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A general perturbation method, founded on the multiple-space-scales technique, is applied to the kinetic

analysis of the nonlinear effects generated by continuous transverse electromagnetic waves of Gnite amplitude

propagating in warm and partially ionized plasmas. The collisional and weakly coBisional cases are
successively'studied for a typical. ordering of the significant, parameters. In each case, it is first shown that
the zero-order electron distribution function is determined by a set of two coupled equations and that it
becomes inhonlgeneous and generally non-Maxwellian under the effect of the collisional heating due to the
wave absorption in the medium. The electron distribution function and the electric fieM inside the plasma are
then completely determined up to second order in terms of the zero-order quantities by exact formulas which

allow discussion of the influence of the microscopic interaction law on the nonlinear behavior of the medium.

Some other applications of this method are outlined, particularly for the case of amplitude-modulated electric fields.

.I. INTRODUCTION

This paper is devoted to the study of the non-
linear effects associated with the propagation of
continuous electromagnetic waves in weakly dis-
sipative plasmas. Although problems of this type
have been already considered in many works, ' '
there does not exist to my knowledge any com-
plete calculation of these effects explicitly taking
into account the nonlinear modifications of the
kinetic state of the. medium background. The dif-
ficulty of such a formulation lies in the fact that
the zero-order distribution functions and the pri-
mary fields are determiried, in the stationary case,
by coupled nonlinear equations which can be solved
only by a perturbative procedure. One is thus led
to assume that the wave absorption in the plasma
is weak, and to develop a general scheme of ap-
proximations to uncouple the set of matter and
field equations.

As shown in a previous paper, ' designated by I
in the following, this can be done in the framework
of the multiple- space- scales formalism, which
yields a coherent determination both of the space
scales and of the order of magnitude of the vari-
ous nonlinear effects involved. Particularly, one
can thus obtain equations to compute the zero-or-
der non-Mmmrellian distribution function in terms
of the zero-order electric field, as well as ex-
act kinetic formulas for the various harmonics
of the electric field inside the plasma.

Sp, the purpose of this paper is to apply the
general perturbation methods of I, set up for par-

tially ionized, warm, and weakly dissipative
plasmas, to the analysis of the nonlinear effects
generated in such a medium by imposed trans-
verse electromagnetic waves of finite amplitude.
More specifically, let us consider a uniform,
semi-infinite, weakly dissipative plasma, in the
precise sense of I, in which is propagating a con-
tinuous transverse wave whose amplitude is fixed
on the plane x =-0. Moreover it is also assumed
(i) that there is no external magnetic field; (ii)
that the plasma state is well described by the
electronic component only, with a uniform positive
background of density N; and (iii) that the ioniza-
tion degree is such that the collisional terms of
the electron kinetic equation are those defined by
the formulas (2.8) of 1, with f)/Y/(727&= 0. Then, in
order to describe the kinetic state of such a plas-
rna, one is led to introduce as in I the dimension-
less kinetic equation for the electrons, with the
reduced variables r, x,w, e, and to expand the el-
ectronic distribution function E,(r, x; w) in terms
of the irreducible Cartesian tensors of the velocity
space by putting

F,= E'c)(v; x; I))+w F")(r,x; 2&)) + ~ ~ ~

y (ww w) & g &(2 x ~ 2p) y ~ e

One thus obtains, to deter mine E ~ ' and the anisotro-
pies F"', the fundamental set of kinetic equations

ey (0) ~2 ~ (y Ii /2 8
+ qg)/2 ~ fj, F(&) („(2&)2&). F()&)

3 " Bso &ze

QP(1 ) sruti-') ' 1+1 ~ 8+ r)tl /2[v . (lF1)] &) + -e, +:
) riz) /2(&)2v, p(( ) ) + o(1& /2 'w"'pi F"")Ier g w eav

' 21+3 ' ~2 g+2 e~

( p- o('/2ri" /2fl (v xe)d2-) x F&»= —&~F&»
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in which v,' and the coDisional oper at'ors I(E"&)

and C„(E@&)have been defined in I, as well as
the inhomogeneity and nonlinearity parameters
q"~'=v/&, &o and u"~'=I', /v~. On the other hand,
these equations are coupled with Maxwell's field
equations which may be written

4F 9 e 4'—v x(V x e)+ ———=- —— — —— (l, .4)y2 g g ~2 g~2 ~~2p~g 1/2 e~ t
0

4ne
Q/ 1 /3/1 1 /2~2+ y e p

where the electric charge and current densities
p and j, defined by

p=4me uPE+'dw-Ne =e(n-N),

4' g "
4 ()

3

satisfy the continuity equation

This set of coupled equations has to be solved
in the stationary case by applying a perturbation
technique in which the parameters g' and n'are
assumed small. As shown in I, one must at first
define the relevant small parameter g of the con-
sidered problem, by ordering between them the
four physical parameters c.', q', & (=2m/M), and
v/m. Then one is led to introduce the various time
scales vQ=v, 7, =«Q '72 & v', . . . , and the cor-
responding space scales x, =x, x, = &x„x,= z'xQ,
... , and to assume that the physical quantities
become functions of these multiple variables;
however, as we are dealing with stationary solu-
tions, the time dependence of the system involves
only the fast time scale ro, so that the F"' (I =0, 1,
2, . . . ) and the reduced electric field e depend on

TQ and on the multiple space va, riables x„x„x„.. . .
This being done, these quantities are expanded
in powers of & and the successive approximations
of the solution have to be calculated by applying
the multiple- space- scales formalism.

Let us now specify which ordering scheme is
used in this paper. At first, it is assumed as in
I that 0.', g', and & satisfy the condition 0."—q'
= &, so that the relevant, small parameter is
z = e"/' = g" /' = ~' ', if, . must be observed that
this condition has a simple physical interpretation,
namely, that the electron-wave-energy exchanges
due to the nonlinear effects are of the same order
as the thermal effects as well as the electron-
neutral-energy transfer due to collisions. Then,
one has to look at the collisional parameter v/e.
%e consider successively in this paper the so-
called collisional case, with v/~ =1, and the weak-

ly collisional case, with v/u= &= e', which are
studied, respectively, in Secs. II and III. Finally„
in order to satisfy the condition of weak dissi-
pativity, it remains to fix the order of magnitude
of the absorption coefficient which is determined,
according to I, by the ratio K,l/K» o- (&u', /&u')(v/&u).

In Secs. II and DI, it is generally assumed that
Kol/Xoz= e, a condition which is fulfilled in the
weakly collisional case without any assumption on
the ratio uP, /~', for the collisional case, on the
other hand, it is seen that the further condition
eP~/&u' = e' is needed. In these two cases, it then
follows thai the electronic distribution function
and the electri. c fields depend only on the even
space variables x„x„.. . , and that they can be
developed according to the e' expansions (2.1)
given below. It can thus be shown that it is in
fact x, which is the characteristic length for the
space variation of the medium properties; but,
when the high-frequency condition &@2~,/uF =e'. holds
fox a weakly collisional plasxQa, the absorption
coefficient is of order z4 and the characteristic
length becomes x4.

The main subject matter of this paper is thus
divided into Secs. II and III, which are devoted
to the collisional and weakly collisional cases, re-
spectively. In each case, first an equation is
obtained for determining the zero-order distribu-
tion function E~&Q'&, which is shown to be inhomogen-
eous and generally non-Maxwellian owing to the
therDloeffect of the zer'0 ox'dex' electric fieM e&Q).

Then, the electronic distribution function and the
electric field inside the plasma are calculated up
to &' order in terms of these zero-order quantities;
the various components of the field are thus de-
rived from exact kinetic formu. las involving the
e-n interaction law through the collision fre-
quencies v.,(v) and v2(v). These expressions al-
low one to describe in detail the kinetic behavior
of the plasma and the first harmonics generated
at this approximation, and to analyze the role
played by the collisions in the various nonlinear
contributions. Finally, some possible extensions
of these methods are briefly outlined in Sec. IV,
particularly for physical systems with another or-
dering of the fundamental parameters and for the
case of amplitude-modulated fields.

II. CONTINUOUS V(AVES IN COLLISIONAL MEDIA

We consider in this section a semi-infinite col-
lisional. pla, sma in the sense defined in the Intro-
duction (v/&u= 1), in which a continuous transverse
electromagnetic wave of frequency ~, is propaga-
ting along the direction x&0. As one has to do with
a system in a stationary state, the only time vari-
able occurring is the short time scale v'Q; one has
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p= p(p)+e p(3)+ 8(n&0& N)+'E 8n& )+3

(2.2a)
(2.2b)

where N is the positive background density. As
we know, these expansions allow one to solve the
fundamental set (1.2)-(1.7) by a well-defined per-
turbation scheme for which we get the following
equations.

A. Field equations

They are obtained by putting the expansions
(2.1b) and (2.2) into the equations (1.4) and (1.5).
In order to make the parameter &0',/00' = &3 appear
in the source term of (1.4), it is convenient to in-
troduce the current density J defined by —(4)(e/
)nv&)j =-&0',I. With this notation and according
to the multiple-space-scales formalism, Eq.
(1.4) splits into the following equations:

92 2 92~&0)(~ )
s e(0& c s e(p)1

9x'0 . 0 0

92 2 2g(2)l~ ~
4 — 9 e( ) c 9 e(2)g

(p) 9 (2)& 972 p2 2 9+20 0 0

C2—2 22
~0 QP 9X2

9J~
9T0

2 2 2»
g(4) I~ ~ ~ y 9 e(Q) c 9 e(Q) J

(0) 9 (2) 9 (4) 9T2 y2 2 9+2To o~ &0

9e(p) l
9Xp

(2.3a)

(2.3b)

thus to solve a boundary-value problem in which
the field amplitude is given on the plane x =0.

As previously shown in I, this system will be
weakly dissipative only if 0)3,/&p, «1; in the follow-
ing, it is assumed that +',/ur', = z'(=6), So that the
wave absorption takes place at the space scale
x, = &'xp. In this case, it can then be shown that the
electronic distribution function E, and the electric
field e depend only (besides the time variable ro) on
the even space scales x„x„.. . , and that the ani-
sotropies F"&(vox„x„.. . ; w) and the field e(7,x„
x„.. . ) can be expanded in a3 according to

F&»=e'(F«I)&+~'F"& + ~ ~ ~ ), I=0, 1, 2, . . . (2.»)
(2.1b)

By (2.1a), one has also for the electronic charge
and current densities

where it has been putV„=x (&/(&x and
with O„e,=0. In the same way, the
tion (1.5) and the continuity equation
respectively,

e&» =(n&0&-N)/N)

e(3) + V e(o& =n(»/N,—=09p(0)
9

e =e~)+e j.9
Poisson equa-
(1.7) give,

(2.4a)

(2.4b)

(2.5a)

9P(2)
~ i

«p ~ (~)9.
Tp

(2.5b)

(&ZI0I
(2.6a)

9~(o) K

0

—( 3e .8(j)i
2 9' X (0) ~ (g)/9 (2.6b)

97p

$U—y —(V F&')+ V F"&)
«0 (3 «2 (1)

3 3 &w (e(0) '(3& (3) '(1))~ ) ' ' ' )3'N 920

(2.6c)
~(&)

9 (0)
sF(1& ~) F&a& ~ F&o& (0) sF&0&

(2 7 )(j ) «0 (0) ~ 9'0

9P(&)(3) — 1 F(1) (g F(0) + g F(0))(3) «p (2) «2 (0)
0

(0) (0)1 ~ 9+(2) ~ 9+(0)
u "' 9' "' 9n

——wi ~ F '+ ——(N)e F'')(2 ~ 9 5

5 «0 "' ZV' 9'

( Fx))),))d),"))'x ,F'),')), . . . , (1.71)

B. Kinetic equations

By the definitions (1.6), the source terms of the
field equations (2.3) and (2.4) are to be drawn from
the successive approximations of E' ) and F"'.
These are deduced from the fundamental set (1.2)-
(1.7) which splits, according to (2.la), into the
following sequence of kinetic equations:

c 9 9e(
~~ QP 9x2 9xo

9F(2)

0

9F(j) o
(&) . 9' '9

9J(3)
0

(2.3c)

2 2~c 9 e(p) g 9 9e(p) g

Roue 9X22 9X4 9X
(2.8a)

where y' = n'/5 =O(1). The successive approx-
imations e(», e(», . . . of the electric field can
then be calculated by solving step by step



18 NON LI NEAR EFFECTS PRODUCED 87 CONT1N UOUS. . .

these sequences of coupled equations according to
the methods of the multiple-space-scales formal-
ism.

where the conductivity o((d, ) is given by the usual
expression

o((d, ) = (-1/(d', )(7)o„"—i(d, ol)

C. Electric field at zero order 4g ZU B+(~4gg.
3& o &, +~1 (2.14)

(0& (o&( o o~ a~ ~ }+e(o&(xo~x2~ ~ ~ ~ )~ (2 9)

where e«) =-e«» is the oscillating transverse com-
ponent (at time scale r, ) of e«& and eII» is its sta-
tionary longitudinal component (depending only on
the space coordinates}, it is immediately seen by
(2.3a) that e(» satisfies the field equation in the
vacuum [of course, this is due to the condition

uP~, /(d' =e' from which it results that the electric
field does not "see" the plasma at the scale xo].
Thus it can be written for the electric field
e(p)

with

W)p /W fy
(0) =e(o)i=e(0)&x, . . .&e +c.c (2.10a)

~ ~goo' e('o) = (2.10b}

(1) — (1) t
(» = F(1 ) (~oxo I x2 ~ ~ ~ ~ i (o)

&(1)n+ L'(&) (xo~x2, . . . ~(o) (2.11)

from which it follows that (2.Va) splits into the two
following equations:

F(l) 1 p(1) I
(1) I

(1)
0

~I
e(o)

(0)
B+(0)

B28
(2.12a)

where yp is an initial. phase and Eo the real wave
vector at zero order.

We then have to determine e(",&(x„.. .) by using
the second-order field equation (2.3b) and the kine-
tic equations (2.6a), (2.6b), and (2.Va). As, by
(2.6a), E((oo)) is independent of 7, , we can use for
F(» the same decomposition as.for e«)', we thus
write

Putting then these results in (2.3b), we obtain

e(2) C 8 e(2) J.

BT ~ QP BX0 0 0

B e(2)L c B e(2)1
() 7.2 )(2 Q ()+20 0 0

whose solutions are of the form

(2.16)

(2) = (2) = (0)( 2 '"} + (2.1V)

the other for determining the variation of e&o& at the
space scale x,,

2 ~IO 108c Be(0) f y Be
e

Ap Bx2 Bx2

=i [(d,o ((d,) e(,') 8'~ —c.c.] . (2.18)

—f[(d&o((d&)e(o)8 —C.C.]
P X2 XP

(2.15)

which is to be solved by applying the multiple-
space-scales techniques. By putting e(» = e(»„
+e(»„ it is seen that (2.15}gives ()'e(»„/()70=0,
since the field e(p) ls transverse; therefore e(»„
-=e(~» is a stationary field, viz. , e(2) ~ e(»(x,),
which will be computed below. On the other hand,
the transverse part of (2.15) is a wave equation
for e(», with a right-hand resonating member,
since e'" (or e'"", m being an integer) is a solu-
tion of the homogeneous equation. According to
the multiple-spa, ce-scales technique, the secular-
ities must be canceled at each stage of the cal-
culation, so that one is led to annul the resonating
term in (2.15). One thus obtains two equations: one
for e(2) g p

~t 8 (0)
F(1)pg g y (o) (0) E(0)

(o "' "o "' gg age
(2.12b)

From (2.10) and (2.14), thus it is obtained for
~I p
e(p)

(2.13)

obtained by separating in (2.Va) the terms depen-
dent and independent of 7'„respectively.

From (2.12b), it is seen that the stationary
field e(p) is linked to the inhomogeneity of E(o,'
at the space scale x; as the medium is assumed
homogeneous in the absence of the wave, it will
be shown below that e(0, =0. On the other hand,
by multiplying (2.12a) by (o'(fw, integrating and
neglecting the transient contributions (at the time
scale 7'0), we get

J(» = (d[o((d, }e(o'&e'"+o*((d,)e«'&*e '"]

P(x ) = —, o)( dx,',K (d

CQ1
(2.20a)

(2.20b)

respectively. Let us note that we have not mentioned

e(",, (x,) =u(,)e ""2""&'"2', (K ~ u, ) =0), (2.19)

where u«)(x„. . .) is to be determined by the wave
amplitude on the plane x = 0 and where the absorp-
tion coefficient P(x,) and the phase shift ((),(x,) are
given by
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2

z'=z j. — " g" +i —g"(d e V

p p p 2 E R
1 1-

(2.21)

in (2.20) the dependence on the higher-order vari-
ables x„.. . , because it will be shown with the
next-order equations that u(p) is a constant vector
(which can be taken real) and that EI00)) and e(,) are
in fact independent of these space scales.

From (2.19) and (2.20), the zero-order field e(', )

is thus well-defined in terms of the conductivities
og and (7," which depend on x, through EI00I, as it is
shown below. The phase shift y, expresses the
variation of the wave-number vector at the same
scale and allows one to obtain the local dispersion
equation at order e' for transverse waves under
the form gF (p) e2&(()I +9 1)

x
V1+ i CO,

which allows to compute F(», and

(2.22)

In order to determine completely e(p} it remains
to compute E(«0I which occurs in the expressions
for g,", and gI'. For this'purpose, we have to con-
sider Eq. (2.6b) which, from (2.6a), (2.9), and
(2.11), includes terms both dependent and indepen-
dent of 7', . In order to eliminate the secularities,
these two kinds of terms separately have to be
written equal to zero; we thus obtain the two equa-
tions

oF(') (du' e " o(2) (P)

8Tp ~ CK

2 2 28 c) g) 2Vf gF (p)

1 1

. F(1)" y 3 rr ~ (1)'
(1) 3~ 2 ~ e(p) F (1)

(2.23)

n(p) =N, (2.24a)

so that F(0I is determined by

because the products e(p) F(1) and e(,') ~ F(» are
zero (transversality of e(,)). It is seen that the
space variable occurs in (2.23) only at the scale
x, through the factor e ' in the term correspond-
ing to the energy borrowed from the field by the
electrons through collisions. As the plasma is as-
sumed homogeneous in the absence of the wave, we
retain for E 00)I only solutions independent of x0. In
this case, F(1) and e(',) depend only on x„.. . , and
are linked between them by (2.12b) in which )p'„F I00I

=0; as, on the other hand, j&» =0 by virtue of con-
tinuity equation, it results that e(0') = FI,') = 0.
Moreover, as e(p) is transverse, the Poisson equa-
tion (2.4a) gives

-28
1(E(0)) C (F(0)) ) (() u(0) e

3K

x —(, ', e), (2 )5)

with the normalization condition

47T 'F d =N' (2.24b)
p

this is the relevant equation of our problem.
Thus it is seen that F«) depends on the space

variable x, through the absorption P(x,) which it-
self is given by (2.20a). So, the plasma state is
determined at zero order by the two equations
(2.20a) and (2.25) which allow one to compute the
non-Maxwellian stationary distribution EI0I(x„'u)).
For the special case of an imperfectly I orentzian
plasma, in which the Coulomb collision term
C„(F((',))) can be neglected before I(E((',I), (2.25) is
easily integrable and gives

p(((x„.ee) =C(x) expI-
2 x 2

&+ 4y'u'u(p) exp -Kp —, 0& dx', v1+
(d1 (d1

(2.26)

in which C(x,) is to be determined by the condition
(2.24b).

In conclusion, thus it is seen that the plasma,
homogeneous in the absence of the wave, becomes
inhomogeneous at the scale x, under the effect of the
wave absorption defined by (2.20a). As a conse-
quence, it follows that the "first-order" conduc-

tivity depends in fact nonlinearly on the field amp-
litude at x,. As, on the other hand, the electronic
density remains nevertheless constant at this order
of approximation, it results that the effect of the
field e(p) on the plasma appears as a local temper-
ature rise due to the factor ) '&0'u('»e ' /() ', + &u', ) in
(2.26): This thermoeffect is thus a collisional
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heating linked with the wave absorption in the plas-
ma. Moreover, it will be seen below that this in-
homogeneity induces also at the next approxima-
tion a longitudinal stationary field e(",p, ) at order

D. Electric field at order e2

As its oscillating part e(,) is of the form (2.1V),
one has to compute the amplitudes corresponding
to the different possible values of m by using the
e' order equation (2.3c). In the latter, the non-
linear source term 9J(»is7o is deduced from
(2.Vb), (2.8), and (2.22) in which e(o) and F((oo)) are
expressed as before.

1. Determination ofJ(3)

As the right-hand member of (2.Vb) contains
terms dependent on Tpxp and terms such as
V„F((',I, which depend only on x„we are led to use

again decompositions similar to (2.11) by writing

(i) (i)' . . (i)"
F(» F(» (Tpxp) xx)zU)+F (p) (xx)K)

(2) (2)~ 0X0& 2~ (2) ~ 2~ (2) J- (2) II 7

with e(» —= e(»A and e(,'p, ) = e(,)(( by (2.15). More-.
over, by integrating (2.22), one gets also

(2.27)

(2.28)

F
Ipg

= F Ip) (Tpxp) xp 10)) + F
IgI (xx)gg) )

in which E&,'& is to be determined by the a' order
equation (2.6c) (cf. the Appendix), and where F(«»'

is given by

(2.29)

2 2 -28
F(o)' (o) [O (F(o)) Pi(()+(&&&) ](2) 6~ (0) e

1

(2.30)

the operator O, (F((,')') being defined in the Appen-
dix by (A7a). Finally, we need also the expression
of F((',))which is obtained by integrating (2.8a). By
using (Al) and the definitions (AV) of the Appendix,
one thus gets

F(2) — 2
2 -8(x2) Ko (0)+ (0) Ko ~

" 1
2 (v„+i(p,)(v, + io),)

g~ (0)

(0) (0)
)oI+ p'e-28(xp)[«u «u ]0

(2.31)

in which the third term is a stationary contribution independent of vp xp. We are now able to calculate with
these expressions the various contributions to F((x))and FI,')) . By looking at the integrated version (A2) of
(2.Vb), it is easily seen that F((,')) is given by

a (0)
(i) ' (d (0) ~pg ~ (0) 3 2 -28F (') = ——V'„E

(0~
— e(2) + 2K0(o u«) e e,~v, + co,~

10)),w' sw sM) (v, + s(d,)(v, + i(o,)

(2.32)

(2.34)

with, according to (A2), (2.31), and (2.33),

iF (i ' (o (2) + C C — (0) (2) + C C
sF(oI &e)o e) &(& ~u e () sF (p) e)(&('+ &) ))

zU BK vi+ g

cubi

sU v, +~,

and that FI,'I is the sum of three terms in e'~, e"~, and e"~, respectively. Because of (2.17), one is thus

led to split e(» into three terms, by writing

e(» = 'e(» + e(» + 'e(
)

= ('e(p') e'~ + c.c.) +( e( )
e"~+ c.c.) + ( e('p') e"~ + c.c.}, (2.33)

so that one has also for F(3) \

FIxI' 1F(1I'+ PFI1I'+ 3F().I'

xFI|)'

(i) '
F(3)

e'(o+v i)
e&e'uu&e ' . [u,'„e uA, (x&uj)e! A*,A', (xj&')]+ c.c),vi+ z(g)i )

g2'«+ &i)
+c.c. ee)u&'&e ' K ). A, (uj »)+c.c.),$0 Vi + 2zQpi Vi + ZQ)i

8+(0) 3~1 0 pi (y+ (I()i)(0) e(2)e 3 2 3 8 o)
Bgg v~ + 3Z(4)i

~ ~+c c e&ec& &u& &e . . A, (X) &)+c.c),
vi + 3z(d

(2.35a)

(2.35b)

(2.35c)
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in which the various operators A are defined by (AS)-(A6) in the Appendix.
It then results from (2.2V) and (2.34)-(2.35c) that the current density can be written in the form

(2.36)I(3) =~(3)(Tao x2) +I(3) (x2»

in which the stationary component J(",) depends only on x, and where J(,) is split up into three terms in
e'", e"~, and e"", respectively. One thus gets

l~r 2~ r 3~r
J(s) = J(s) + J(s) + J(s) y

with

=-&»[c(&o )'ep» e'~+a(»(&d)u(o)e Se'«+&'&)+&@'u- e 3(u2(o)e 28~, +K2oo,')e' ~'~~) +c.c.]&
2j &

&o[0(2 &0 ) 2~go e2& && + ~2~2 e-2 8K g 2&( 2+ p&) ]

'i(3) =o&[c(3&d,)'e(')e"'+o&'u «' e-"o e"""&& +c.c.]

(2.37)

(2.38a)

(2.38b)

(2.38c)

in which o'(&u, ), o'(2«&, ), and o'(3&v, ) are the usual
conductivities defined by (2.14), and where the
following higher-order conductivities have been
introduced:

A, (FIo))&fw, (2.39a)

&&,'(o&„) = —, , A,'(FIoI)d2&&, (2.39b)
Vl +g COl

4m

SN
&&

v& +2&&&&

(p)rl

d «&, (2.40)

&e 4

3N v, +2se,

=(7,'+ 0,"+0~,

p ~l + 3~~l

It must be noted about the nonlinear conductivi-
ties o'2(&o,) and &&3(u&,) that, by virtue of (A6), &&3 in-
cludes only collisional contributions which cancel
out when»& 2(&&) = cfe (or»& 2 =0), while from (A5),
o2 is composed of three terms of various nature
which are defined in the Appendix; it is thus seen
that only o2', given by (A8c), is a purely collision-
al term which cancels out when»» = cte (or»»
= 0), while o2' and o2~, defined by (A8a) and (A8b),
are linked, respectively, to. the gradient of the
pressure tensor induced by the zero-order field

e(p) and to the Lorentz force due to the magnetic
field of the wave. In the same way, it can be
checked from (AS) and (A4) that o,(&o,) is of colli-
jional nature and that &&,'(o&,}is also linked to the grad
ient of the pressure tensor. As for &&&»(o&,}, its ex-
pression results from the calculation of the stationary
component F«o» which must satisfy Eq. (A 9), with the
condition (A11). In the special case of an imperfectly
Lorentmian plasma, F«2o I is explicitly given by (A12)
so that a &2&(a&,) takes then the particular form

(2) ( 1) (2) ( (2) (0)

+ &&& u( &&)
8 ((P(2)u(O) 8 + (P(2~)K O) (2.40')

where the conductivities o(',), 0('2), and v('2)' are
given by (A18). With these definitions and with the
condition (A11), it is easily checked that these three
coefficients are of collisional type and vanish
when p = cte.

2. Field equations

The field equations are deduced from (2.3c),
(2.4b), and (2.5b) in which the current density

J(,) is given by the previous expressions. First of
all, let us remark that e(', ) can be drawn from
(2.32) by observing that one must put j(» =0, since
one has V„~ j(', )

=0 and because the current has to
be zero on the frontier x =0. Besides, it follows
from (2.38) that the odd current components
J(s ) and 'J(',) give transverse sourc e terms in the

field equations, whereas the even component 'J(s)
gives a longitudinal one; therefore, the compon-
ents 'e(,') and 'e(,') will be transverse, while 'e(,')
will be longitudinal. But, as we know by (2.15)
that e(,) ~]

has no oscillating contribution, one must
have

2er 0(2)

so that it can be written from (2.33)
~r ~ l~r s~r

(2) (2) j- (2) + (2)-

(2.42)

(2.43)

This result can yet be confirmed by considering
the Poisson and continuity equations (2.4b) and

(2.5b). Indeed, by (2.5b), one has Sp(»/STo =0 by
virtue of transversality of j(,), so that n(2) =n(2)
which is independent of 7p As one has also v'„' e&» = 0"2
(transverse wave) and 0'„' e&'» = 0(e&'» function of x2
alone), Eq. (2.4b) reduces to 0„' 'e'&» nf»/N, -—

which can be satisfied only if n z, = 0 and 'e', » = 0,
because the lefthand side is oscillating in op.

Let us now consider the field equation (2.3c); by
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writing again e{4)=e(4)~]+e{4)~, it splits up into two
equations. one for the longitudinal component,

e(4) (/ 8J(3)[) 8 J(3)
87 BT 87

in which le(t2) ls the order 62 pert rbation in esp

whereas 'e(, ) is the first odd harmonic.

3. Complete expression of the electric field at order e2

=-2i(di(d'(is& ) e ssKo(ose"""i)—c.c.),(0)

(2.44)

which shows that the oscillating part of e(4)~~ is the
first even harmonic of the field inside the plasma;
the other for the transverse component,

8'e(4) j. c' 8'e(4) j.
Qg2 P2 ~2 BX2

0 0 0

c'
2

Be( ) 8' (0) 2
8 Be(0)

8 J(3) 8 J(3)
8jp 8 70

(2.45)

8 e(4)L c 8 e(4) L

~2 y2~2
0 0 0

(2.46)

whose solution is of the form (2.17}, and on the
other hand,

s('e( ) +'e(.))
A,pro BX2 SX0

2 2 2

'e), ) 2
' 'e()),+ 2 +

BX2 BX4 BXp

which is again a wave equation with a resonating
right-hand member. By canceling the secularities,
one obtains as previously two equations: on the
one hand,

As the first even harmonic is of order e4 from
(2.42) and (2.44), it follows from the previous re-
sults that the electric field inside the plasma can
be written at, order c ', in the form

(o) + (s) (o) ( (s) + e(s) +e(~s))

[(u~ +- B(x )s+i )pi(xs) s l.~N '( i ())u{»e ' + e e(»~e

(2.50)

from which it is seen that the field is composed,
at this approximation, of three components, one
being stationary arid the two others being oscillat-
ing in

eely

and e3'y, respectively
The order-e' stationary field, e'e{'2), is of longi-

tudinal type and well defined by (2.32) with the con-
dition j('3) =0, as previously seen; it is due to the
medium inhomogeneity at scale x, induced by the
field e(p) and, as it has been shown in connection
with the discussion of the EIoI equation, it is in
fact linked to the collisional heating of the plasma
by the prima, ry wave.

The oscillating component in e'~ is composed of
the zero-order field e&,), given by (2.19) and
(2.20), and of the e'-order contribution 'e(, ) which
is determined by (2.48). This latter equation first
allows one to show that Su&o)/sx, =0, so that the
plasma and field variables are independent of x4
and of higher-order scales. Indeed, as we have

c 8 8 e( ) 8 e(.0) 2
8 Be(0)

=i [oo)( }('()ei(s)e'"+a&s)((o,)u&o) e se'«'('i

+ o) su&» e (u&s, )
e' ' o, +K ',o i)

((pe+ig) oc c ]
c 8 8 3e(2)

A,p(d 8X2 8 Xp

=3io),[o'(3((),}'e&s')e""+&' (o) (o)

(2.48}

x esi&"'~i) —.c.c.] (2.49)

S'~(s) ()'&(s)
(2 47}BT 87

which allows one to compute 'e{,) and 'e(, ). Ac-
cording to (2.43) and from (2.19) and (2.38), we
finally derive from (2.47) the following two equations
for 'e(, ) and 'e(, ), respectively,

8 e(p) j BQ(0)

8X4 Q{ ) BX4

8
+ (-))+ee),))u),)e e"e,

it is possible, by dividing (2.48) by 8 8""i, to iso-
late the term in Su«)/Sx, which depends only on x4
(and on higher scales eventually); now, all the
other terms in (2.48) depend both on x, and on x4,
etc. We are thus led to set ()u(»/()x, =0, so that
u(, ) is a constant vector determined by the wave
amplitude on the frontier x =0. As previously
stated, it also follows that E(p) and the field e(0)
are independent of x„e&',) being given by (2.19)
with u(p) constant.

This being, the case, the equation for 'e(,') is
drawn from (2.48) by expressing the term in
sse(oo)/()xssand by computing the conductivity v,»
from (2.40) and (AQ). For an imperfectly Loren-
tzian plasma, one thus finds from (2.40') and
(A18)
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8 e K Kp
8 2 2 1 1 (2) 2 ~2 1 (0) (2) (2) (0)

"'+— —— ~ o(cu)'e' + (d (d'u e " »' ('e" . e"*+cc )
2 1 1

2 2
0 ~ -g+ttP ' 4 2 & -&g 2 2 -28 2 2 2;— (d,u«&e &uv&»u&, (e +e u&»e (&o Koo&, &+a,)+~ K,o,' —i - — ——,o

2 2K0 ~X2 4 Q) 1

(2.51)

so that the electric field perturbation of order ~', 'e~», is determined inthis case by the two coupled
linear equations (2.51) and its complex conjugate, whose coefficients depend on x, through E&~,'I.

The other oscillating component is the first odd harmonic in e""; it is determined by (2.49}which can be
written

S t0 2 2E (d 3

dx 2
+ —0 —~ o(3a& ) e = ———

2 (di~ u&0)~&o)8 ~re
2 1 1

where the nonlinear conductivity o, is given by (2.41b). This is a linear wave equation for 'e&,'& with a driv-
ing source term in e"~ which, by virtue of the collisional nature of o„cancels out when v, and v2 are null
or constant. It follows that this first odd harmonic is transverse and cancels out when v„=etc (or zero};
by taking (2.20) into account and integrating (2.52) with the boundary condition 'e&2~ = 0 for x=0, we get

2 2 x2

'x( )(x,)= — —)x,)x'))(,)))(„)xxp ——,-)x, x($)x,)dx,')
0

'x2 g 2 xp

o, exp 2' —,(d, [o(3(u,}—So ((o,}]dk2 d»,'
0 1 0

(2.53)

This equation gives the variation at the space scale
x, of the amplitude of the first odd harmonic at
order &2; let us remark that this var'iation is
weB determined by the expression of E&~~& occurring
in the conductivities a((u, ), o(3(d,), and o, ((o,).

With regard to the first even harmonic, it is
seen from (2.42) and (2.44) that it is of order e

and of longitudinal type; it is a plasma oscilla-
tion driven by the e~0) wave and one has, by

(2.44),

2e) t ~ 2N2 e-2 Bg (o. e2$& )()+ )()g) c c )
2 Q)1

where the integration constant is taken equal to
zero in order to have a zero field at the infinity
(x,-+~). The amplitude of this harmonic is
seen to depend on x, through g, (&o,) and the absorp-
tion factor e '~. From (2.4la) and (AB), it fol-
lows also that this harmonic is made up of three
toms: one, proportional to o2, has an essentially
collisional character and disappears in the absence
of collisions (or when v, , = cte); the two others,
respectively, proportional to o2~ and a2', have a
noncollisional origin, as previously discussed,
but are of course altered by the presence of col-
lisions (however, it must be pointed out that the
contribution of o,' vanishes in the absence of col-
lisions, with, , =0, but remains different from
zero when vg 2

= ct8).

E = E"'+~w. [F"I'+ ~'(F'&'+ 0"I")]

+ e'[E"I'+E I
""+{ww}'FI'I] (2.55)

and by the formula (2.50), in which all the kinetic
quantities F', „'~& and electric components e(„& have been
defined by general expressions in terms of the
zero- and second-order stationary components of
the isotropic distribution function, viz. , E&,~ (x„'I )
and EI,') "(x„'zv ). As EI,'I" expresses itself in
terms of E~«OI [cf.Eqs. (A9)- (A12)], it ensues that all
the relevant physical quantities of such a system
are well determined by the knowledge of EI,'),
for which one has to solve the two coupled equa-
tions (2.20a) and (2.25); for all these equations,
explicit solutions have been given in the imper-
fectly Lorentzian case. Let us note that, in
theory, this formalism could be applied at any
order of approximation and would thus give
higher-order contributions involving higher har-
monics (the second odd harmonic appearing at
order e4, the third one at order e', etc).

It alsomust be emphasized that all the expres-

4. Conclusions

The previous formulas determine completely, at

component and the electric field inside the plasma.
They are given, respectively, by the electronic
distribution function, which can be written as this
approximation
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sions thus obtained are closely dependent on the
e-n interaction law which occurs, at order c',
through the two collision frequencies v, (v) and

v, (v). It follows that the nonlinear effects. involved
are, in the eollisional case, very sensitive to
the nature of this interaction law.

As an example, let us consider the particular
case of a Maxwellian interaction law (in I/x ')
for which the collision frequencies v, and v, are
constant. Firstly, it is easily checked from (2.53)
that the first odd harmonic cancels out for this
law by virtue of the collisional nature of the non-
linear conductivity o, (ur, ) defined by (2.41b).
Moreover, it can be seen by (2.14), (2.24a), and
(2.24b) that one has o((d,) = 1/(v, + iv), ), so that
the "first-order" conductivity is now independent
of x, ; in the same way, one finds also, by (2.39),

(A3), and (A4), that &x, =0 and

1 gt
(v, + i(u, )'(v, +i(o,) 3T

where T,', defined by

~e 4& 4 (0)
E(P) 4% 9

0 (2.58)

is the electronic temperature associated with t'he
non-Maxwellian distribution EIOI and depends on
the squared field amplitude u (0) Furthermore,
for an imperfectly I orentzian plasma, it can also
be shown by (2.40') and (A18) that o('» =o(', )

= v(', )
=0 and, by (2.14) and (2.26), that the distribution
function E((OI becomes Maxwellian, with an elec-
tronic temperature T,'(x, ) given by

2

T~(x2)=T I+4y cu 'g(0) exp -Ko~ „~x2 /(vg+(dg)
V1+ C01

(2.57)

F(t)( x». ) ~ F (r)(x». )
(P(eglru)~

p (2.58)

e(~, x) = Q e~(x)e'~( &i ) ',
where the Fourier components F ' and e

&
are to

be determined by the coupled set of equations ob-
tained by carrying (2.58) and (2.59) in (1.2)-(1.7).

(2.59)

It thus follows that Eq. (2.51) for 'e(, ) is consider-
ably simplified in this ease and that the only non-
linear term (in u(0)) included in it proceeds from
the electronic temperature through the con-
ductivity o', ((d, ).

It appears from these results that, as usual, the
Maxwellian-interaction law gives particularly
simple results: at order e', all the nonlinear ef-
fects vanish except the thermal effect involving a
term in u(0~ e ' "2; as regards the harmonies,
they arise only at higher approximations (order
e~, etc. ). On the other hand, for the other types
of e-n interaction, all the nonlinear effects, such
as the first odd harmonic, arise from the order e'9
this example allows one to show the important
role played by the e-n interaction law in the non-
linear effects arising in collisional plasmas.

To conclude this section, let us remark that
these results could be also obtained by using
Fourier time expansions of the electronic dis-
tribution function and of the electric field. Indeed,
as one has to do in the present ease with a
stationary system, it can be sought for the
fundamental system (1.2)-(1.7) periodic solutions
of the form

To solve these equations, one is led to apply
again the multiple-space-scales method by intro-
ducing the space scales x„x„.. . , and by using
for F t and e ~ expansions in c' similar to (2.1).
It can thus be shown that this technique allows one
to recover the results of this section, ' '" and that
it provides a theoretical basis for previous works
on the propagation of modulated waves in plas-

11-13

III. CONTINUOUS %(AVES

IN VKAKLY COLLISIONAL MEDIA

We consider now in this section the propagation
of a continuous tranverse electromagnetic wave
in a weakly collisional plasma, such as v/(d = e'.
As seen in the Introduction, we have again a
weakly dissipative medium, in which A, l /K»
.= e' if no assumption is made on the order of
magnitude of &u~, /&u'. Moreover, as previously
shown, such a system is in a stationary state
depending only on the even space scales
x„x„.. . , where x, is the absorption length. It
thus follows that all the e' expansions (2.1) and
(2.2) for the matter and the electric field can be
used agan.

With these remarks, it is easy to obtain the
fundamental equations of the weakly collisional
case by referring to the corresponding ones in
the eollisional case. For the field equations,
Eq. (2.3) and (2.4) have to be modified if no

assumption is made on the ratio &d~&,/(d2; in this
case, the source terms are no longer of order c',
so that one has now the following sequence of
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eq uatlon s:
2

&o)I i +3e S~&3)
k~(P)j= —

2
(d 8Tp

2

0

2
g&4)ge e e s. +t e ~&3)

e(0) e() e(4))= „2 8 0

and, for the Poisson equations,

(3.1a)

(3.1b)

(S.lc}

8 Order e equations

We now have to compute the source term of the
field equation (3.lb), which is drawn from a kine-
tic equation identical with (2.7b), but with
-v,'F «,'&) in place of —(v, /+)F~&t). As decomposi-
tions of the type (2.27)-(2.29) can still be used
for the computation of F(,') and F(',), this equa-
tion can be split into two parts, one which is
stationary and reads

(3.2a)

(3.2b)

(3.2c)

A. Zero-order equations

As E&o) is independent of T, from (2.6a}, the
decompositions (2.9) and (2.11) can be used again,
so that we still have the two equations (2.12), but
without collisional terms. It follows from them
two consequences: (i) as in the collisional case,
one has e(p) 0, because F(p) is also independent
of xp when the plasm a is assumed horn ogene ou s
in the absence of the wave; (ii) one has for the
source term of (S.la)

8 (l)
e(0)~ ~

0
(3.3)

so that e(p) ~ now satisfies the usual equation of
transverse waves in cold plasmas, whose solu-
tions can be written

e &p) g e Io) ~ (x3)e' + e&p) g(x3)e (3.4)

in which &I& is defined as q& by the relation (2.10b},
but with a wave vector K, which is derived in this
case from the familiar dispersion relation

K O
= (XOQP3/C ) (1 —(d33/(aPg), (3 5)

p( p) 0 whence n(p) N

V, ~ e&,) = ((o3,/&t&')(n&3) /N),

V„~ e&3) + V e&3) (uP„/sP)(n&4)/N),

while the continuity equations (2.5) remain un-
changed.

For the kinetic equations, we now have to take
into account the condition v/+= e'; thus, one
finds again sequences of equations similar to
(2.6)-(2.8), but with the collisional terms carried
over to the next-order equations. For example,
we have Eqs. (2.6b), (2.7a), and (2.8) with no
collisional terms, while the collisional contribu-
tions to (2.6c) and (2.7b} are now I(E&~oo))) + C„(E&&o»))

and —v,'F (,'), respectively.
In order to solve this set of equations, we now

have to apply again. the multiple-space-scales
formalism. As the successive steps of these cal-
culations are very similar to those of the colli-
sional case, we merely give in the following the
main results of the method with emphasis on the
features peculiar to the weakly collisional case.

erI gF (0)
p F (&)" V F(0) + (2) ~F (0) (3 6)

2ri 0 ~ e ~s + I~p02 2fg+ 3 e&0)g 3 3 Ko(e(p)j e —c.c)
COy COg

(3.8)

in which T,' is the electronic temperature defined
by (2.56) and v,'is given by

4« ", , BEI;)&

3N 0 8 ca
(3.9)

and where the longitudinal term in e"~ proceeds
from the Lorentz force and corresponds to the
contribution v ~3 in the collisional case [cf. (2.41a)].
It is seen that there is no term in e"~ in (3.8), be-
cause the first odd harmonic contributions are of
collisional nature and occur only in the order e
equations in the weakly collisional case. It follows
that, although of order e, the first odd harmonic
of the electric field is determined only by the
order e field equation, as in the collisional case.

As the source term (3.8) includes both a lon-
gitudinal driving term in e2f~ and a transverse
one in e'", the field equation (3.1b) can be split
into two equations, one for the longitudinal com-
ponent e&»„, the other for the transverse com-
ponent e'&», . The former one gives. the expression
of the first even harmonic e'&»„which is of order

now:

the other which is periodic in zp and allows one
to compute F«,'I . As one must have j&'» =0 on
account of the continuity equation (2.5b), one
derives from (3.6) the expression of the stationary
longitudinal field in terms of V„F(0)."2

s (0) oo 4

(2) p
dw Vz g F( p ) d w

w a F(p) w (p)

0 1 1

(3.7)

On the other hand, by computing F «,'I and taking
into account the condition n(» = 0 drawn from
(3.2b) (transversality of e«&), one finds for the
source term of (S.lb)

~&3) ' + —& 0 itP= e&» +3 —v, (e&»e —c.c.)
~'Tp COj
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et Q ( e)o (x ) e(m8+ me)o (x ) e-( 0) (3 11)

in which the e'(o», (x,) are to be determined by
the higher-order field equations; the second one
allows one to calculate the variation. at space
scale x, of e'(,'» which can be written

eI 0 (x ) u s l&(x2)+i/)(x2}
(0B. 2 (0)& (3.12)

in which u(p)~ is determined by the wave amplitude
on the frontier and where the absorption coef-
ficient P(x,) and the phase shift g, (x,) are defined
by

2 2
~ Pe P t0» »ig t0~2 -»i'&4e(», =s» 2 Kp e«) e —e«» e

Q)pe —407~ 40~

(3.10)
The latter one is a linear equation in e(»~ with a
resonating right-hand member in e'~, and i.t gets
also two equations by applying the multiple-space-
scales formalism. The first one shows that e(»,
satifies to the usual equation of tranverse waves
in cold plasmas, so that it is of the form

collisional case; of course, this is due to the
fact that no assumption has been made on the
ratio &v~2,/((}', so that the order-z' field equation
has a longitudinal driving term in e"". Moreover,
aiiotheI important difference with &h- c~lli~ional
case arises from the fact that t;he F((P)) equation,
and thus the x, dependence of e(p) can be derived
only from the order-e4 equations, because the
collisional term I(F(«&)+C„(F(o&) is now carried
over into (2.6c).

C. Order-e4 equations

We first consider the equation corresponding
to (2.6c), in which we still have to separate the
stationary and oscillating terms. We thus obtain
an equation for the oscillating component
E((4oI'(v~0, . . .) and the equation for E((oo)}(x„(()). By
computing from (2.7b), (3.4), and (3.11) the sta-
tionary contributions of e(p) F(3) +e(» ~ F(,')', it
is seen that all the terms cancel out except the
collisional one, so that one obtains finally

Kp (dp~
v'dx (3.13a) I(F(()))+C„(E(()))—7 3 ~, ()) + 3~2 6~

~2 tA)2 +2 sf» T
)

KQ Qlpe Qr XQ Tg
1 2 2 (g2 (d2 (g2 3 y 2 &

I Pg 1
(s.1sb) $/3 elt ~ F (~)11

(2) (i)

v', and T', being functions of x, through E((oo)). (Let
us note that we have omitted any dependence on
the higher variables x4, . . . , because it can be
checked with the higher-order equations that,
as in the collisional case, the physical state of
such a system is in fact independent of these
higher space scales. ) The phase shift g, allows
one to determine the order-e2 correction to the
dispersion equation (3.5) of transverse waves in
cold plasmas; by (3.13b) and the condition rf =e',
one thus finds for the pertubed wave vector Kp':

2 2
Kp'=K 1 — ~~ 8 Xp,2(d ~ 3c (3.14)

withe(xo) = (1/xo) I"o (T,'/T)dxo. This is an effect
due to the finite temperature of the medium, whose
existence has been also proved by the kinetic theo-
ry of wave propagation in warm plasmas'; in the
present case, the formula (3.14) takes also into
account the inhomogeneity of the plasma induced
by the continuous wave.

In conclusion, the first two orders equations al-
low one, as in the collisional case, to determine
the electric field at zero order and to provide the
anaytical form of the order-e' contributions.
However, it has been seen that the longitudinal
first even harmonic e'(»„ is deduced from (S.lb)
and that it is of order e2 now, contrary to the

2(0) 2 1 (0)' 8
K V

1

(3.16)

in which P(x, ) is defined by (3.13a) and (3.9), and
where F((,'&)" and e'('» are given by (3.6) and (S.V);
moreover, the normalization condition (2.24b)
still holds, by virtue of (3.2a). Equation (3.15),
coupled to (3.13a), allows one to determine F(",&'

for which we keep only solutions independent of
x, for the same reasons as in the collisional case;
it is seen that, in the present case, F&'0& depends
on the space variable x, not only through the ab-
sorption P(x,) but also through the longitudinal
stationary field e('» from (3.6) and (3.V). The
knowledge of F(«'))(x, ;(()) is needed to determine
the medium properties at space scale x„and
particularly the absorption P(x,) and the phase-
shift g, (x,) of the zero-order electric field as well
as the order-e2 stationary field e('», as in the
collisional case, the plasma inhomogeneity is
due to a collisional heating by the continuous

~Iwave e«».
We now consider the -&4 order field equation

(3.1c), in which the source term 8$(»/t&r& must
be derived from the equation relative to F,",).
According to the expansions (2.1a) and (2.1b),
one finds
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BF(') I' e' BI' "' e BE"' e BF"'(o) &i F(&& (Q F&o&+Q F(o&+P Q(o&) i &o& &4& + (2) (o& + (4& (o&
1 (3) i xp (4) x2 (2) + x4 (0) 1I gg B~ + ~ Bgg ~ Bgg0

x (4)+ & (2) + 4 (0) (4)+ ( ) ( )

Tp 0
+ V x e(2)~+ V x e(0)~ dip x F(l) + Vx e(p) d70 x F 3) (3.16)

where F&«'&' is determined by an equation which is deduced from (1.3) and includes the collisional term
—v,' F&",». Taking (3.2) into account, the computation of &)J&,&/()) o gives two kinds of driving source terms:
(i) the longitudinal ones which involve the even harmonics e' o and e"o; (ii) the transverse ones in
which occur various contributions in e'o and e"". So, it is seen that the field equation (3.1c) splits
into two equations, one for the oscillating longitudinal component e(4)( which includes even contributions in
e"~ and e'+, the other for the oscillating tranverse field e(4)i in which occur resonating terms in e'~ and
e"". By canceling these secularities, one thus obtains two equations for determining the order-&' trans-
verse field e&»i which is the sum of two terms similar to (3.11) with m =1 and m =3.

By putting, as in (2.43), e&»i = 'e&»i+ 'e'&»i, one then derives from (3.1c) and (3.16) two equations for
'e'&», and ~e'&»i, similar to (2.48) and (2.49). As in the collisional case, the equation relative to 'e&»i
allows to check that eu&o&/()x4= 0 and, therefore, that the electric field and the plasma state are indepen-
dent of x4 and other higher-order space scales.

As to the equation relative to 'e(»~, it is derived from

'2
B B3 2 B 3~t0 3 ~rpk 3

(2)1 6& 0 (2)L e3 &I) (2)1 e-3 4 2 (5) (3.17)

in which (3.11) has been taken into account and where 8 'J
&, &/(&so is to be drawn from (3.16) and from the

order-E quantities. After tedious calculations, one finally obtains

3~I0 2 I 2 2
e(z&z i' Ko coo vie . Ko ~ +pe Ko T~

i e o

0 Pe u&4 & + fK oe "o u uo e-o&& eo&o
6 &d' —&d' 10o&' u&~ ()u& Bzv ' uP —(d' o)'(&o' —4o)')1 Pe 1 1 Pe 1 Pe 1-

in which has been introduced the mean collisional
quantity

already used in a previous work" and defined by

the ratio 7)/&d; especially, this is the case of the
collisional driving contribution (3.19) which can
be derived from the nonlinear conductivity 0, of
the collisional case. It then follows that the first
odd (transverse) harmonic is, as in the eollisional
case, well determined by the knowledge of F(p),
which occurs through v'„T,', and

(O ev' BE"'
dko . (3.19)

3N 0 ZO 8SO BZO Bc@

The equation (3.18) is the weakly collisional ver-
sion of (2.52); it allows one to determine the
amplitude variation at space scale x, of the first
odd harmonic. Note that its driving term includes
a noncollisional contribution, owing to the fact
that the source term of the field equation is now
given by (&J&»/&)v'o in place of &)J&»/87'o in the
collisional case; in this latter case, the corre-
sponding terms would occur in the order-E' field
equation. It can also be seen that all the other
terms of (3.18) exactly correspond to those of
(2.52), if we take into account the smallness of

2 3~rp 3&|t) 2~/i+e ( e&,),e +c.c.)+e e(»ii,

p) ~ {1) (1) 2 (1) (1)"
Fe FIo) + ~ ' [F(&) + F(() + e (F(o) + F(o) )]

f )t ()"+E' [F(oI +EI2I +(ww): F(o)] ~

(3.20)

(3.21)

but that it does not vanish when v1
In conclusion, the previous results allow one to

determine in the weakly collisional case the elec-
tric field in the plasma and the electronic distri-
bution function at order e', which are, respec-
tively,
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By comparing (3.20) and (3.21) with the corre-
sponding formulas (2.50}and (2.55) of the collisional
case, it is seen that one has now two supplemen-
tary contributions, ~'e~2)~~ for the electric field

(1)"
and eF~, ) for the distribution function. As shown
in the calculations, the occurrence of these two
terms results from the two main differences be-
tween the present weakly collisional case and the
collisional one, viz. , (i) no assumption has been
made on the ratio m)&, /&(&' and (ii) in the collisional
terms, the factor v/(d is now of order e'. Let us
emphasize also another important consequence
of this latter condition: to determine completely
the expressions (3.20) and (3.21), one has to use
higher-order equations for calculating X~2~ and

(0)"

e~2@, since they are deduced, respectively, from
the order-e' equation relative to E«& and from the
order-e4 equation relative to F~, ) . This being the
case, let us note again that this formalism could
be applied, in theory, to any order of approxima-
tion.

D. Case w2 /u = e (=5)

where e&'Oo&'(x, ) is to be determined by the order-e'
field equation. Let us remark that the last term of
(3.23) is obtained by taking into account the condi-
tion &()~2,/uP = e'; by (2.10b) and (3.22), the wave
phase at order e2 is thus

LPGA& QP1
2 2

p+ 2 2 +0 ~0 Kp I
2 2 xp+ pp(d 601

in which the factor of K, is nothing other than the
two first terms of the expansion of (1 —&@~2,/~,')' '
for small &u&, /&u', .

The x, dependence of e&",&'(x,) is then derived
from the field equation (2.3c) and from the knowl-
edge of F(p) which is obtained from an equation of
the type (3.15). But it is easily seen, by (3.23),
that this equation does not depend explicitly on x,
and that the space variable occurs only at the scale
x, through ~e&",&'~'. Therefore, one must keep only
the solutions of (3.15), EIOI(x, ;so), which are inde-
pendent of x,; by (3.6) and (3.7), one thus has e&'2&~ (1)ll= F~,) = 0, so that there is no longitudinal station-
ary field at order e2. With these conditions, the

E&,'& equation (3.15) becomes

~p ~lp ~ ~ gq7e«~ = e&,&(x„x,)e + c.c. , (3.22)

If such a condition is fulfilled, one has to deal
with a dissipative medium in which Kol/K, s
= (&u~, /&u')(v/&u) = e', so that the absorption takes
place now at the space scale x4. For the stationary
case, the state of the system depends only on the
even space scales x„x„x,. . . , and the e' expan-
sions (2.1a) and (2.1b) ean be used again.

In this case, the essential results of the multi-
ple-space-scales formalism can be easily forecast
owing to the following remarks: (i) the kinetic
equations of the weakly collisional case still hold;
(ii) the field equations are now those of the colli-
sional ease, viz. , (2.3a)-(2.3c); (iii) the signifi-
cant space scale being now x„ it can be expected
that E&,'I will depend on x, (instead of x,) and,
therefore, that x, is the characteristic length of
the medium properties. As one is led owing to
these remarks to calculations very similar to those
of the previous sections, we only give in the fol-
lowing the main results of the method.

Firstly, it is seen from the zero-order field
equation (2.3a) that the electric field e«~ is of the
form

«&» & le«&' (x4) I

(0) + ee (0) j
1

whose solution is, for an imperfectly Lorentzian
plasma, a Maxwellian distribution with an elec-
tronic temperature T,'(x,) given by

(3.25)

e&",&'(x,) =u&,&~ exp[-P(x, )+i@,(x,)]', (3.26)

where, as previously, u(p)J is determined by the
wave on the plane x= 0 and where the absorption
coefficient P(x, ) and the phase shift &(),(x,) are
given by

3 x4

2 (d1

&0 ~f)e
2 (d1 (d1

p~
V1dXP ~ (3.27)

On the other hand, Eq. (2.3c) allows one to obtain
for e&",&'(x,)

in which y is defined by (2.10b) and where the x,
dependence of e&'03 ean be derived from the order-c'
field equation (2.3b); one thus finds:

K
7&(;&(x„x,)= »&",

&
"(x,)ex(& (& 2, x,)COg

~~e
X +0 84 0 21 1

4

—2 xp y I
e

(3.28)

(3.23) in which v,'(x,) is defined by (3.9). Let us note that,
by (3.28), the phase shift cp, (x,) includes two con-
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tributions, one which is the third term of the ex-
pansion of (1 - &v~2, /~,')'~' and the other which is
similar to (3.13b) and corresponds to tbe effect of
the inhomogeneity of the electronic temperature
induced by the wave.

Equation (2.3c) allows also one to determine the
longitudinal first even harmonic, 'e('4)~~, which is
now of order c' and is given by

2 ei i K (
i02 2&'IP elo'P2g 2& eie) (3 29)

4coi

Moreover, tbe field equations (2.3b) and (2.3c) al-
low to show that the order-&' transverse field e(',)

is of the form

e(2)&= e(~»~ x„x,e' ~

with

+ "ei20)*,(x„x,)e '""] (3.30)

2

eg&, (x„x,)="equi,'(x,)exp(i ', x) .
2m+,' (3.31)

Owing to these results, the first odd harmonic and
the second even harmonic are then derived from
the order-e' field equation:

8 2~1 2 82~!
g{6)l t ~ I ~ I ~ I ) = (q} e(6)&' ()'{ )'()'=-

'o ox xo

c 8 Be(4) 8 Be(2)J- 8 e(2)J- 8 „8 (0)& 2
8 Be(o)

04 Bx2 Bxo Bx4 Bxo Bx2 BX4 Bx2 Bx6 Bxo

8J(5)
8+0

(3.32)

in which SZ&'»/Bv, is to be derived from (3.16). One
is thus led to results similar to those of the previ-
ous paragraph (where ~~2,/&u' was not assumed
small), but in which the role of x, is now played by

x,. Especially, one gets the variation at space
scale x4 of the first odd harmonic,

I

2

'ei",~,'(x,)exp(eirp+i — ', x,),6e,
which is transverse and of order c2 as previously;
likewise, one also obtains (i) the expression of the
second even harmonic, 'e(6')I~e"~, which is longitu-
dinal and of order c', (ii) the order e' c-ontribution,
'e&'60&e" ~, to the first even harmonic, and (iii) two
equations which determine, respectively, the x,
and x, dependence of the two transverse compo-
nents e&',» and 'e&,'&(x,).

IV. CONCLUSIONS AND OTHER POSSIBLE APPLICATIONS

The previous methods provide a coherent scheme
of approximations to solve completely the equations
describing the nonlinear propagation of continuous
transverse waves in weakly dissipative warm plas-
mas. Exact kinetic expressions are thus obtained-
up to order e' for the electronic distribution func-
tion and for the electric field inside the plasma, in
the collisional and weakly collisional cases.

The essential point is that, in any case, the
zero-order distribution function E(0), which occurs
in all these expressions, can be calculated by
means of two coupled equations; these ones allow
to determine, for any type of e-n interaction law,

the space variation of the kinetic state of the medi-
um and of the various components of the electric
field. It is thus shown that the medium, assumed
homogeneous in the absence of waves, becomes in-
homogeneous at the zero-order approximation, and
that this inhomogeneity is linked with a thermoef-
fect produced by the waves traveling in the plasma.
The knowledge of E(o) allows one to give a kinetic(o)

description of the role played by the collisions in
the nonlinear behavior of the medium; especially,
the order of magnitude of each harmonic can thus
be determined, as well as the space scale of its
amplitude variation for which kinetic formulas
have been obtained.

Although the previous results have been set up in
the case n'=q'= 5, with v/u&=1 or 5, these per-
turbation techniques can be applied to other physi-
cal situations for which one has to define different
ordering schemes of the significant parameters.
Let us discuss briefly some of them.

(a) Firstly, the previous methods allow one to
study the so-called "intermediary case, " in which
v/~ = 5' '= e, while the ordering of the other pa-
rameters remains unchanged. As the wave ab-
sorption is then of order e, the charateristic space
scale is x,; so, one must introduce the odd space
scales x„x„.. . , and replace the ~' expansions
(2.1) by tbe expansions in e defined in I by (5.1) and
(5.2). These taken into account, the calculations
are similar to those of Sec. III, Their results have
been given in detail in Ref. 10(a). Let us note only
that one thus finds, for the absorption P(x, ) of the
zero-order field and for the E(o) equation, expres-(0)
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sions which are identical, respectively, to (3.13a)
and (3.15), but which depend on the space va, riable
xy ln plac e of x,.

(b) As a particular case of the previous results,
one can also consider physical situations such as
a.'=q'«5, which occur when weak fields are
propagating in rather cold plasmas. In this case,
the collisional term of the E(') e(luation (of order 5)
is dominant compared to the nonlinear heating
term (of order o. '), so that the significant small
parameter is then y' = o.'/5«1. It follows that E(,)
is a Maxwellian distribution and that one is dealing
with a system weakly perturbed around the equi-
librium state; it can then easily be cheeked that
there is no need to introduce explicitly the various
space scales, because the zero-order electric field
does not occur in the determination of E(p).

(o)

(c) On the other hand, our methods can also be
adapted to the inverse situations where n'» 6. In
this case, it is the nonlinear heating term due to
the field which becomes dominant compared to the
collisional contribution. It is then easily seen
that, if a stationary state is reached, the thermal
velocity v is no longer the good characteristic ve-
locity, but that the latter must now'be defined in
terms of the field amplitude by setting v~
= I",/(e5'~'. One is thus led to introduce the re-
duced velocity w'=v/Vr=w/) "~', with )'»1, so
that the parameters n"~' and q"~' have to be re-
placed, respectively, by of~'=I', /v~ (d=5'~' and
q'~'=V /)(, o) =q'~'6 /v=q'~'y'~'. Then, withthis
new reduced set of variables, our generalperturba-
tion techniques can again be applied for various or-
dering schemes of the parameters y', q~, and ~~ = 5.
For example, one can consider physical situations
such that g~ = n~ = ~, with y' = & ', which correspond
to strong electric fields (satisfying to n' =- 1)propa-
gating into rather cold plasmas (such as q'= &P);

in this ease, one is led to use again expansions in
e'= 5 =a~, similar to those of 2.1, which get for
the E(p) distribution function an expression of the
Druyvestein type.

Finally, as it has been already pointed out, "'"'"
these techni(lues can still be applied to study (i) the
nonlinear interaction of several transverse waves
in weakly dissipative plasmas and, particularly,
the generation of the various harmonics and fre-
(luency mixing terms; (ii) the nonlinear distortion
of a frequency or amplitude-modulated wave prop-
agating in such a medium. We end this paper with

a short outline of the method for an amplitude
modulated electric field.

Let us consider a collisional plasma in the sense
of See. II and let us assume that the field-ampli-
tude on the plane x=0 is of the form

E(t) =E,([1 'p+, ( 'e+ e ',"')]e' &'+ c.c.}

with )),,«1 and Ql(d, «1. Owing to this latter con-
dition, the periodic phenomenon is now character-
ized by the two time scales t„=1/o) and T „=1/0,
with t „/T„«1, so that the stationary state of the
system depends in turn on these two time scales.
According to our perturbation technique, one is
thus led to include this new parameter in the or-
dering scheme; if, for example, t„ /T„= ()(=e'),
the modulation takes place at the time scale v, . In
this case, all the zero-order quantities of Sec. II
become functions of 7,; then, it is easily seen that
the zero-order distribution function EI,I(v'„x, ;mr)

and the amplitude e(,')(v.„x,) of the zero-order elec-
tric field e&', ) [of the form (2.10a)] are determined
by the two coupled equations

eE") 2 f2 ~IO 2sE(0) I(E(o)) ~ C (E(o)) )' ~ le(n)l
(o) + ee (o)

2

ZU P BE(p)

V (d 8
(4 1)

where o(&u, ) is defined in terms of EI» from (2.14).
As one is dealing with a stationary problem, the
solutions of the system (4.1) and (4.2) can be
sought under the form of the time Fourier series:

el 0 ~ ~el
0

( ~x .

)el g T2
(o) ~ (o).n 2

(o) ~ (o)
E(0) = m E(,) „(x,;~)e'" ~,

(4.3)

with the usual reality conditions. By substituting the
expansions (4.3) into (4.1) and (4.2), one finds for
the Fourier component e(",) „the equation

~ 1 IO
e(o),n+

(d

2 ~to
ae(o)..

(d BX2

= --', &o,[o((d,)e(",)]„(4.4)

where the bracket [ ]„stands for the nth Fourier
component of oe&0') which is to be derived from (4.1)
and (2.14). Owing to the nonlinearity of this term
and of ~e('o')~'&EI,I/aw, all the frequencies of the
spectrum occur in the right-haxid side of (4.4), so
that the Fourier components e(p) and +(p) are
determined by an infinite set of coupled nonlinear
equations; so, in the general case, the resolution
of this system is an intractable problem. But, if
one takes into account the smallness of the modu-
lation depth p.„one can expand the solutions of the
system (4.1)-(4.4) according to the powers of p, ,
It is then possible to uncouple the previous set of
nonlinear equations and to solve it step by step; the
calculations are easy up td order p.,' and the results
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allow one to describe at this approximation the
nonlinear distortion of the wave modulation. Par-
ticularly, it can thus be shown that the solution, at
first order in p.„ includes only the courier com-
Ponen s E(p) 0 6(p) 0 of order 1 and I (p) y e(p) l of
order p. p: E&,'&~

0 and e&P,) p are de'terInined by a sys-
tem of two equations identical to (2.18) and (2.25),
while E&',I, and e&,'), satisfy an analogous system of
more general equations, one of which (for EI,'I, )
being of the same type as (A10)."&~ Obviously,
this method, set up for the ordering scheme e ' -—g' =if
and y' = 0(1), can be also applied to the case o. ' ~ )i'
«5 and y'«IL; then, as mentioned above, there is
no need to introduce the various space scales so
that one finds, as a particular case, the more
simple results which have been obtained in pre-
vious works. " "

APPENMX

We give here the essential steps and definitions
which are required for' the calculation of the var-
ious conductivities introduced in Sec. II.

(a) Calculatio)) of F",,)) and F&",)). They are ob-
tained by integrating the kinetic equations (2.8a)
and (2.7b). One thus gets

F&2) e-&(2/~))'OF(2)(0)
(2) (2)

e-(v2/e) v& v p B F(g) - 0
e( 2I ) Pe~ &)) dr) (Al)K (0) egg 0 p

in which the first term. on the right-hand side is the
contribution of the initial anisotropy and cancels
oUt when &0 ~

q
and

()LP ~ (d BEF(l) F(1.) P F(l) PP p E(0) ~PP (0)
(3) (3) (3) P X2 (o) P ~ (2)

1

0 (Vl/40)~p
(V&/~)'fpp g(Vl/i(1)gp E(p)P d&P(2)

Q E(P)P

8 oe(0) uV'(vl/Co)T'~P (2~
Bav

BE(0)PP ~ePO &f &i) ~eP"+ -f(t) -(vl /~ )vp E(0)
) g(Vl/4) )~p~gP dYP

(2) . (o) (o)~ e ' 0 B o
K BSO Vl + ZCO j Vl —2(d l SV BSU (2) 0

2 2g ' e (V&/CO) 0
Xp

(" /~)~o
(e(Vl/cO)V& F (2) dYP + e(v&/~)v' t' 5~p, F(2)gd+p,(2) 0 ~4

2@& BE(Q) To -~P02 &2 f y ~P042 2$|t) n PO, POW
Qp I-0 B (0) 8-(vl/M)vo e(vl/M)vo e(0)e . 6( ) 8 vie(0) 'e(p)

Owing to (2.10a)-(2.12a) and (2.19), one first de-
rives from (Al) the expression of F«', ))given by
(2.31). By carrying this result, as well as (2.29),
into (A2), it is then seen that F(&,')" is to be split in-
to three terms according to (2.33) and (2.34); thus,
by separating in (A2) the terms dependent and in-
dependent of v„one finds the expressions (2.32)
and (2.35) for F(&,')" and F&', ))', in which have been
1ntroduced the follow1ng quantities:

B ~ B

s)U iu(v, +i', ) 8M
(Avb)

( 8o,(ztg', ) 4 8 ~'ol(&):)))
6~@A Bgg 15' BK V2+ 2A)t)

&

(A6)

BK 15' B$U

B 2Vl

sw w(v2)+ &()';) &)w
(Avc)

( 0'(Pt'!) 0'(('"')) '
g V2+ 2', V2

(v, +i((), )(v, + i((),)
BE(:)

B$v1,) 4a wO, (E~
3(d,

' &" 15 (v, + 2i(o,)

(A4)

These formulas allow one to determine complete-
ly the higher-order conductivities of Sec.II definedby
(2.39)-(2.41) and to specify the nature of their var-
ious contributions. Particularly, let us note that
the conductivity &),(v, ) is split into three terms ac-
cording to (2.41a) in which it must be written from (A5)

g B ( A@4 BE(0) )|I

5w' sw (((v, +i(o,)(v, +i(u, ) ew

1
(()(w (v( + N()))

BE(0)

Bsv

4i 4)( " W~ 0,'(E'00))
. —du~,15 3N 0 (v) + 2i(()()(v2+ 2i(()() j'
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1 && 4)( " &v2 SE(",)&„&~
v, +2&0,)(v, +2i&d,) (&20

(A8b)

the equation satisfied by E(,", is deduced from the
order-e' equation (2.6c) by canceling in it the
terms independent of &0. As F(,')"=0 and owing to
the transversality of the waves, one thus gets

5 &, 3Ã v, +2i«&,

'8 K BE((&&

S20 (V, +i0&,)(V2+i&0,) S2()

(A8c)

(b) CafculaHon of E((0»~'. To complete the deter-
mination of the kinetic plasma state at this approxi-
matior. , it remains for one to compute E(,')" which
occurs in the definition of the conductivity @&2&(00,)
given by (2.40).

According to our multiple-space-scales method,

1(E(0)11)+C (E(0)s)
II

I
3 I . (1)I I . (1)I~

2 ~ ( &0&
' F(2) + (2) F(l) }

SPY 8ce

(Ae)
where the double prime means that only the terms
independent of ~0 have to be kept.

As an example, we give in the following the cal-
culations for the imperfectly Lorentzian case. By
(2.10a), (2.19}, (2.33), and (2.35a) and by omitting
the term C„(E«,'»"), one obtains for the E&'0»" eq-
uation after some algebra

2 I~2„2 e-+(X2) g gg2PI
( )

2')I 0) 2&& )8 && v BE( )+
32&)' S2() v'„+ &02'&&I&

I 2 ( I 2 (0)
e e + e e(0) &i l (0 . ~(02 l IO*. (0

3K 820 (v +&d 920 ) &1, 1

~4 I~2 e 2g( 2) g gg / z'&
gg & 880 V1+ Z(&0

(A10)

~here the oPerator 9(E&,'&»') is such that it admits
E&0& [defined by (2.26)] as solution of 9(E}=0. T»s
equation allows one to determine E(,)" which must
satisfy a normalization condition which is deduced
from the Poisson equation (2.4b); by virtue of the
transversality of the wave, one must have n(» = 0,
whence

with

g(.) (E(0)}

tip

+1+ (d1

(A15a)

J u2E")"dl =0.(2)
0

(All)

By seeking the solutions of (A10) under the form
F"'"=uE"', one gets easily for E"'"

(2) (o) ~ (2)

g(2) ( (0)}

QJ (dQ 8= 2 k"(E"')/I)'v' 1+ ~ "'
'&)dN)+k"2 (0) 1

Isa 1 1

(A15b)

E(0)n E(0). g (E(0))(leio . eg02I+ lei02I . eto)(2) (o) 1 (o) (2) (o) (2) o

+g2(E&0)} (0)

where g, (E&",&') and g, (E&",») are given by

g, (E('.&))

(alV 84P (al Q(o)e
P1+ QP1

(A12)
V $0 BE

k (E(0))— 2 g&2 i (0&
1 (0) =-- y V2+~2 81 1

Q3
kl(E&0&) = ~ . A (E' )+c.c.,2 (0) =

P V +i' 1 (0)

k»(E&'&) -=~ . A'(E&0&)+ c.c.2 (0) =
V V+g(d 1 (0)

1 1

(A16a)

(A16b)

(A16c)

(A13)

g2(EI0I) =g&2)(EI0'I)u(0)e-'"*"+g(2)(EIoI) 5', (A14)

The constants k„k,', and k," occurring in (A13),
(A15a), and (A15b) have to be determined from the
three conditions:
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r N*F '"g (E@')dul f=w'E'"g'(F"')dN
0 . 0

au F(p)Z2"(F&OI)dm =0,
0

eonduetivities o&&», a2&,'&, and o2&,"& of (2.40) by

4w
"

&&&' s(F &",
» g, )

0'(2) ——
3~ . de ~

which are derived from (A10).
The expressions (All) (A15) determine com-

pletely the order-&' stationary isotropic distri-
bution function F&',

&
and allow one to define the

4n

Siv &~+ ZQP~

( ) 3g ~ +)+

s(F &o&Zg ) d
Bzo

(A18)
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