the present kinetic theory,
the shear viscosity g appears as the sum of two
partial viscosities q«, and g„~, each of which is
separately positive. ' Note that our approximations
do preserve this property. On dimensional
grounds, one expects g«„which is proportional
to the collision operator, to increase with X,
whereas q„~, which is inversely proportional to
the collision operator, to decrease with X and
hence their sum is bound to exhibit a minimum.
This property, which is certainly true for small
A, is seen here to persist for large X. Indeed,
from Eq's. (5.2) and (6.3) we see that qf„ increases
as 1"i', whereas Egs. (5.5) and (6.2) indicate that
7l'f„, decreases roughly as I' "i"[here I" is simply
related to & by Eg. (5.1)]. The behavior of q* as
a function of F reflects the behavior of q as a
function of the inverse temperature T"'. Note also
that the behavior of q as a function of the density
n is given by F'i'q*(1) (which is seen to increa, se
monotonically with F -n'i'). The very position
of the minimum of q*(F) is, however, seen to de-
pend on the approximations as we locate it at
F-8, whereas Vieillefosse and Hansen did find
F-20. Hence, in order to select a better theory
and test the approximations, a direct molecular-
dynamics calculation of g would be of much inter-
est.

In fact, very recently, after this work was com-
pleted [see Ref. 5(d)], we learned about a molecu-
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lar dynamics (MD) calculation of the Green-Kubo
formula for the shear viscosity. '2 The ratio, q»/
q~ of our result (q») to the molecular-dynamics
one (qMD) reads, q»/qMD = 0.9V, 0.86, and 1.22 for,
respectively, 7=1.0, 10.4, and 100.4, which are
the three values of F considered in these MD ex-
periments. The statistical errors in these ex-
yerirnents have been estimated" to be of the order
of 15/p. Hence, the agreement with our relatively

simple kinetic theory, without adjustable para-
meters, is rather good.
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