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Quantum theory and selection rules of laser-induced predissociation of diatomic molecules without actual
absorption or emission of laser photons are given. The rate of induced predissociation is a function of the
externally controllable laser-field parameters: intensity, frequency, and polarization. Both perturbative and
nonperturbative theories are used in the analysis, providing treatment for both low and high laser intensities.
The region of validity of perturbative results is determined by comparison with the exact results and is given
by a simple criterion. An approximate expression is given for the convenient calculation of the induced
predissociation rate. Laser-induced predissociation without absorption or emission of laser photons also occurs

in polyatomic molecules, and the analysis is similar.

INTRODUCTION

A stable electronic state of a molecule may be
crossed or closely approached by an unstable or
less-stable electronic state (see Fig. 1). Various
interactions between the two electronic states may
cause transition from the stable state to the less-
stable state leading to dissociation of the molecule
without reaching the dissociation limit of the
stable state. Such a phenomenon, called predis-
sociation, iswell known in molecular physics.!:2
Some known interactions leading to predissocia-
tion are nonadiabatic interaction (spontaneous pre-
dissociation®), hyperfine interaction (hyperfine
predissociation?), dc magnetic or dc'electric in-
teraction.®

Recently, Lau and Rhodes have predicted and
analyzed a new mechanism of predissociation due
to applied laser fields.®” In this so-called nonres-
onant laser-induced predissociation, the coherent
electromagnetic field interaction introduces a
direct (e.g., electric dipole) coupling between the
two electronic states® or an effective (via other

“electronic states) coupling between the two states.”
Thus molecules in the stable electronic state havea
certain probability of transition to the less-stable
state, leading to predissociation if the energy of
the molecule in the stable state exceeds the dis- ,
sociative asymptote of the latter state. This
transition probability depends on the externally
controlled laser intensity, frequency, and polariz-
ation.

As distinguished from resonant processes,®!?
which require actual single or multiphoton absorp-
tion or emission of laser photons, the nonreso-
nant laser-induced predissociation does not require
actual absorption or emission of photons.'* The
same laser-induced nonresonant effect producing
the predissociation can manifest itself in the con-
text of other molecular processes such as atomic
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and molecular collisions, dissociation, and as-
sociation.®*” These nonresonant effects have the
advantage of nof requiring resonant frequency
match, which can be rather stringent for a given
transition of interest. From energy consideration,
the nonresonant effects of the laserare interesting
because physical or chemical changes can be in-
duced without requiring the expense of photon
energy.” From the viewpoint of chemistry, the
laser photons can also be viewed as acting like
catalysts to effect these changes.'*

The purpose of this paper is to give a fully
quantum theory of and general results for the
rates of nonresonant laser-induced predissocia-
tion for any configurations of the molecular poten-
tial curves (see Fig. 1), although the physical idea
and a simple formula applicable to some limited
configurations were given in Ref. 7. In addition,
the treatment given here differs from Ref. 7 in
the following aspects: First, the quantum rota-
tional motion is explicitly treated and evaluated
here whereas in Ref. 7 it was neglected except by
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FIG. 1. Schematic illustration of different configura-
tions of potential curves as function of the internuclear
distance, leading to various subcases of predissociations
from the stable to the less-stable state. The notations
are the same as Mulliken’s. The theory presented here
is applicable to the laser-induced predissociation in
all these subcases.
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including the rotational contributions to the elec-
tronic potential curves. Second, selection rules
for allowed nonresonant induced transition are
giveri here. Third, in this paper both perturba-
tive and nonperturbative results (each with their
own usefulness depending on the laser intensity)
are presented and compared to determine the
validity of the former. In the following paragraphs,
the significance of these points are discussed and
the outline of the paper is given.

Herzberg' and Mulliken? have discussed various
subcases of field-free molecular predissociation
via crossing or close-lying electronic potentials.
The division of various subcases is based on
whether the dissociation asymptote of the unstable
state lies (a) approximately at, (b) above, or (c)
below the energy at which the potentials cross or
approach each other closely. This distinction is
significant because as seen in Fig. 1 the different
subcases lead to different observable predissocia-
tion limits, etc.’? The three subcases are further
distinguished depending on whether the internuclear
distance R, of the crossing is smaller than (de-
noted by superscript “~"), about equal to (denoted
by superscript ¢), or larger than (denoted by
superscript “+”) the equilibrium distance of the
more stable state. A fourth variation in each sub-
case is that the unstable potential curve comes
into close approach with the stable electronic po-
tential without crossing it (denoted by superscript
0). The distinction of these variations is signifi-
cant because the Franck-Condon factors in these
variations are quite different.!’? The theory pre-
sented in Sec. I can be used to analyze all these
subcases.

For a given laser intensity (which can be weak
or strong), there is a time domain A¢ (<y™!) such
that the rate y (per unit time) of laser-induced
predissociation can be derived by time-dependent
perturbation theory. Two such formulas are given
in Sec. I, one valid up to moderate field intensity
and the other being necessary for strong-field
intensity. These formulas give a prescription of
accurate (possibly numerical) evaluation of the
laser-induced predissociation rate from any ro-
tation-vibrational state of the molecule. In this
section, we also give some selection rules for
predicting nonresonant field-induced avoided cros-
sing and the associated field-induced transitions.

For the solution of the interaction of the molecule
withthe laser radiation, we use theories developed
from first principles.'*'!? For weak and moderate
laser intensities, we.can use well-known stationary
perturbative solutions; and for strong intensity,
highly accurate analytic solutions or exact numeri-
cal solutions are necessary.’"!! The latter solu-
tions of course include the perturbative solutions
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for the weaker field, but the calculation is less
familiar than the perturbative calculations. Since

" a small radiative interaction can induce a signifi-

cant predissociative probability after many vibra-
tions during the lifetime of the bound molecular
state, stationary perturbative results can be valid
where this effect is physically significant.

In Sec. II, the perturbative results are compared
with those of exact results and a criterion for the
accuracy of the perturbative results is given. An
approximate semiclassical result for the rate of
nonresonant laser-induced predissociation is also
given. The laser intensity necessary for experi-
ments can be estimated by Eq. (2.19). A summary
and discussion, and an appendix on the evaluation
of the rotational factors occuring in the transition
matrix elements are provided at the end of the
paper.

I. GENERAL THEORY AND RESULTS
A. Weak to moderate field intensity-perturbative regime
Let the molecular eigenstate Y3,4y be written
in the Born-Oppenheimer approximation as pro-
ducts of the electronic state ¢,,, the vibrational
state y,,as, and the rotational state ¢, :
Virvau = (1/V2)[@pa (T OR)Xora R )P o u(6)
£ @y o A(TORXora sl R - au(6V)],
A #0; (1.1)
Veova= Prc*( TR)Xurosdl R Wsou(69), A =0

where 6, ¥, ¢ are the Euler angles shown in Fig.
2 relating the body-fixed coordinate system xyz

to the space-fixed coordinate system x’y’z’; R is
the internuclear distance and T denotes the collec-
tion of electronic coordinates in the body-fixed
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FIG. 2. Definition of the Euler angles relating the
rotating body-fixed xyz axes to the space-fixed x’y’z’
axes. The internuclear axis of the diatom is usually
chosen along the z axis. If the laser polarization € is
linear, the 2z’ axis may be chosen along it.
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system. The coordinate of the first electron is
chosen to be (x,,y,=0,2,). The electronic state
¢, can be given more explicitly®:

e FOR) =fon(FR)EH® /(2m)2
(1.2)

P - A(TOR) =fzm({xl - yizi}y R)eih0 /(277)1/2,

where 7ZA is the magnitude of the component of the
electronic angular momentum along the internu-
clear axis Z; and %k denotes the rest of the electron-
ic state labels. For A =0, the nondegenerate
states ¢, and ¢,,- correspond to the Z* and =~
states, respectively.! The normalization of the
electronic state at each R is

27
[av [7 aslomFor)P=1. (1.3)
(1]

The vibrational state x,,»,(R) for a given effective
potential Uy, ;(R) is labeled by the vibrational
quantum number v and is normalized according to

|7 4R R¥lxns I =1 (1.4)
0

The rotational wave function §;,,(6%) of a sym-
metric top''® is labeled by the square of total
angular momentum J(J +1)%% and its component
M along the space-fixed 2’ axis. It can be written

Drau(0P) = GJ’AM(O)e“M s

with normalization

27 T
f dzpf 46 sinblp, (02 =1. (1.5).
(0] 0

Let the initial bound state of the molecule be
Uia,su and the final state be ¥54p,., Where s and
s’ stand for the “+” or “~” sign. The continuum
wave function of the vibrational part of the final
state is normalized such that'®

_[dR RPXpwayXewas =0(E - E). (1.6)

We shall call the nonadiabatic Hamiltonian leading
to field-free predissociation® #Z7T and the radiative
interaction Hamiltonian® z’. Since the transition
does not require actual photon absorption or emis-
sion between the states ¥§y,sy and Yipgra, the
first-order matrix element of 4’ between states
of equal photon numbers is zero. The predissocia-
tive transition from the bound state to the continu-
um state is induced by an effective interaction be-
tween the two states via radiative coupling (or
virtual transitions) to other states. We find the
effective radiative interaction Hamiltonian H’(R)
at each internuclear separation R. This form of
H'(R) is valid if the initial molecular states are
far off resonant from any intermediate molecular
states connected by significant dipole moments.

It is sufficient here that the radiative interaction
is solved by standard stationary perturbative the-
ory because we are considering weak to moderate
laser intensity. To lowest nonvanishing order, the
result for H’ is"

H'=6.8626 X 1075221 Z: Q) as oy By (Py |,
aBY .

(1.7)
where we have used greek subscripts to stand for
the electronic state quantum labels 2A, £~ A, etc.,
and where the frequency factor!®

Aﬂy(R)E (wﬂ;wr)/[l_(wﬁ_wr)z/a’z-, (1.8)

is given in terms of the electronic poter{tial ener-
gies 7Zwg(R) and the laser photon energy 7w, and
the electric dipole moments u (in a.u.) are defined

as(R) = (Pal=Y aiFlleg - 2, (1.9)

where € is the laser polarization. In expression
(1.7), 1in micrometers is the laser wavelength
and I in W/em? is the laser intensity.

The rate of predissociation (including both the
laser-induced and field-free components) from the
initial state ¥§,,,4 to the final state Y5,z oy is
given by

Yosu= ZWHWZM' Y3 nerwlH +T s wl?, (1.10)

provided that the time interval Af, for which the
above rate formula is valid, satisfies

YoruAE <1, (1.11)

The continuum energy E is equal to the initial
vibrational energy E,,,,. If the initial-state popu-
lation is given by the distribution g, ;4 such that

2, guru=1, (1.12)

v

then the total rate of predissociation is
y=;ngMvaM- (1-13)

Kronig [see Eqgs. (18) and (19) in Ref. 3] has
evaluated the matrix element for field-free predis-
sociation due to nonadiabatic terms. The quantity'®
Wamrwl T3 avr uy

=(1/B)w(kvdAM, ' EJN'M)6,. 0,0,  (1.14)

of his expressions. The matrix element is non-

zero only if
A=A (1.15)

called the homogeneous predissociation, or if

AT =Nt (1.16)
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called the inhomogeneous predissociation. Fur-
thermore transitions occur between states of the
same parity (“+” or “~”’ under spatial inversion
of Ygapsu) ONIY:

ety —a—— bpom . (1.17)

For homonuclear diatoms, transitions are allowed
between symmetric (under exchange of the two

nuclei) states or between antisymmetric states only,

S+~=S, Q+a, S-ta. , (1.18)

With the space-fixed 2’ axis chosen along the
linear polarization of the laser, we can evaluate
the matrix elements s occuring in Eq. (1.7) as
follows:

Loy (RO) =(@prarl = D a:2{|0nn)

=Mg,(R)M 4 (6), (1.19)
where the transition electric dipole moments
[" éi "A"KA(R) + %Yk"A"kA(R)] 5A"A+1 )
Mgy(R) = (2 iXprama(R) + 2 Vo pga (R) [0 p0p-
ZypnmaR)Opnp 5 (1.20)
with
Xyramps R) = (forne(F R = D aix; | fun(F,R))

Yin vpa (R) = (frupn (T, R)|— ZQiYilka(?, R)y, (1.21)

Z;z"A"kA (R) = <fk”A”(-f‘y R)l" Zqizil ka(-f,R» ’

Whnz el [Ysa0 ) = 6.8626 X 10715021 4[1 + (=1)7"+7* “”A]{<mw,.

where the factor

ME5A(R) = My pogonr (R)Myepn (R)Dgramga (R), - (1.28)
is R dependent whereas the factor
My rsau

= (D yonese (OD)| Mps ()M porp (V) 4 g (69)) 0404y

(1.29)

is independent of any coordinates. We have used
the properties under spatial inversion of various
quantities (see Sec. IB) to obtain the above simpli-
fied result. Note further that it is much easier to
perform the sum over £”A” before the R integra-

and where the angular factors are

Sin€dpnp.; s

MA"A(G):{ (1.22)

CcOS G0,y .

We note that if we use the following relation valid
for A #0° (i.e., Z7):

Seamidxivizit, R) =fuin €% = 31244, R), (1.23)

then the following relations enabling simplification
in calculation hold:

 Xpra a0 o A= Xprpv s
Yoo an, h-a==Yirnoga (1.24)

Y e

But for ~A’/=-1 and A =27, the following relations
hold instead:

Xpre 100" = =Xy 0" 5

1.25)
Yire 1,00 = Yerr 1,00 (

since

feo Qxivizid, R) = ~foo- x; = v:2,}, R) . (1.26)

Now the matrix element (Y§g o lH' [¥5r0s ) Te-
sponsible for nonresonant laser-induced transi-
tions can be evaluated with the aid of Eq. (1.7) in
the following simplified form:

Case (i): A’ #0, A #0.

e :
; MESARMY s au

XorAd >

,;M:i'&-l(qu P

* 5A'15A1< XEr15

leu.r>} ’

(1.27)

r

tion. In the expression (1.27) and others given
below, if the sum as a function of R is nearly con-
stant over the region around R where the vibration-
al wave functions have significant overlap, then it
is possible to simplify the calculation further by
taking the sum outside the integral over R. For
example, the first term in the curly brackets in
Eq. (1.27) becomes, under this approximation,

opn A
Xewara | Xoras) kL\; Moo s R)M 3 pog pu s

where [(Xzuarsr [Xoras)|? is the Franck-Condon fac-
tor of the initial and final states.
The other expressions in case (i) are
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Wenm s H [Ysnosu) =6.8626 X 10715

XN [1 = (=1)7 1744
x {expression}, (1.30)

J

Whrorroae [ H? [0 po ) = 6.8626 X 10735X2T (1T + (=1)7 "] < XEwes"

and

(VrovawlH' [Yaup = 6.8626 X 107N 5[1 = (=1)7* 7] < Xewor

Case (iii): A’=0, A=0. The results are

(lp:’ov' J'M'l H’|¢:ovJM> =6.8626 X 107°A%] [1 + (—I)J’ +J] {M}’OJOM < Xv'rror®

and from consideration of symmetry of electronic
wave functions under reflection of a plane through
the internuclear axis, one has

Wrovae lH | Veowau) =0,
for any J’, J, etc.

The results of evaluating the factors M4y ;au
occuring in (1.27)-(1.33)are given in the Appendix.
In Eq. (1.29), the selection rule M’ =M occurs be-
cause we have selected the space-fixed 2’ axis
along the linear laser polarization. If there is
linear polarization of another laser field or com-

ponent of circular polarizations along the %’ or the
P’ axis, the general selection rule is

M=M,M+1,M+2.

(1.34)

(1.35)

In the Appendix, we show that the selection rule
for J' is

J'=J,Jx1,J+2. (1.36)

Using this selection rule for the nonresonant laser-
induced transition and that expressed in Eq. (1.14)
for the field-free transition, the rate y,; in Eq.
(1.10) can be written )

Yoau = 27%‘@;51\'}2 JMIH'|¢§Avm>
+ (e ae TV a0su) |2

- s 71,8 2
+21k J,Z_zl@"""“’""‘lﬂ [Yenva) - (1.37)

PAL S

Since (Y5 azrulH’| Yiaosu) 25 seen from Eq. (1.20)
and (Y5 a-zrul T|Y5os4) 2s seen from Egs. (18) and
(19) of Ref. 3 are complex numbers in general,
therefore the J’ =J transition contains an inter-
ference term between the field-induced and the
field-free predissociation, whereas other J’ #J

*t3 Moron < Xvrtor

where the expression inside the curly brackets is
identical to the one inside the curly brackets in Eq.
(1.27). '

Case (ii): A’=0, A #0. The results are

g A
XA: MEEAR)M Y s s pu

BTAY

.XvaJ> (1.31)

XvaJ> .

; Mo+ (R )‘ XvkoJ>
Xvko.r>} H (1.33)

transitions do not contain such interference effect.
The J’ #J transitions represent new rotational
states allowed by laser-induced transition that are
not allowed for field-free transition.

(1.32)

- A
;’ MagaR)Myipr s o

B

1

2 ME%R)

B. Selection rules

In Séc. IA the selection rules (i) M/ = M=0,+1,+2
and (ii) J' =J=0,+1,+2 have been given. Additional
selection rules are given in this section.

(iii) Nonresonant laser-induced transitions are
allowed between states ¥, ,,, of the same parity
under spatial inversion; and not otherwise,

bt m—em, e, (1.38)

To prove this statement, one shows H’ in Eq. (1.7)
is invariant under spatial inversion by noting first
that each term in its sum contains a product of two
matrix elements of ~Y)¢;T; + 2, and states |¢,),
etc., occur as a product of bra and ket ¢ ){(@4l;
and secondly that for A #0, each of the summations
over ¢, 3, and y includes the 2 - A term as well
as the kA term. The “t” parity of the molecular
states Y,z in Eq. (1.1) is given by the factor
£(—1)7** because under spatial inversion?

Venoau = i('—,l)_'rm‘/):mu.rm (1.39)

One should not confuse the notations “+” denoting
even-odd parity under spatial inversion with the
superscript “t” in @, -

(iv) For homonuclear diatom, nonresonant laser-
induced transitions are allowed between molecular
states ,,,4 that are both symmetric or both anti-
symmetric under the symmetry operation of inter-

changing the two nuclei, but not otherwise,
S+—=S, A-—a, S~r-a. (1.40)

To prove this, one can show easily that H’ is in-
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variant under the interchange of the two identical
nuclei by using the invariance of = }¢;T; *& under
the operation and the nature of the summations

and the occurence of products of bra and ket of -

the same electronic state, as noted in connection
with the proof of statement (1.38) above. The sym-
metry (antisymmetry) of the molecular states
Uravsu 1S given according the positive (negative)
value of the factor +(—~1)*7 because under exchange
of the two nuclei®

Vs nvou—~2(=1F"7 Vonosu s (1.41)

where g is 0 for a gerade electronic state and g
is 1 for an ungerade electronic state.!

(v) For diatoms of equal nuclear charges (in-
cluding homonuclear diatoms), nonresonant laser-
induced transition between electronic states char-
acterized by gerade (ungerade) symmetries is
allowed if the quantity M%2,,(R) defined in Eq.
(1.28) does not vanish for some 2” A”. It is easily
seen that gerade-gerade and ungerade-ungerade
transitions are allowed, whereas gerade-ungerade
transitions are forbidden:

88, U—U, Z~U. (1.42)

(vi) Similarly the selection rules on the elec-
tronic quantum number A for allowed nonresonant
laser-induced transition are given by nonvanishing
value of M&3 A(R) in Eq. (1.28) for some £”A”,
Thus the allowed transitions are

A'=A=0,%1,22, (1.43)

which we may call the laser -induced homogeneous
predissociation (A’ = A =0), the laser-induced in-
homogeneous predissociation (A’ — A =+1) and the
laser-induced new-channel predissociation (A’ — A
=+2), respectively. The last possibility is more
intriguing because it is not allowed for field-free
nonadiabatic transition [see Eqgs. (1.15) and (1.16)].
Thus the laser-induced transition is easier to de-
tect because it is free of any field-free competing
transition to the same electronic channel.” This
is different from the fact that new rotational states
J' #J are accessed by laser-induced transitions
noted previously. This latter phenomenon holds
for all cases in Eq. (1.43).

It is also seen that nonresonant laser-induced
transitions are allowed for Z* -Z* or Z°-Z~ transi-
tion and not Z*-Z":

' B, T eI, Tz, (1.44)

The last forbidden transition Z* <~ £~ can be proved

as stated in connection with result (1.34); butthis

result is peculiar to the approximation in H'(R).
(vii) If electronic spin had been included in our

molecular wave functions, then in Hund’s cases

(a) and (b), the resultant electron spin § of the in-

itial and final molecular states obey

S'=S=0, (1.45)

since the effective Hamiltonian H’ contains no

operator on the spin wave functions. In addition,
2’=-Z=0 for Hund’s case (a);

) (1.46)

K'-K=0, £1, +2 for Hund’s case (b).

(viii) Selection rules (1.43)~(1.46) presume that
spin-orbit interaction in the molecule is negligible
and are valid for molecular states described by
Hund’s cases (a) and (b). When spin-orbit inter-
action is large [Hund’s case (c)], the states are
characterized by the quantum number £ instead of
A. Therefore selection rules (1.43)-(1.46) are re-
placed by

Q' -Q=0,+1,+2 for Hund’s case (¢). (1.47)

Selection rules (1.42)—(1.47) are useful in choos-
ing a molecular candidate to observe the nonreso-
nant laser-induced transitions. As seen from Eqgs.
(1.27)-(1.34), besides satisfying these selection
rules so that there is nonvanishing induced transi-
tions, it is desirable to have large electric dipole
moments My pnpn-(R) and Myupmp (R) for some /A"
at the region where the initial and final vibrational
wave functions have significant overlap. Selection
vules (1.42)—(1.47) are also useful for deciding on
the existence of avoided crossings in the electron-
field adiabatic potentials induced by nonvesonant
laser radiation®" (see below). Significant avoided
crossing is induced between electronic states with
allowed virtual transitions to some common inter-
mediate state(s).

C. Strong laser intensity—nonperturbative regime

When the laser intensity is sufficiently high such
that stationary perturbative solution of the charge-
radiation interaction becomes inaccurate, the non-
perturbative solution given before®™!° is necessary.
In the theory of the radiative-dressed molecules,!!:!?
the initial dressed molecular states are given by

Yyoomu =V (FORO)Rpo R 68)0y (),  (1.48)

for a laser field linearly polarized along z’ axis.
The nonperturbative solution of charge-field inter-
action gives the dressed adiabatic state ¥,, labeled
by the photon number p and electronic state quan-
tum numbers o =kA. It is a function of the elec-
tronic coordinates T¢ at fixed internuclear dis-
tance R, at fixed angle 6 between the nuclear axis
from the polarization &, and for given laser param-
eters £ such as intensity, frequency, and polariza-
tion. Its energy eigenvalue E, (R 6¢) is the new
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Wy Wy (a)

FIG. 3. Example of laser-induced predissociation of a
molecular state with vibrational energy E, in the stable
wgy to the less-stable potential w,. Upon laser irradia-
tion the electron-field adiabatic potential surfaces are
E, and E; connected by solid lines. An avoided-crossing
energy gap A, is induced by the radiation. The elec—
tron-field dlabatlc potential surfaces are Ho0 and HOT,
connected by dashed lines. The molecular energy E,
shifted to £, and is also broadened due to the induced
predissociation. (a) Molecular-potential curves with
laser off. (b) Dressed-molecular potential curves with
laser on.

electron-field adiabatic potential surface. The
eigenstate of the nuclear motion on this potential
surface E, ;(R 6%) is R,0su(R 68), which has been
shown to be independent of p [see Eq. (2.15) in
Ref. 11]. It is labeled by the quantum numbers
voJM of the field-free states that it approaches,'?

Rooqu—~ XvaJ(R)eJAM(e) ) (1.49)

as the laser intensity goes to zero adiabatically.
Finally the rotational wave function ¥,(¥) is given
by

V@) = (27)-172 4, (1.50)

M is a good quantum number for the above geo-
metry. Similarly the final dressed molecular
state is given by

‘I’N‘E'.r'u' =‘i’,,1 Xerzau Vu s (1.51)-

where 7=k’A’. The rate of nonresonant laser-in-
duced predissociation from the initial dressed
adiabatic state to all accessible final states is
given by

Yoru=277 D Rerr s Yorl T oo Roosu) [P0urars  (1.52)

where we let p =0 because ¢, becomes ¥, as the
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laser field is turned on adiabatically. The formula
(1.52) is appropriate for any vibrational states in
the molecular configurations a° b° and c¢° and for
vibrational states whose energies are below the
potential curve crossing in all the other subcases
shown in Fig. 1.

When the vibrational energy is above the field-
free true crossing between the potential curves
we and w, such as the example shown in Fig. 3(a),
we need to describe the induced transition in terms
of dressed diabatic states and diabatic electron-
field potential surfaces. The reason is that as the
strong laser field is turned on, an avoided crossing
is induced at the field-free true crossing®” so that
new branches of adiabatic electron-field potential
surfaces [such as E, and E; shown by solid lines
in Fig. 3(b)] are formed and they obviously support
very different rovibrational states.!! The orignal
vibrational and rotational state x,,49; 4 becomes a
dressedhrovibrational state X, 57 4(R 6£) with shifted
energy E,, supported by the diabatic electron-
field potential surface [such as (R 6£) connected
by dashed line in Fig. 3(b)]. The dressed diabatic
surface HW(R 6£) and its eigenfunction <I>m, are re-
lated to the dressed adiabatic surfaces and eigen-
states by a unitary transformation.®!! For the
present problem, the initial and final dressed
diabatic molecular states are

B o (FOR 05) Xyo g (R 0L )0y ()
and (1.53)

B or (TOROE) Xarr 51 (R OEND (D),

respectively. The rate of nonresonant laser-in-
duced predissociation from the initial dressed
diabatic state to all accessible final states is
given by \

Yoau =270 EKXE'T rudor |

+T li’OOXvﬂJM> (644 » (1.54)

where the Hamiltonian A is given in terms of the
adiabatic potential surfaces through a unitary
transformation [see Eq. (2.20) of Ref. 6]. Both
Eqgs. (1.52) and (1.54) are valid over a time domain
At such that y, 0t < 1.

II. COMPARISON OF STATIONARY PERTURBATIVE
RESULTS WITH EXACT NUMERICAL RESULTS

The goal of this section is to compare the lowest-
order nonvanishing results of stationary perturba-
tive solutions with numerical exact results and to
come up with a simple criterion of validity for the
perturbative results. For this purpose, it is suf-
ficient to use a simple semiclassical result called
the modified Landau-Zener formula given in Eq.



18 LASER-INDUCED MOLECULAR PREDISSOCIATION WITHOUT... 179

(2.12) of Ref. 7. There are several additional
advantages of using this result. Firstly, since it
is expressed in terms of several physically inter-
esting quantities, namely, the energy gap A,, of
the laser-induced avoided crossing [see Fig.

3 (b)], and the ratio x of the temporal slope of the
dressed diabatic crossing to that of the field-free
crossing, thus the comparison also gives the
accuracy of the perturbative expressions for these
quantities. Secondly, at high laser intensity, the
transition probability per vibrational period of the
crossing can be significant compared to unity so
that the standard rate formulas like Egs. (1.10),
(1.52), and (1.54) are not valid. However the
modified Landau-Zener formula can still provide
a means of quantitative comparison at high tran-
sition probability, provided of course the assump-
tions of the formula are valid (see below).

For convepient reference in this work, we re-
state the formula here. The asymptotic transi-
tion probability 7" per half oscillation from the
stable state to the less stable state is given as”

T =1-exp(-219/| ), (2.1a)
where
q:(iA%,,+lC{2'|2)x". (2.1b)

In this formula, «, is the relative temporal slope
of the field-free molecular crossing, namely,

2AE, 1/2 d
ool = (225) ™ L, -y, 2.2)

mr
where AE, is the energy difference of the vibra-
tional energy E, and the field-free crossing energy
E., and m, is the reduced mass of the vibrational
motion. The quantity x is the magnitude of the
ratio of the temporal relative slope « of the
dressed diabatic molecular crossing to a:

x=la/ayl, (2.32)
where
20E\1/2 d
=S — (A2 = A2)1/2
| ( - ) dR( az)/z (2.3b)

with AE being the difference between the shifted
vibrational energy E and the energy E, at the
dressed diabatic level crossing [see Fig. 3 (b)].
The quantity A,, is the minimum value of the ener-
gy difference A =E, - E;, as illustrated in Fig.

3 (b). Finally the quantity C}} is the residual cou-
pling. The origin of A, is purely radiative so
that as the laser intensity / vanishes, A, becomes
zero. On the other hand, C;j contains the field-
free interactions which are now modified by the
field. As the laser field vanishes, it approaches
the field-free value so that the formula (2.1) has
the correct field-free limit.”

The formula (2.1) becomes a better approxima-
tion as the following approximations are more
closely satisfied: (a) the momentum (2m, AE)Y2
at the crossing > 7/a, so that the semiclassical
description of the vibrational motion and the as-
sumption of constant velocity are valid [see Fig.
3(a)]; and (b) the variations of the quantities «,
C!i, and H,, [see Egs. (2.9)=(2.11) of Ref. 7] as
a function of the nuclear separation coordinate R
are negligible in the narrow region of significant
overlap between the bound and the free vibrational
wave functions.

A. Stationary perturbative results

The field-induced enevgy gap'® A,, at the min-
imum of the energy separation is equal to twice
the effective coupling between the states ¢, and
¢..” The perturbative result 5,,, expressed as a
dimensionless ratio to the laser frequency w is

=B =1.3725X 10707 3 i’ﬂ%’ﬁ"— ;o (2.9)
B#¥0,T

where Eq. (1.7) has been used.

In Eq. (2.4), we may use values of the transi-
tion moments p’s and the energy difference
(wg —w, ) at the crossing point R, where w, =w, .
Strictly speaking, however, one should use their
values at R, where the minimum of the energy
gap E, - E; occurs.” The position for R,, can be
determined at where the following equation is
satisfied:

Wq (R) —Wg (R)
w

=-6.8626 X 1071%\%

x 3 Wnmdi)ds  (2.5)
B#a,T w .

Therefore at the laser intensity where these per-
turbation results are valid (see below),
[w: (R)=w, (R)] /w is usually much less than and
at most about equal to 0.001. The region R, - R,
can therefore be sufficiently narrow so that the
variations of the transition moments and potential-
energy differences are negligible. Also note that
in these equations, wg—w, could very well be
replaced by wg—w, or wg— 3w, +w,) at the same
R,evenif R,#R,. The difference resulting from
such choice belongs to higher-order corrections,
as can be shown by use of Eq. (2.5).

The vatio y of the field-dressed temporal slope
a to the field-free temporal slope a, can be easily
evaluated by Egs. (2.3) and (2.2) if an analytic
expression for « is given. By keeping the lowest-
order nonvanishing terms, such an expression is

lal- <2AEU> 12

m,

d(w: = w,) +sl , (2.6)

dR
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where s is the change in the relative spatial slope
‘due to optical Stark shifts of the two crossing
levels:

5 =6.8626 X10715)21

X zi%;{ _zu'zruAfu + Z (/J'E'ISABT - IJ'(ZIBABU ) } .
B#0,T

(2.7)
We have assumed that over the range of laser
intensity that Eq. (2.6) is valid (see below), the
energy difference AE, is sufficiently large that
its change, AE‘,, - AFE,, due to laser radiation is
negligible.

Equation (2.6) is applicable to a quite general
level crossing, subject only to the conditions of
Landau-Zener model and of perturbation theory.
An even simpler expression for y is obtained if
we assume additionally that, around the crossing,
the dependence on R of the mean energy z(w,+w,),
of the transition moments u, and of the potential
energies wg (B=0, 7) for those states ¢, contrib-
uting significantly to the sums in Eq. (2.7), are
negligible compared to the R dependence of the
energy difference W=w,~w,. Under these ap-
proximations, the resulting expression is

X =1-3.4313 x 1071527

X { 4.“‘30111-0*' E (IJ'?'BFBT +P“gBPBo )} , (2.8)

B#tao,T
where

Ty =1+ =w;?/w?]/[1=; —w,?/w?]?.

B. Comparison with exact numerical results

In this section, we determine the accuracy of
the perturbative results for A,, and ¥ by comparing
them with the corresponding exact numerical re-
sults A and x.%'7 Although the results Eqs. (2.4)
and (2.8) allow for the case p,, # 0, we note that
only Eq. (2.8) contains the contribution due to
U # 0. This latter contribution by itself has been
compared with the corresponding. exact numerical
results in Sec. V of Ref. 6. The accuracy of this
term has been given there.

In Ref. 7, we have calculated exact numerical
results for the case pgr=0, Le#0, and P,z #0
for one state ¢, (called ¢,, there). Thus we
compare the corresponding results of Egs. (2.4)
and (2.8) with them and the relative errors are
given in Tables I and II. Since all the other ¢,
states in Egs. (2.4) and (2.8) make additive con-
tributions, the accuracy of one (typical) summand
is indicative of that of the entire sum. .

In the tables, the relative errors are given as

TABLE L. Relative error A,/An,— 1 of the perturbative
result 3,,, [ Eq.(2.4)] to the exact numerical results 4A,,,
where A, is the minimum energy gap of the field-
induced avoided crossing, This is given as a function
of the radiative interaction G, =G [ see Eq.(2.9)] and
of the position of the nonresonant level wg measured
from the crossing. The laser frequency is w. The
notation A (n) means Ax10", The entries marked by
“+++” indicate no comparison being made because no
exact numerical values are available.

o i‘:—f— 1.5 2.0 5.5 10
fuelio 3
w
0.01 0.001 3(~4) 2(=5) 6(—6)
0.05 0.024 0.007 5(~4) 2(~4)
0.1 0.092 0.028 0.002 6(—4)
0.3 0.598 0.229 0.019 0,005
0.5 1.394 0.757 0,050 0.015
1.0 0.175 0.057
1.5 coe oo 0.336 0.120
2.0 K se e e e 0.197

a function of two dimensionless ratios: (i) w;/w,
which measures the energy of the state ¢4 from
the level crossing point, in units of laser fre-
quency w; and (ii) Go/w, which measures the
radiative interaction C,, in terms of the laser fre-
quency w. The latter quantity is related to laser
intensity 7 in W/cm?, wavelength A in ym, and

the transition moment y,g in a.u. by

Go/w=5.85TTX 10" A popl Y2, a=0,7. (2.9)

TABLE II. Relative error ¥ /x -1 of the perturbative
result ¥ [ Eq.(2.8)] to the exact numerical result x ,
where x is the change in the relative slope of the cross-
ing energy curves due to laser-induced optical Stark
shifts. Since the variation of x is not strongly dependent
on the energy difference between the two crossing
levels, namely, w, -w,, the: comparison is carried out
for values of x at w; -wy)/w=0.1. The entries “0.0”
mean that the relative error is less than 10~ %, The
entry “ c.b.” stands for complete breakdown of the
perturbative result ¥ because its value is negative.
Other notations are explained in Tabl(? 1.

AN 1.5 2.0 5.5 10

-

w
0.01 0.0 0.0 0.0 0.0
0.05 —7(~4)  —5(=5) 0.0 0.0
0.1 —0.009  —7(-4) 0.0 0.0
0.3 ~0.290  —0.037  —1(=5  5(=5)
0.5 c.b. ~0.092  —4(=5)  4(=5)
1.0 0.004  0.007
L5 eee 0.079  0.039
2.0 soe cee cee 0.227
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For convenience of tabulation, we have chosen
to present the special case pqg=p.5. Of course,
this is just as good as the general case pqg # qg
for the purpose of determining the accuracy of
perturbative results.

Examination of the relative errors given in
Table I lead to the conclusion that when the dom-
inant terms in Eq. (2.4) satisfy the condition

1.3725 X 107\ g gy (w5/ W)
1- (ws/w)z

the relative error in A, is less than 1%. This
region is marked by G,/w< 0.05 for wg/w=1.5,
Go/w< 0.1 for wg/w=2.0, G;/w< 0.3 for wg/w=5.5,
and G,/w< 0.5 for ws/w=10. However in the same
region, ¥ is much more accurate according to
Table II and the actual value of x differs from
unity by about 0.1% only, according to Table VI

of Ref. 7. Therefore when Eq. (2.10) is satisfied,
we may simply use

x=1. ' 2.11)

We emphasize that it is the error in the tran-
sition probability, rather than in A, and in ¥,
- that really matters. When the exponent in Eq.
(2.1a) is small,

2mq/| ol < 1, (2.12)

<0.01, (2.10)

the transition probability T is proportional to g:
T=2mq/| . (2.13)

The relative error of the perturbatxve result for
q, namely,

q=24%/4% , (2.14)

is given in Table III. For small ¢ (K1), this

TABLE III. Relative error §/g—1 of the perturbative
result § [ Eq.(2.14)] to the exact numerical result g,
where q is the factor that characterizes the main effect
of the laser field on the energy-curve crossing [ see Eq.
(2.1b) with C",,=0l. For § <<1, the relative error given
here can also be that of the transition probability [ see
Egs.(2.12) and (2.13)]. The notations used in this table
are explained in Tables Iand II.

Wg
G\ = 1.5 2.0 5.5 10
w
0.01 0.002 6(—4) 4(-5) 1(=5)
0.05 0.050 0,014 0.001 3(-4)
0.1 0.202 0.058 0.004 0,001
0.3 2.5%4 0.570 0.038 0.011
0.5 c.b. 2,401 0.103 0.030
1.0 s cee 0.375 0.110
1.5 s o e 0.653 0.208
2.0 cee cee sae 0.168

TABLE IV. Ratio exp(-217 /| ag|)/exp(—2rq/|a,|)
of the perturbative elastic probability to the exact num-
erical value given as a function of the radiative inter-
action G4 and the field-free parameter |a,| [given in
Eq. (2.15) in terms of the excess vibrational energy
and the force difference of the field-free crossing] .
is seen that when A, or 7 is in error by (1-10)%, the
error in the transition probability could be off by a fac-
tor of 2, to many orders of magnitude. Thus application
of the stationary perturbative result should be limited
to a parameter region with error less than 1%.

0.01 0.05 0.1 0.3
1078 0.999 2(=5) 0.0 0.0
1075 1.000 0.338 3(~28) 0.0
1074 1.000 0.897 0.002 0.0
103 1.000 0.989 0.530 10,0
102 1.000 0.999 0.938 1(—15)
10-1 1.000 1.000 0.994 0,032
1 1.000 1.000 0.999 0.709
10 1.000 1.000 1.000 0.966
102 1.000 1.000 1.000 0.997
108 1.000 1.000 1.000 1.000

relative error is about twice that of &,,.

On the other hand, when the transition probabil-
ity is large so that Eq. (2.1a) in the exponential
form must be used, a convenient quantity for com-
parison is the ratio of the perturbative value of
the elastic probability 1~ T to its exact value.
This ratio is given by

exp(=271G /| a,|)/exp(=21q /| aol), (2.15)

and is listed in Table IV as a function of |a,| /w?.
The latter dimensionless ratio is related to the
excess energy AE, in eV above the curve crossing
and the force difference F in eV/ao of the field-
free crossing by

|@ol/w? =0.111 99X2F(AE, /m, )2 (2.16)

where m, in units of proton mass is the reduced
mass of the vibrating particles. Here the laser
wavelength A in micrometers is present due to
the introduction of w in the left-hand side of the
equation. The possible range of values of Iaol /w?
of experimental interest is 10°~10°. For a
typical set of values of A=1 um, F=0.1 eV /a,,
and AE, =0.1 eV, m, = 10 proton masses, | a,|/w?
has a value of ~1073, It is seen from Table IV
that the approximate value for the elastic prob-
ability can be a factor of 2 to many orders of
magnitude too small, whereas the corresponding
error in A, is only 1% to 10%. This is because
of the magnification of any error in g by the
factor 2n/| gl in the exponent. For this reason
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as well as the fact that once perturbative results
begin to be inaccurate, it breaks down rapidly
(see Tables I and II), we should not apply the
perturbative results Egs. (2.4) and (2.8) with
error greater than 1% [i.e., when condition (2.10)
is not satisfied].

C. Approximate formula for the rate

Finally, we want to address the remaining quan-
tity C; in'Eq. (2.1b) that is modified by the laser
field. We have shown in Eq. (2.6) of Ref. 7 that
C{; reduces, in the limit of vanishing intensity,
to the field-free nonadiabatic coupling CJ,. It can
be shown that under the same assumptions leading
to the approximation y=1, it is also a good ap-
proximation to let

cr=ce, . (2.17)

Since a fast-oscillating field does not preferen-
tially orient the molecules with respect to the
laser polarization €, therefore the molecules
remain randomly oriented. The angle-averaged
rate of nonresonant laser-induced predissociation
from the vibrational level E, is given by

A f‘
Y"_Bnﬁj(; ay qdcose
/i)
w2/

X [(%) ’ +4
(2.18)

- where Egs. (2.12)-(2.14), (2.11), and (2.17) have
been used. For explicit states, the angular inte-

0
Cor

grations are very simple to carry out analytically.

The dimensionless ratios A,,/w and a,/w? are
given by Egs. (2.4) and (2.186), respectively.
Aside from the expected difference arising from
classical and quantum-mechanical “angle averag-
ing,” the result (2.18) can also be obtained from
Eq. (1.10) by using semiclassical vibrational
wave functions. Equation (2.18) is subject to the
validity of conditions discussed in the paragraph
preceding Sec. ITA, and the condition (2.10).
If valid, it can have semiquantitative accuracy.
To provide a rough estimate of the probability
rate (per sec) induced by the laser only, the fol-
lowing relation is given,

Yo ~ 10-26VU(A'IIJ‘TBH"BGABG/("’)2F-l(AEv/mr)—1/2 1)
(2.19)

where v, is the vibrational frequency per second
of the vth vibrational level. For electric-dipole
allowed virtual transitions, w3 and g, are about
0.5 a.u. For y,~ 10" sec™?, Ag,/w~1, F~0.5
eV/a, AE,~0.1 eV, m, ~ 10 proton masses,

¥» ~ 10722 2%%, Therefore a CO, laser (A=10 um)

of intensity I ~10® W/cm? would induce a predis-
sociation rate of 10° sec™! in such a molecule.

SUMMARY AND DISCUSSION

In conclusion, nonresonant laser-induced pre-
dissociation is analyzed with all molecular mo-
tions treated quantum mechanically. Formulas
for calculating the rate of predissociations are
given, one for weak to moderate field intensity
[Egs. (1.13) and (1.37)] and one for strong laser
intensity [Eq. (1.52) or (1.54)]. Selection rules for
allowed transitions without actual absorption or
emission of the laser photons are given in Eqgs.
(1.35), (1.36), and (1.38)—(1.47) A simple criteri-
on [Eq. (2.10)] for the error of the stationary per-
turbative result to be smaller than 1% is given.

In addition, an approximate semiclassical formula
for convenient estimate of the rate of nonresonant
laser-induced predissociation is given in Eq. -
(2.18). '

Note that the effective Hamiltonian H’ in Eq. (1.7)
is written perturbatively for the situations far
off resonance from any significant intermediate
molecular states. It differs from the standard
result of a straightforward application of stationary
perturbative theory in that it does not contain any
intermediate rovibrational wave functions.’? The
advantage is the simplicity in calculations espe-
cially since intermediate electronic states are
involved. The resulting selection rules as proved
in the paper are consistent with results based on
two-step transitions via virtual intermediate ro-
vibronic states.

Field-free predissociation is a relatively rare
process in molecules.! The facts that the laser-
induced predissociation rate can be increased by
increasing the laser intensity, etc., and that new
rotational and new electronic states accessible
in laser-induced transitions offer greater prob-
ability and richer phenomena for this process.

Although the physical situation dealt with in this
paper is predissociation, the theory and the se-
lection rules can similarly be applied to nonreso-
nant laser-induced transitions in other physical
contexts such as bound-bound transitions in
diatoms, free-to-bound transitions such as inverse
predissociation or two-body recombination, and
free-free transitions during atomic collision.

Regardless of the specific physical context to
which it is applied, the nonresonant laser-induced
transitions addressed in this paper are different
from Raman rovibronic transitions in (i) that only
one laser field (frequency) is required here and
no actual absorption of the laser photon is neces-
sary and (ii) that transitions in the molecules



18 LASER-INDUCED MOLECULAR PREDISSOCIATION WITHOUT... 183

occur between states of equal energies. For
induced predissociation, an additional interesting
aspect is that the final states are dissociative
continuum states.

Finally, the nonresonant laser-induced tran-
sitions in general and predissociation in particular
are also expected to occur in polyatomic molecules
irradiated by lasers. The above theory can be
applied with only appropriate notational changes in
the description of the molecule.'®!2

It has been stated in an earlier paper” that I, and
Br, excited in the BO"%(°l) state can be mduced
to predissociate via the 1u('Il) state by the non-
resonant effect described here. While this is true,
observation to identify this effect may be very
difficult in these molecular systems because of
other more-dominant competing channels. The
detailed reasons will be given in a forthcoming
paper.

APPENDIX

The results of evaluating the factors M.,
defined in Eq. (1.29) are given in this appendix.
The explicit integration over the angular variable
can be done but is quite tedious. Instead agroup-
theoretical method is used, and the results are
expressed compactly in terms of known Clebsch-
Gordan coefficients.!”*!®

(@) For A’=A, the case of laser-induced homo-
geneous transitions, only the following factors
are needed:

M?'AJAM =( Zp,nAM:(Glp)lcosz ellpJAM(elp)) ’

1 2J +1 ' ’ , ,

- o (2) ecih. ok cattcati,
(A1)

My au= vyt 9¢)| sin®0|Y; 4 (69))

1 2J +1 Y ‘ J )
T3 ( 2J" + 1) (OO - Culfu CBf%)

(A2)

(o) For A’=A=+1, the case of laser-induced in-
homogeneous transition, the angular factors
needed are

Moy sy au = s (60)| 8in6 cos8[g, 4 (60
e L (20N ¥ g g
27 \3@77+1))  ColwrCudas,
(A3)
where A’ may equal A or A+1. In the above
statement, the upper (lower) signs must be used
consistently throughout. :

(¢) For A’=A+2, the case of laser-induced
new-channel transition,

M3p sarnu = (Don sone (0))] sin 619y au(60)),

1(2@I+ D\ Y2 Lo asr
=5 (E(‘(zj'j'll» CoitusCiztnse, (A4)

where A’’ =A +1 for the upper signs and A"’ =A~1
for the lower signs.

The notation Cj1iz4, for the Clebsch-Gordan
coefficients is that } and J add to give J ', and
M,, M,, and M’ are, respectwely, their compo-
nents. It is clear from the ¢riangle rule assoc-
iated with the Clebsch-Gordan coefficients ap-"
pearing in Eqs. (A1)-(A4) that the selection rules

M'=M (A5)
and
J'=J=0,+1,+2 (A6)

follow. The selection rule (A5) is a consequence
of our choice of the linear laser polarization €
along the Z’ axis. If circular polarizations are
used or if there is additional linear polarization
components along %’ or ¥’ axes, then the matrix
elements will be functions of ¥ as well as 6. The
Clebsch-Gordan coefficients would then be Cq MU
where ¢ =0,+1,+2. Therefore the general selec-
tion rule is

M -M=0,+1,£2, (AT

*Presented at the American Physical Society 1978
Annual Meeting, San Francisco [Bull. Am. Phys. Soc.
23, 34 (1978)].
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