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An analysis of the potential and field profiles in low-dielectric constant liquids, where ions are thermally
generated and recombine bimolecularly under applied voltage, is presented. The forced-diffusion model,
which is described by a set of nonlinear differential equations, is solved numerically for a symmetrical case
where the parameters of the positive and negative ions are equal. The solutions show a significant departure
from the geometrical-potential distribution and the boundary. conditions used lend themselves easily to
generalization, which can include ion-injection and electron-transfer mechanisms.

I. INTRODUCTION

The phenomenon of extrinsic photoconductivity
in low-dielectric-constant liquids is well known ex-
perimentally,’ however, the different basic pro-
cesses which govern the dynamics are incompletely
understood. By the term extrinsic we mean a pro-
cess which involves interaction between an excited
state in the fluid and an electrode surface to pro-
duce a charge carrier. The means by which the
excitation reaches the electrode is usually as-
sumed to be through molecular diffusion, but there
is some evidence that excitons may be involved.?
Deexcitation near an electrode surface takes place
through energy transfer® and electron transfer®”®
mechanisms. Energy transfer processes were
analyzed in detail” using classical electromagnetic
theory treating the molecules as emitting multi-
poles near an interface. This theory appears to be
applicable in extrinsic photoconductivity experi-
ments because the energy transfer rate should de-
pend only weakly on the local electric field through
the Stark shift at the molecule. On the other hand,
the excited electron transfer rate can depend on a
number of mechanisms like thermal passage of the
electron over a barrier, or tunneling through the
barrier. These processes are all dependent on the
local field strength and band structure of the elec-
trode. For example, the experimental photocur-
rent always exhibts a voltage-dependent behavior
which reflects the field dependence. There is no
satisfactory theory of these complex processes and
as a first step we will concentrate on the evaluation
of the field strength. The field in these liquids can
be due to changes other than those created by light.
One always finds a dark current along with the
photocurrent. By choosing the range of parameters
(light intensity, applied voltage, and electrode
spacing) we can arrange to have photocurrent
small compared with this dark current. Therefore
it is physically plausible to assume that in this
case the local field is determined essentially by the
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dark current. This current is a result of genera-
tion and recombination processes and has its own
mechanism of electron transfer at the electrodes.
[The equilibrium problem for the case where there
is a fixed number of positive and negative ions
present was treated recently for an electrode spac-
ing narrow compared with the diffuse double-layer
thickness (as it is also in our case). In that work
analytical solutions in terms of elliptic integrals
were obtained where, again, the assumption of
negligible adsorption was used.'®] Once this model
is analyzed by means of the theory of forced dif-
fusion we can use the results to explore the mecha-
nisms of photocurrent production in the same sys-
tem. As will be discussed, even for very-low-
conductivity liquids the potential profile can differ
greatly from the geometric profile and can have a
significant effect on the process of excited elec-
tron transfer.

II. DISCUSSION OF THE MODEL

Since the geometry of the electrode configuration
in a photoconductivity experiment is usually one di-
mensional we will present the theory for this case
only. The fluid between the electrodes is assumed
to be highly resistive, which is the case in pure
aromatic media, and therefore, the electrophoretic
effect can be neglected. Furthermore, since for
such media the solvent lacks a permanent dipole
moment and the impurity level is very low, there
is no significant orientation of solvent molecules
at the electrode, and absorption may be assumed
to be negligible. Therefore, in what follows we
will assume there is no significant Helmholtz
double layer. The current is produced at the elec-
trodes by an electron transfer between the elec-
trode and an adjacent ion (redox of impurity ions).
Because this is a local mechanism it can be in-
cluded in the boundary conditions of the differential
equations which describe the forced diffusion of the
ions in the bulk. Electron transfer to neutral mo-
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lecules, which occurs at higher applied voltages
(charge injection, i.e., redox of neutral molecu-
les), can also be described by appropriate bound-
ary conditions but will not be included at present
and will be discussed in the next paper. It is use-
ful to treat the problem in two parts. First by
choosing the ion concentration at the electrode as
an independent parameter it is possible to obtain
a set of solutions independent of the current pro-
ucing mechanism. Then the particular mechanism
is chosen so that it can be combined with the mod-
el-independent solutions to give for any applied
voltage the potential and field profiles and the cur-
rent density. The voltage dependence of the cur-
rent, which is the only easily measurable quanti-
ty,® will serve then as a test for the particular as-
sumed mechanism. For low light intensities,
meaning when the photocurrent is small compared
with the dark current, the field at the electrode
will determine the electron transfer from the op-
tically excited molecules and the field distribution
will provide the driving force for the photocreated
ions. The model that we have used in our analysis
(namely, forced diffusion) was discussed by sev-
eral authors. This work differs from those, first
by retention of all terms in the set of differential
equations and second by utilization of physically
meaningful boundary conditions.

III. THEORETICAL ANALYSIS

The geometry is shown in Fig. 1. The liquid is
contained between two infinite parallel plates under
a total applied potential difference V. The ions in
the fluid are generated (thermally) at a rate g/e,
where e is the electron charge. They recombine
through bimolecular collisions.

The process of forced diffusion is described by
the following equation.
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FIG. 1. Geometry of the electrodes. The electrode
size is much greater than the separation distance 2a.

The continuity equations in steady state are

dJ,

Td;m +g,,—K,,np=0, (3)
aJ,
——é;f+gp—Kpnp=0. (4)

The potential satisfies the Poisson equation

Y T LYVRS (5)

Here n, p’ Jm pr Hons U'py D;‘n Dp9 Km Kp, Ens and
g, are the concentrations of negative and positive
ions and corresponding current densities, mobil-
ities, diffusion coefficients, recombination con-
stants and charge generation rates. ¢ is the elec-
trostatic potential which includes the effect of the
ions.

The boundary conditions for the potentials are

d(-a) =3V, ¢(a)=—%V. - (6)

The boundary conditions on the charge densities
are stated in terms of the current

Jp(-a)=0, J,(a)=0, (7)
Jya)=S,pla), J(-a)=S,n(a). (8)

It should be noticed that in Eqgs. (1)=(5), J(x)
mathematically is only an auxiliary variable and
the equations are in terms of » and p; but from the
physical point of view it is impossible to impose
meaningful boundary conditions on ion densities.
Therefore conditions (7) and (8) are given in terms
of currents so that charge exchange mechanisms
can be incorporated in the rate constants S, and
S,- These parameters appear also in solid-state
theory where they are called surface recombination
velocities. The set of equations (7) states that
there is no charge injection (redox of neutral mo-
lecules) at the electrodes and it is only necessary
to modify these conditions when injection is pres-
ent.

It should be emphasized that even though the cur-
rents at the electrodes [Eq. (8)] are given as a

product of ion density times a rate constant S, or

S, this is not as restrictive as it appears. The
way the differential equations can be treated al-
lows one to include ion density dependence of the
rates S, and S,. In Sec. IV we will treat the prob-
lem in which exchange currents are present. S,
and S, in general will include the effects of the
local field, electrode, and ion properties such as
energy levels and densities of states.

In the treatment of this set of equations we will
exploit certain symmetry properties which will
lead to a tractable set of equations without sacri-
ficing the physical reality of the problem. We will
look at a problem where
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Bn=lp=H, D,=D,=D, g,=g,=8, ©)
K, =K,=K, §,=S,=S.
These assumptions allow us to reduce the set of
five nonlinear equations to a set of three nonlinear,

nonlocal equations. As is shown in Appendix A,
the set (9) is a sufficient condition so that

Ip(x)=d(=x), px)=n(-x). (10)

The reduced equations are:

d d
Jf-Deg%—ue d—fp, (11a)

J

- ﬁ +g-Kp(x)p(-x)=0, (11b)
{3;% =—4—Ze [p(x) = p(=x)] . (11c)

These contain in addition to ¢ only the single un-
known p. We also make use of the Einstein rela-
tion that u =De/ET.

Equations (11) were solved numerically. For
this purpose we transformed them by means of
Green’s functions into the following equations of the
Fredholm type:

p(x)ze-cb(x)f ((x’+a)g—K fx p(x")p(-x”)dx”)e‘b‘""dx%%(Zag—K f ap(x’)p(-—x’)dx') eQ(a)'cb(x),

o(x)=— Vx| Ame

2a € J,

where ¢ =e¢>/kT and is dimensionless, 6 is the
usual step function, and ®(g)=-eV/2kT. From
Egs. (12) and (13) it can be seen that the solutions
p(x) and ¢(x) [and therefore J,(x) through Eq. (11a)]
are completely determined provided that S is
known. It should be noticed that in Eq. (12) the co-
efficient of the exponent in the second term is
simply the ion density at the electrode p(a). This
fact allows one to analyze the problem at first
without the need to consider any model for S. Us-
ing p(a) as an input parameter one obtains a family
of solutions for any set of applied voltages. At
this point one can construct a family of curves of
J,(a) vs S for different values of applied voltage.
The second step requires specific knowledge of S
as a function of applied voltage for the particular
system. This information, combined with the fam-
ily of curves obtained in the first part will yield a
prediction for current density versus applied volt-
age behavior. It is clear from this method that S
is not restricted to any functional form and can
even depend on p(a). For example, when exchange
current is considered then, as we will show for a
simple model of this mechanism, S will have this
dependence.

The field distribution is calculated from the fol-
lowing equation:

V  4ge (*°
¢(x)=-g;+"€—f_a

(515 (a=x")+0(x- x’))
X [plx")=p(=x)]dx’'. (14)

This form is especially useful to obtain accurate
values when numerical methods are used.

(12)

. (Zl_a (@a=x"Ya+x)~ (x=x")0(x - x’)) [p(x) = p(=x")] dx’, (13)

—

IV. RESULTS AND DISCUSSION

Figure 2 presents the potential and field distri-
bution calculated for a few cases which emphasize
the characteristic behavior of this system under
applied voltage. In each case the values of g and
K are the same as used previously,® (g/e =5x10"
sec™lcm™3, K/e=2x%10"13 sec”! cm?®) and electrode
spacing is 0.01 ¢cm. In Figs. 2(a) and 2(b) the ap-
plied voltage is 0.1 V and the values of S are 5
x107* and 107% C cmsec™!, respectively. Ia Fig.
2(c) the applied voltage is 0.2 V and S is 6x107°
Ccmsec™.

It is clear from these results that the potential
and field profiles differ from the geometrical
ones, and the differences can be very large.
Therefore any calculation which involves field
strength has to take into account these differences,
in particular when considering photoconductivity
mechanisms, which are believed to be sensitive
functions of electric field strength at the electrode.
For a certain range of parameters the calculated
field at the electrodes can be orders of magnitude
larger than the geometrical even when current is
flowing. This certainly cannot be ignored when
considering charge motion in the electrode vicinity
(e.g., charge transfer or escape of an ion from a
modified image field).'°

Figure 3 shows a family of curves of current
density versus S for a range of applied voltages.
As expected,; for high values of S the current sat-
urates, the reason being of course that it is impos-
sible to draw more charges than are being pro-
duced. The curves appear to be of the same shape
but shifted along the logS axis. This is approxi-
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FIG. 2. Potential and field distribution in three char-
acteristic cases. (a) Voltage applied is 0.1V, Sis 5
x10~4 Coulomb ecm sec™!. (b) Voltage applied is 0.1 V,
S is 6 X10" % Coulomb cmsec™!. (c) Voltage applied is
0.2V, S is 6 x10"® Coulomb cmsec™ 1. /

/

mately correct especially in the low-current range
where the ion distribution approaches thermal
equilibrium, and in the high-current range the sat-
uration washes out the differences between the
curves. Since we have not found in the literature a
proof that in the presence of generation and re-
combination processes the current vanishes every-
where for zero-output current (this is the condition
for the Einstein relation) we show this in Appendix
B.

To illustrate the use of this method we will show
the results of calculations of current voltage rela-
tionships in a case of exchange currents. The
model we consider assumes that the measurable
current arises from the difference between the
zero voltage ion density at the electrode and the
steady-state value., Mathematically it can be stated
as

J=S,[pla) = pola)], (15)

where py(a) is the ion concentration at V=0, which
equals Vg/K, and S, is a constant. The rate pa-
rameter S used in the theory is in this case

§=S,[1 = po(a)/p(a)] . (16)

Here S depends on p(a) and the current vanishes at
zero voltage as required. Figure 4 shows the three
characteristic curves for values of S,=1075, 1078,
1077 Cecmsec™, The current saturates as the
voltage increases (as expected in the absence of
injection), The saturation behavior has been known
for a long time'! but the detailed shape of these
curves requires more careful investigation at low
voltages.

V. COMPARISON WITH OTHER WORKS

Equations (11a)—(11c) describe the dynamics of
ions, generated thermally and recombining bi-
molecularly. Their motion is governed by diffu-
sion and electrostatic forces. The relative im-
portance of these two processes can be determined
on the basis of the full solution of these equations.
In our numerical solutions, which included all.
terms, we found that not only is no term in Eq.
11(a) negligible, but they are even of the same or-
der of magnitude. This is true even for small con-
centration gradients. In all cases where D and
are related by the Einstein relation (which is true
in a fluid) it is impossible to neglect diffusion by
taking D to vanish. In other words, there is no
way in which diffusion can be regarded as negligi-
ble in these liquids.®** Discarding diffusion has
another fundamental effect. Equations 11(a) and
11(b) give a second-order differential equation for
concentration when combined. Therefore, two

~ boundary conditions must be specified, and this is
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demanded on physical grounds because the pro-
cesses at both electrodes determine the behavior.
In every case the mathematics must reflect the
physics of the problem. Discarding the diffusion
term reduces the equations for p to first order,
and it is hard to find a physical meaning for one
boundary condition only. .

In our calculations we found the ion concentra-
tions at both electrodes to depend strongly on the
rate transfer parameter S. Any attempt to fix the

concentration at either electrode specifies a solu-
tion which, of course, is unphysical.'? In addition,
there is no further room to incorporate an electron
transfer mechanism into the analysis.

In light of this discussion it appears that although
this problem has been treated by a number of au-
thors in the past our analysis seems to be the most
consistent one. The structure of our treatment
makes it clear how to generalize it so as to include
unsymmetric systems, ion injection,®:** effects of
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band structure!® of the electrode material on the
parameter S, and finally to use the information ob-
tained to understand better the mechanisms of
photoconductivity.
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APPENDIX A: SYMMETRY PROPERTIES
OF THE DIFFERENTIAL EQUATIONS

In order to show the symmetry of the differential
equations we will reflect the coordinate system
through the origin. For convenience we use the
reflection operator R whose properties are

Ry(x)=y(-%), [Ryx)]==y'(=%),
Ry’ (x)==[Ry(x)] =9'(-x),
R(y+z)=Ry+Rz, R(yz)=RjyRz.

Operating with R on the set of equations (1)-(5)
and the boundary conditions (6)-(8) in the case
when the parameters for positive and negative ions
are the same, results in the following equations:

(RJ,)=—De(Rn)' — pe¢’'(Rn), (A1)
(RJ,) =De(Rp)’ - ned’'(Rp), (A2)
—(RJ,))' =-g+K([Rn)RD), (A3)
-(RJ,) =g-K(Rn)Rp), (A4)
—-R(¢")=¢"=(4me/e)|[(Rp)- Rn)] . (A5)
The boundary conditions become
RJ,(a)=0, (A8)
RJ(-a)=0, (AT)
RJ,(a)=S[Rp(a)], (A8)
RJ,(-a)=S[Rn(-a)], (A9)
Pla)=3V, (A10)
pl-a)=-3V. (A11)

A simple comparison of these equations to the
original set shows that they are identical provided
n and p are interchanged everywhere and the func-
tions are evaluated at the reflected coordinates.

This symmetry property makes the potential ¢
antisymmetric as was assumed.

APPENDIX B: THERMAL EQUILIBRIUM LIMIT
OF THE DIFFERENTIAL EQUATIONS

Under conditions of thermal equilibrium it is,
of course, expected that current at all points van-
ishes. However, this should be a property of the
differential equations rather than an additional as-
sumption. In the absence of generation and re-
combination processes it follows trivially for zero-
output current from the continuity equation. It is,
however, not immediately obvious that the current
vanishes when these processes are present. The
following considerations show that this is indeed
the case. The proof is particularly simple for the
symmetric case.

The sum of the two continuity equations (3) and
(4) along with the condition of zero-output current
gives

Jy(x)+d,(x)=0. ' (B1)
Using this condition and the result of Appendix A
plx)=n(-x)

and the integrated form of the continuity equation
[with b.c. J,(-a)=0]

T2 =glx+a)-K [ " ) pl=x) da, (B2)
one can get v
T8 ==dy=2), Jox)==d(=2). (B3)

From Eq. (B3) the currents have to be antisym-
metric functions. However, an anitsymmetric
function must vanish at the center where the poten-
tial is zero by symmetry. Consider an electrode
placed at the center at zero potential. The half
space created is again equivalent to the original
problem with a zero-output current boundary con-
ditions (of course, the voltage and spacing are
changed but the local currents have to vanish at
any voltage or spacing). Now the current is not an
antisymmetric function of the distance unless it
vanishes identically (to be rigorous there may be
more than one halving process required to get rid
of the antisymmetry of J).
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