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Equilibrium properties of liquids by the self-consistent-field method
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The modified self-consistent scheme of Singwi et al. {STLS) for the calculation of static structure of
classical liquids is used to calculate equilibrium properties of liquid sodium and rubidium. First, the efFect of.
the attractive part of the potential on the static structure factor is studied. Using the theoretical results for
pair correlation function g(r) we compute internal energy, pressure equation of state, high-frequency shear
and bulk moduli, Einstein-frequency and second-frequency moments of the longitudinal- and transverse-
current correlation functions. The corresponding expressions are also calculated by using the experimental

g(r) for liquid sodium and molecular-dynamics data for liquid rubidium. These results agree reasonably well
with the theoretical predictions of the modified STLS theory. Disagreement in pressure and bulk modulus is
due to the fact that the theory yields too high a compressibility.

I. INTRODUCTION

This paper is the third one in the series, and
our aim has been to try to understand the equilib-
rium and dynamic properties of liquids within one
single framework. In the first paper, ' hereafter
referred to as I, the theory' of Singwi et al.
(STLS) for calculating the density response func-
tion of an interacting electron gas was modified to
take into account the fact that the pair correlation
function g(r) vanishes in the highly repulsive hard
core region of the pair potential for classical liq-
uids. This modified self-consistent iterative
scheme was applied to calculate the static struc-
ture factor S(q) of liquid sodium and rubidium.
The calculated results for both these metals were
found to be in good agreement with the observed
data" and were somewhat better than the predic-
tions of Weeks, Chandler, and Andersen's (WCA)
theory. ' In the second paper, ' we analyzed the be-
havior of the density-fluctuation spectrum S(q, ~)
in liquid rubidium using the modified STI S scheme
discussed in I. Based on the physical argument
that for a strongly interacting system, such as a
liquid, there is still a residual interaction left
even after collective effects are taken into ac-
count, it was proposed that the free-particle re-
sponse function appearing in the STLS theory (as
well as its modified form) should be replaced by
the response function corresponding to self-mo-
tion of the atoms. It was found that the numerical
predictions of the theory for S(q, &u) are in overall
good agreement with the data' for momentum
transfers q» 1.5 A '.

The aim of the present paper is to investigate
the extent of the agreement between equilibrium.
properties calculated using the static structure
data obtained in I and the experimental values.
These properties include internal energy, pres-
sure equation of state, instantaneous elastic mod-

uli, and second-frequency-moment sum rules of
both the longitudinal- and transverse-current cor-
relation functions in liquids. All these quantities
are expressible in terms of integrals involving the
products of g(r) and appropriate derivatives of the
pair potential P(r). In addition, we also investi-
gate the characteristic effects of the repulsive and
attractive parts of the potential on the liquid
structure.

II. THEORY

A. Modified STLS scheme

The dynamical density response function in the
STI.S~ theory is given by

x(q, ~) = x.(q, ~)/[& —@(q)x.(q, ~)],

4 (r) = -ksTc(r) . (4)

Given a pair potential, the effective mean field
4'(q) can, in principle, be determined by solving
Egs. (2) and (3) in a self-consistent manner. How-
ever, such an iterative procedure for simple liq-

where X,(q, &u) is the dynamical density response
function of a free-particle system and q (q) is the
Fourier-transform of the polarization potential
0 (r), defined by

de(r) dP(r)
dr dr

Using the Kramers-Kronig relation and fluctuation-
dissipation theorem, which relates the dynamical
structure factor S(q, ~) to the imaginary part of
the density response function, it can be shown that

S(q) = l/[l+ n@(q)/k T ] .

The symbols n, k~, and T have their usual mean-
ings. Note that the polarization potential is form-
ally related to the direct correlation function c(r)
through the relation

18 1717 1978 The American Physical Society



1718 NARINDKR K. AILAWADI AND RAVINDER BANSAL

uids leads to computational difficulties because of
the highly repulsive nature of the pair potential in
the hard-core region. To overcome this difficulty,
it is assumed in I that

dkl r d (r
dr=g(r) for r &r„

where r, is roughly the hard-core diameter and

r
k (r)=a+5((-—+ (

rp rp

2rc„I'„——1, r&r p
n=p rp

lated to the long-wavelength limits of the second
frequency m'oments of the spectral function of the
longitudinal- and transverse-current correlation
functions in liquids,

G = mn iim —', , —,' G+B = mn iim —', , (l2)q2 y

q-O

where

&~&) =~)(q)

+— d rg(r)(1 —cosqx) ——3q k3T n s'(][)(r)
Nl PE Bx

where the P„'s are the Legendre polynomials. The
coefficients a and b are fixed by demanding that
4(r) be continuous at r=r, . The parameters c„
are determined by minimization of a functional of
the form

()(e) = f k r [(-g(r)] e(r) —[n'(km)'] k~T'

(~() =(d((q)

q'k, r- n s'y(r)
+ — d rg(r) (1 —cosqx)

m m 8$

(14)
ne(q) n4(q) ~k

where the functional 8(C) plays the role of Helm-
holtz free energy. For more details, the reader is
referred to paper I.

E= ', ksT+~kn -drg(r)Q(r) . (6)

The second is the pressure equation of state,

=1- drr g(r)
P n dP(r)

nk~T 6k~T
(9)

Both Eqs. (8) and (9) can be derived by standard
statistical mechanics, once the interatomic poten-
tial is known. Other quantities are the high-fre-
quency bulk and shear moduli 8 and G, respec-
tively. Zwanzig and Mountain' have shown that in
simple liquids these moduli can be expressed in
terms of the static pair correlation function and
the pair potential,

I3 = —'nk 7+P+ —'mn' , d dy(r)dr g(r)r' r
dr

(10)

G =nu~T+ —,', mn' d, dP(r)dr g(r) r' — . (II)

These generalized elastic moduli are further re-

B. Equilibrium quantities

We now write the expressions for various equi-
librium quantities which we compute using the re-
sults for g(r) obtained in I. The first one is the
internal energy,

Another quantity of interest is the Einstein fre-
quency

n
( )

8'y(r)

which is quite generally used in the theory of dy-
namics of llqulds.

III. RESUI TS

We now describe the results of the modified
STLS theory for liquid sodium at temperature
473'K and density 0.904 g cm '. The potential of
Shyu et al. was used as input for liquid sodium and
that of Price et al. ' for liquid rubidium (T =319 "K,
p=1.502 gem '). Liquid rubidium may be consid-
ered to be a test of the theory because our results
are compared with molecular-dynamics calcula-
tions of Rahman, 4 which were carried out using
the potential of Price et al."as input.

Starting with an approximate input set of param-
eters c„and a given value of g(r), the iterative
procedure consists of calculating 4(r) in the region
r &r, from Eq. (5) and kl(r) in the small-r region,
r&ro, from Eq. (6) and substituting in Eq. (3) to
get S(q). This S(q) and its smoothed Fourier
transform g(r) is substituted in Eq. (7) and the
new values of the parameters c„are calculated
from

=o, n=o, ~ 2, . . .
&&n

(16)

which correspond to the condition that the function-
al 8(4) given by Eq. (7) is minimized. With this
new set, and the new input g(r) obtained from
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TABLE I. Equilibrium properties of liquid rubidium and sodium.

g(r)
taken from E/AT P/nk&T B/nk&T 6/n kJ3T ( 3

G+B)/nk&T

Rubidium Theory
Molecular

dynamic s —3.5209 5.9546 51.4851 24.9455

—3.9936 3.2055 44.1396 23.8371 75.9225

84.7459

12.7210

13.5418

Sodium Theory -1.9785
Experiment c -1.8204

1.3288
2.3643

8.5459
10.7311

4.7390
4.8015

14.8645
17.1332

1.5.8836
16.9890

The results for liquid rubidium correspond to a cutoff r, = 11.9594 A and for sodium r~
=18%..

"Reference 4.
c Reference 3.

20

full potential

without attractive
part of the potential

15

gin &(r)
—(1 y) g„'",(r) + yg'"t(r), 0 & y & 1 (17)

the procedure is repeated until the self-consisten-
cy is achieved.

In order to study first the effect of the attractive
part of the potential on the equilibrium structure, we
use the parameters c„tabulated in Table I of I for liq-
uid Naandassumep(r) tobe zeroforr &r, (r, =

2.858 A) and calculate 4(r) and S(q) from Eqs. (6) and

2.0-

full potential
~" ~ -- without attractive

part of the potential

(3). These results are shown in Figs. 1 and 2by
dashed curves. Now using the given/ (r) for r & ro,
4(r) is calculated from Eqs. (5) and (6) and S(q) from
Eq. (3). These results are plotted in Figs. 1 and
2 as solid lines and show that marked differences
arise when only the expression (6) for g(r) in the
region r &r, is used to calculate S(q). The peak
heights and peak positions as well as the small-g
behavior of S(q) change significantly by the inclu-
sion of the full potential. The same holds for the
pair correlation function g(r) (see Fig. 3).

Using the theoretical results for g(r) from I and
the potential of Ref. 10 for liquid rubidium as in-
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FIG. 1. Effective potential 4'(r) vs r/rp for liquid
sodium. ro = 2.858 A.

Fgo. 2. Static structure factor S(q) vs q for liquid
sodium.
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FIG. 3. Static pair correlation function g(&) vs r/xo.

put, we compute internal energy, pressure, the
high-frequency bulk and shear elastic moduli B
and G from Egs. (8)-(11), and the Einstein
frequency Q~. These are listed in Table I and are
compared with the corresponding results obtained
by using Bahman's molecular-dynamics data for
g(r) Similar . results for liquid sodium are also
presented in Table I, but in this case we compare

our results with those obtained using the experi-
mental data' for g(t)'together with the Shyu et af.
potential. The theoretical results agree quite well
with those obtained from experimental and molec-
ular-dynamics data. Furthermore, the general-
ized Cauchy identity 8 =+ G+2(P -nk~T) is satis-
fied by our theoretical results. The only exception
seems to be the pressure, which shows disagree-
ment with the data in both cases (Rb and Na). The
cause of this discrepancy is discussed in Sec. IV.

In Fig. 4, the wave-number dependence of the
quantities &o, (q) and &u, (q), defined through Eqs.
(13) and (14), is plotted for the case of liquid ru-
bidium. Again theoretical results are compared
with the ones obtained using molecular-dynamics
data for g(r). Figure 5 shows the analogous
curves for liquid sodium, and the results are com-
pared with those obtained by using the x-ray-dif-
fraction data for g(r) of Greenfield et a/. ' The
agreement in both cases is clear. Note that the
slopes of u&, (q) and e, (q) curves (in both Figs. 4

and 5) in the small-q region yield the elastic mod-
uli and agree with the ones presented in Table I.
Furthermore, for intermediate values of q, oscil-
lations in the e, (q) curve (see Fig. 4) correspond
to peaks in S(q). Note that the characteristic dip
in the &u, (q) curve for liquid sodium is almost ab-
sent. This difference in the behavior of ~, (q) is
due to the fact that rubidium is being studied near
its melting temperature and therefore has more
structure as compared to sodium studied at 100'K
above its melting temperature. Recent measure-
ments on liquid rubidium and Sn have shown that
the peak height of. S(q) decreases with increasing
temperature. "*"

CT

3
20

C0

FIG. 4. ur& (q)7' and co&(q)7

vs q for liquid rubidium.
Full curve and open cir-
cles: co& (q)7' calculated us-
ing theoretical and molec-
ular-dynamics data for g (r).
Dashed curve and closed
circles: ~, (q) & calculated
using theoretical and mo-
lecular-dynamics data for
g (&) . 7' = 2.2257 && 10 ~~ sec.

q()( )
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FIG. 5. cu& (q) v and-& (g) 7
vs q for liquid sodium. Full
curve and open circles:
cu, {q)7 calculated using the-
oretical and x-ray-diffrac-
tion data for g(r). Dashed
curve and closed circles:
+& (q) T calculated using the-
oretical and x-ray-diffrac-
tion data for@ {r). 7 = 2.2257

7P -i2

q(R )

IV. DISCIJSSION

We studied the effect of the pair potential &p(r)

for x&x, (loosely called the attractive part) on the
equilibrium structure of liquid sodium and find
that the r &x, part of Q(r) plays an important role
in determining S(q). However, in our calcula-
tions, the x &r, part of the potential does not in-
clude the full repulsive part of the potential as dis-
cussed in the VfCA papers. ' On the other hand,
the hard-core part of Q(r) is included, and hence
we can safely make the statement that the attrac-
tive part of the potential is essential in the mod-
ified STI 8 theory to get the correct S(p).

In order to studytheusefulness of the theory, we
calculate various equilibrium properties of liquid
sodium and rubidium using first the theoretically
calculated pair correlation function g(r). These
results are compared with molecular dynamics
for liquid rubidium by substituting the g(r) data
obtained by Hahman. For liquid sodium, these
calculations are repeated using the experimental
data for g(r) keeping the same potential of Shyu
et al. Except for the pressure equation of state,
the theoretical results are in reasonably good
agreement with the molecular-dynamics results
for liquid rubidium and experimental results for
liquid sodium.

This discrepancy becomes clear when the pres-
sure Eq. (9) is examined more carefully. Using
Eq. (4), Eq. (9) can be expressed as

—= 1-2n d r c(r),
nk T

which reduces to

P=pn k~7+ (19)

It is well known that the STI S theory yields almost
twice the correct isothermal compressibility X p
= (I/n)(an/sP)r „, as shown, for example, in Fig.
2. Thus, it is clear that resulting pressure would
be small in this theory. For the same reason, the
generalized Cauchy identity yields a lower value of
the bulk modulus B.

Furthermore, frequency moments &u', (q) and
&u', (q) defined by Eqs. (13) and (14) are reproduced
quite well by using the theoretical g(r) and can be
used to provide a check on any theory of collective
excitations in liquids. Recently, Block" consider-
ably simplified the numerical technique used to
determine the coefficients c„, n=0, 1, 2, . . . in
Eq. (6). Instead of Eq. (16), he uses Eq. (V) di-
rectly and applies a three-point parabolic fit to
compute the new values of the parameters c„. In
this way, he obtains very good fit to the S(q) data
for nine different temperatures in the range 450-
1400 K for q up to 2.5 A '.

Finally, we would like to point out that only ion
contribution to the thermodynamic quantities cor-
responding to pairwise interaction has been stud-
ied. In order to compare with the laboratory ex-
perimental data, one must add volume-dependent
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terms corresponding to the electronic and band-
structure contribution as shown by Price" for liq-
uid sodium.
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