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Perturbation analysis of fluxon dynamics
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A two-stage scheme is presented to study structural perturbations of the sine-Gordon equation. Although
the method is based upon the inverse scattering transform, detailed knowledge of this technical apparatus is
not necessary in order to effect the calculations. In the first stage, slow modulations of speeds and positions
for the soliton components are computed. The radiation resulting from the acceleration of the solitons is
then calculated as a first-order correction through an easily constructed radiative Greens function. The
method is exemplified by using it to study several outstanding problems that arise in applications of the
Josephson transmission line. In particular we consider: (i) the pinning of flux quanta by microshorts, (ii) the
quantum flux shuttle, (iii) annihilation conditions for fluxon-antifluxon collisions, (iv) breather decay, and (v)
radiation from a moving fluxon.

I. INTRODUCTION

The dynamics of magnetic-flux propagation on

a Josephson-junction transmission line (JTL) is
a subject of increasing practical interest. It is
now possible to make such lines with reasonable
mechanical and electrical stability, "' ' and they
appear to have applications for transmission,
storage, and processing of information. s ' The
basic JTL property that is useful for computing
applications is quantification of magnetic flux
which appears in units of the flux quantum or
fluxon,

4 0
= lg/2e = 2.068 x 10 V s .

In the "quantum flux shuttle" discussed by Fulton,
Dynes, and Anderson, ' ' each fluxon carries one
bit of information through a shift register. The
Josephson memory element proposed by Gueret'
uses a small segment of JTL to store a single bit
in the form of a fluxon, and the Josephson com-
puting network designed by Nakajima, Onodera,
and Ogawa, employs interactions between JTL
fluxons to realize the logic functions: 0&, AND,

and NOT. Also, employing means to be described
in this'paper, radiation from a fluxon as it
passes a series of equally spaced microshorts
may serve as the basis for an electromagnetic
oscillator in the submillimeter range.

The essential structure of a JTL is sketched in
Fig. 1. Two superconducting metal strips are
separated by an insulating barrier which is thin
enough (-25 A) to permit "Josephson" current to
tunnel the barrier at superconducting tempera-
tures. Magnetic flux can penetrate along the in-
sulating barrier, and this flux can propagate in
the longitudinal (x) direction. There are two pos-

sible orientations for the flux. A quantum of flux
in one direction is called a "fluxon" and in the
other direction an "a.ntifluxon. " If an adjustable
bias current is present, it will exert a Lorentz
force on a fluxon in one direction and on an anti-
fluxon in the other direction.

If all dissipative effects and imperfections in
the transmission line are neglected, flux propaga-
tion is governed by the "sine-Gordon" equation'

Q„=P„—sing,

where g is magnetic flux measured in units of
4,/2m, and x (and f) denote suitably normalized
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FIG. 1. Josephson junction transmission line {JTL}
with bias current y. Not drawn to scale.
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P, (x, t;u, x,}-=4tan ' exp ~+ (1 —Q

(1.2)

The parameter u denotes the constant velocity of
the soliton. This velocity u can take any value
between -1 and +1, i.e. , -1 & u &+1. The other
constant parameter, xo, locates the initial center
of the soliton. Notice that the + signs imply that
@, increases monotonically by 2v as x goes from
—~ to +~, while P decreases by 2m. Thus, in
this model, P, represents a fluxon while P
represents an antifluxon. Finally, note that the
factor (1 —u')'~' fixes the width of the soliton. As
u- +1, the soliton "Lorentz contracts" to a step
function of height 2w located at the "light cones"
(x=x, +t).

The soliton of (1.2) is a special case of the gen-
eral traveling-wave solution g = P(6) (where 6
—= &ut —kx) defined by the elliptic integral'8
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FIG. 2. Nonlinear solutions of the sine-Gordon equa-
tion (1.1); (a) fluxon, (b) antifluxon, (c) periodic array
of fluxons, and (d) radiation component of wave number
k.

space (and time) variables. (See Ref. 2 for a dis-
cussion of appropriate normalizations. ) The sine-
Gordon equation is a conservative, nonlinear,
dispersive wave equation that supports special
solutions called "solitons. "' A sine-Gordon soli-
ton is a localized wave [shown in Fig. 2(a) and 2(b)]
that is analytically described by the two-para-
meter formula

1

ka~(6- 60}-( - + }
[ „,pp;—,

(1.3)
where E is a constant of the first integration. For
the case E=1, (1.3) reduces to (1.2) with M=&u/k.
For E & 1 and u = co/k & 1, (1.3) indicates that Q is
a monotone function of x; this can be considered
as an infinite sequence of fluxons (or antifluxons)
spaced apart by a distance A =2m/k as shown in
Fig. 2(c).

For —1 &E &+1 and u = m/k & 1, (1.3) gives @ as a
periodic function of x with period A = 2m/k as
shown in Fig. 2(d). The amplitude of this wave
A =cos 'E. The frequency co, wave number p, and
amplitude A are related by the nonlinear disper-
sion equation

QP —k = 4 7f (E [2 (1 —cosg)]1/2] -2 (1 4)

where K(.} is the complete elliptic integral of the
first kind. As A increases from 0 to m, the right-
hand side of (1.4) falls from unity. Thus, for
small-amplitude periodic waves, the lowest fre-
quency is unity.

For each wave number k this periodic wave train
has two free parameters [u (or A) and 6,] which
fix its velocity (or amplitude) and phase. We shall
refer to these periodic waves as "radiation in the
transmission line at wave number k."

The general solution of the sine-Gordon equation
which approaches zero (mod 2m) as [xI- ~, con-
sists of a, finite number of fluxons, a finite number
of antifluxons, and a continuum of radiation. Be-
fore briefly describing this general solution, we
discuss the special case of no radiation. Exact
analytical solutions of the sine-Gordon equation
are known which describe the interaction of N
fluxons and M antifluxons. " These solutions are
called "pure N+M-soliton states" (since no radia-
tion is present) and are labeled by 2(N+M) para-
meters of which N+M parameters fix the speeds
of the N+M solitons and the remaining (N+M)
parameters to fix their locations. This is exactly
correct provided that only fluxons or only anti-
fluxons a.re present in the wave; however, it is
somewhat oversimplified if both fluxons and anti-
fluxons are present. To see this, consider a
pure two-soliton waveform co~posed. of a fluxon-
a,ntifluxon pair. In this case, the general four-
parameter waveform can represent two different
physical states. In the simplest of these two situa-
tions, the fluxon separates from the antifluxon in
both the distant past and the distant future; each
then travels with its own velocity and has its own

location parameter. The waveform in this situa-
tion is given by

sinh[u(t —t,)/(1 —u ')'t']
u cosh[(x —x,)/(1 —u')'i']
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FIG. 3. Fluxon-antifluxon collision. Time increases
from (a) to (d).

I'-x+ x, —5 —ut~4tan ' exp~— 1-u
Thus, as time increases, Qn separates into an
antifluxon traveling to the left with velocity -u
and a fluxon traveling to the right with velocity
+u. The reverse is true in the past as indicated
in Fig. 3.

The other two-soliton solution consists of a
fluxon-antifluxon pair bound together into an
oscillatory state called a ".breather" which is
sketched in Fig. 4. It cannot decompose into a
fluxon and an antifluxon as t -+~ because its en-
ergy is less than the rest energy of the f�luxo-
nantif�lux components. The four parameters which
label this wave fix the velocity of the envelope,
the internal "breathing" frequency, the initial
location of the envelope, and an initial centering
of the phase. Analytically, the breather wave-
form is given by

, ~f' tanv sin[(cosv)(t —f,)]
cosh[(sinv)(x —x,)]

(1.6)

where we have assumed that the envelope is at

where Qn depends upon three parameters instead
of four because we have Lorentz transformed to a
center-of-velocity coordinate frame. Note that
as t-+~ this "doublet" waveform becomes

fx x, 6-Mt'I-—
4tan ' exp ~, ',)„, ~, x&0

FIG. 4. Bre ather.

rest in the (x, t) frame. The four parameters are
v, x„t, together with a velocity u, which results
after a Lorentz transformation [x «'=(x —ut)/
(1 —u')' ' f- t' = (t —ux)l(1 —~')'~'] has boosted
the envelope from rest to velocity u, . Note that
the frequency of the breather in its own frame is
cosv and this frequency is always less than unity.
Small-amplitude radiation, on the other hand, has
a frequency greater than unity.

A general wave consists of a (nonlinear) super-
position of N fluxons, M antifluxons, L breathers,
and radiation wave trains at all wave numbers.
Although these components would synthesize any
wave P [which approaches zero (mod 2m) as
x- a~], they are particularly natural and useful
when the temporal evolution of Q is governed by
the perfect sine-Gordon equation (1.1). jn this
case, the number of fluxons X, the number of
antifluxons M, the number of breathers L, and
the density of wave trains for each wave number
k are all fixed by the initial data and do not vary
with time. Moreover, the initial data selects the
speeds of the fluxons, antifluxons, and breathers
as well as the breather frequencies. All of these
properties have been established analytically
during the past five years through a new technique
known as the "inverse scattering transform meth-
od" (ISTM)."" This method can be viewed as a
nonlinear generalization of the Fourier-transform
method wherein the Fourier components are re-
placed by fluxons, antifluxons, breathers, and
(nonlinear) radiation.

If the sine-Gordon equation were a perfect model
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of the Josephson transmission lirie, these nonlinear
modes would not interact even upon direct colli-
sion. But dissipation effects and junction ir-
regularities are always present on a real JTL so
real fluxons do interact when they collide. It is
necessary to establish design control over such
interactions if the above mentioned applications
of the JTL are to be realized.

One analytical approach is to represent a more-
realistic model of JTL as a structural perturba-
tion of the sine-Gordon equation

(I)« —Q„, +isnt(=)ef, 0 &e«1.
Here the perturbation ef is a function of the wave '

Q, its spatial and temporal derivatives, and pos-
sibly of space and time. The perturbation will
alter the speeds and shift the locations of any
fluxons and antifluxons in the wave, and it will
also modulate any radiation packets and breathers
which are present. The perturbation may also
cause fluxons and antifluxons to interact or to be-
come bound into new breathers. Breathers
might be forced to fission into fluxon-antifluxon
pairs. In addition, the perturbation could open
(or close) additional degrees of freedom which
are not excited in the initial wave; it could create
(or destroy) solitons as well as generate radia-
tion.

The main purpose of this paper is to adapt a
general perturbation method developed in Ref. 14
to the specific problem of a real JTL modeled as
a structural perturbation of the perfect sine-
Gordon equation. This perturbation scheme is
constructed about the soliton components rather
than an (old fashioned) linearization about Fourier
modes. We try to present the perturbation scheme
in sufficient generality that practicing scientists
will find it easy to study particular structural
perturbations; moreover, we apply the scheme to
a perturbation that seems a realistic model of an
actual JTL. Finally, we emphasize that it is not
necessary to be familiar with the technical mach-
inery of the inverse scattering transform in order
to effectively undertake a perturbation analysis of
soliton interactions. ""

In Sec. II, we present the perturbation theory
from the simplest possible perspective: an en-
ergy argument. This should be helpful to orient
the physical intuition of the reader during the more
detailed discussions to follow. Moreover, an en-
ergetic analysis is valuable in its own right be-
cause, when applicable, it is the most direct way
to obtain useful results. Section III presents an
abbreviated version of the perturbation scheme in
a form which is appropriate for calculating inter-
actions between fluxons, antifluxons, and
breathe r s; and, in Sec. IV, this scheme is used

I

to study the dynamics of a single fluxon in the
presence of dissipation and microshorts across
the Josephson junction. Section V considers the
fluxon-antifluxon collision, derives conditions for
subsequent decay into a breather, and offers some
general comments on the propagation of fluxon
bundles. Section VI develops the perturbation
scheme with sufficient generality to permit cal-
culation of the radiation from a modulated fluxon
in Sec. VII. Finally, the Appendix uses inverse
scattering theory to sketch a basic derivation of
the Green's function upon which the calculation of
radiation is based.

II. ENERGETIC ANALYSIS

In this section we indicate the physical origin of
each term in the particular perturbation to be
studied, describe qualitatively the response of the
wave to each term, and present a simple way to
make these considerations quantitative when

studying the dynamics of a single fluxon. We take
as a realistic model of the JTL a structural per-
turbation of the sine-Gordon equation

(j}«=p,„—sing+sf, 0 ~e«1,
where cf is a generic term representing

(2.1)

cf = nQ, + P—Q,„,—y —g p.. , 5(x —a;) sin(I) .

/E =-f (-,'d', + —,'d', c( —eood}dx; (2 3)

moreover, if we neglect the two dissipative te'rms
(o. and P), our more-realistic model can also be
written as a Hamiltonian system with Hamiltonian

(2;4a)

"
I'

( Pc, s(x —s)(1 —coo(d+ yd) dx.

(2.4b)

(2.2)

Here, nQ, represents the dissipation due to tun-
neling of normal electrons across the barrier,
Pg„„ is the dissipation caused by flow of normal
electrons parallel to the barrier, y is a distribu-
ted bias current providing energy input, and the
p, ; 6(x —a;) sin(I) terms represent local regions of
high Josephson current (microshorts, thin spots
in the barrier, etc.). (Again, the reader should
consult Ref. 2 for a discussion of the normaliza-
tions. )

The perfect sine-Gordon equation can be written
as a Hamiltonian system for ((t), (j),) with the
Hamiltonian
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From these two Hamiltonians, it is. easy to
determine the nature of each term in the structural
perturbation ef. First, let ((( denote any solution
of (2.1) with the parameters n and P set at zero.
Then H(Q) is constant in time,

de(y)
dt

On the other hand, if Q denotes any solution of
(2.1) with n, I8e0, we compute

(2.7)

On the other hand, if P is any solution of (2.5) we

compute

(2.8)

Since n, P, y are small, we can approxiinate @ by
a fluxon (antifluxon) with modulating velocity. In-
serting the fluxon (antifluxon) wave (1.2} into the
right-hand side of (2.8) and integrating gives

da(y)
dt (nQ +PQ„)dx. —8'o(P, ) =+22yu —Bnu'(1- u') '~'

If n and p are positive, these terms extract en-

ergy from the wave; they are dissipative.
To see clearly the effect of the y term (bias

current) on the wave, set n = 0, P = 0, and p, = 0.
Then the energy density of the wave becomes

&=(-2(t2, + -2(t(2, + I —cosQ)+yQ =3C3 +y Q.

If y is positive, the term yP in the energy den-
sity yields a negative force on the wave in (t(

space. As time increases, the wave is driven
down in Q space. If P is a single fluxon [see Fig.
2(a)], a force that causes P to decrease drives
the fluxon to the right. If, on the other hand, P
is a single antifluxon [see Fig. 2(b}] it is driven
to the left. Thus, y is an energy-injection term
which accelerates fluxons (antifluxons) in the
+x (—x) direction.

To see the qualitative effect of a microshort on

the wave, set n =0, P =0, y =0 and consider the

energy density

K=X + t(, (1 —cosp) 5(x —a) .

The factor u(1-cosP) represents the positive en-
ergy in a microshort located at x= a. This energy
is zero unless p(x, t) 330 (mod 2w) near x= a.
Otherwise, energy is taken from Hs~ and "stored
in the short. " Thus as fluxons and antifluxons
approach the short, they must slow down.

In the case of a single fluxon (or antifluxon),
these qualitative considerations can provide
quantitative predictions of the effect of a perturba-
tion. For example, set all p, , =0 and consider

sink (ny—, Py..—.+y), — (2.5}

where the parameters n, P, y are small. First, we
assume that the predominant effect of the perturba-
tion on a single fluxon is to modulate its velocity.
Next, we insert the soliton waveform (1.2} into
HI~ to obtain

H' (P )=8(1 —u') ''
and take the time derivative

—= ~ -,' vy(1 —u2)3~2 —nu(1 —u') - -,' Pu. (2.10)

This simple equation describes the effect of the
perturbation on the fluxon's velocity. Note that
the n and P terms cause both the fluxon and the
antifluxon to slow down, while the y terms drives
the fluxon to the right and the antifluxon to the
left. Let u„denote the equilibrium solutions of
(2.10). These constant solutions represent "power
balance" velocities at which the power input to the
soliton is just balanced by its power loss to dis-
sipation. For the case P =0, the "power-balance
velocities" are

(4~ 2 -1/2
u =~ I+I(ry (2.11)

The calculation just described uses one constant
of the motion (total energy) to get one equation for
the effect of the perturbation on the velocity of a
single fluxon. The simplicity and directness of
this calculation are its chief merits; however, the
procedure has several disadvantages. First, it is
difficult to check the accuracy of the result. Next,
no method is provided to compute radiation gen-
erated by the perturbation, or for that matter any
change in the wave other than a modulation of
fluxon velocity. In a multisoliton wave, one must
compute the modulations in several velocity para-
meters; thus additional constants of the motion
are required. Although other constant are avail-
able for calculating additional dynamic properties
of more complex solitary waves, "our experience
indicates that they are not convenient for gener-
ating the extra equations associated with multi-
soliton interactions. In Sec. III we sketch a
simple perturbation method that overcomes these
difficulties. We find this method easier to use
whenever the energy argument is insufficient. We

2 Pu2(1 u 2)-3/2

Equating (2.7) and (2.9) yields a first-order ordi-
nary differential equation for u(t),
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emphasize, however, that the energy argument is
the method of choice whenever it is appropriate
because it is so direct.

III. SUMMARY DESCRIPTION OF THE PERTURBATION

SCHEME

In this section, we consider. a wave which is in-
itially a pure multisobton state and show how to
compute the response of the solitons to a generic
structural perturbation cf. A more-detailed de-
scription of the perturbation scheme is given in
Sec. VI and in Ref. 14. We begin by writing (1.6)
as a first-order nonlinear system

—'0+%(V)/) = of,

where f =—col[0,f(@)]and the nonlinear operator
N( ~ ) is given by

%hen c=o, a pure multisoliton wave is of the form

(N+Q+21 )

4(x,u, t+x-„. . . , u(„,„~L&t+x („.„„L,u), (3.2)

where u is an N+ JI/I+ 2L-dimensional constant
vector whose components fix the velocities of the
N fluxons and M antiQuxons in the wave „and the
2I frequencies and velocities of the breathers.
The parameters x=(x„.. . ,x(„,„,»&) fix the pos-
itions of the fluxons, antifluxons, and breathers
and also the phases of the breathers. The wive-
form (3.2) has 2(X+M+ 2L) parameters. Frequent-
ly, we shall refer to these parameters collectively
as a vector p = (u, x).

Note that time t enters the waveform W only
through the combinations u, t(i =1, . . . , M+X.+2L ),
although the velocity parameters u,. enter in other
places as well. [For example, in (1.2) the velocity
parameter u fixes both the speed and the width of
the soliton. ]

The first step in the perturbation scheme is to
assume that the solution VF of the full equation
(3.1) is of the form

v7='(/)r + s~+ ' ~ ~,

where C', is the N+M+2E;soliton state repre-
sented by (3.2) except that all parameters in p
are allowed to modulate as follows:

(3.3)

((,) (-8„+s(n( ) 0)(4,) (f(())
0&&«1 (3.1)

or, in vector notation for the wave 4' =—col((t), Q, ),

W, -P(„,„„L)@,X,(t) +x,(t), . . .

X(Ã+2(+2L)(t) ' x(Ã+/I+2I )(t)&u(t}}

where dX/dt= u, . A few comments are needed to clar-
ify this ansatz. First, the temporal modulation in
the parameters p(t) is induced by the perturbation
af. Since the perturbation is O(t), 'dp/dt
=O(e). At this stage, the modulation is not
known; it must be computed. Next, some
care is needed to correctly identify the ap-
propriate "velocity" parameters (u„.. . , u„,„,»)
before replacing u, t with X,(t). One approach to
this identification begins with the asymptotic form
of VFO for large t. In this limit, W, will be de-
composed into a collection of fluxons, antifluxons,
and breathers that can be treated individually.
The appropriate identification for the frequency
of a breather is straightforward if one recognizes
that the breather waveform (1.6) is an analytic con-
tinuation (in parameter space) of the doublet wave-
form for a fluxon-antifluxon pair (1.5)." As a con-
crete example of the zeroth-order ansatz, if a
single ftuxon is perturbed (i,e., N =1,M =L =0),
(3.2) corresponds to (1.2) and {3.4) takes the form

x -X,(t) -x,(t)) '

(3.4a)[1—u'(t)]'/' /
'

+2u „x-X,(t) —x,(t)
~(1 )122 /[1 2{t)]1/2

with X2(t) = J, u(t') dt' We dis.cuss the modulation
of this wave in detail in Sec. IV.

The second step in the perturbation scheme is
to find ordinary differential equations which gov-
ern the modulation. of the parameters p(t). This
calculation begins with the insertion of ansatz
(3.3) into the nonlinear wave equation (3.1), I in-
earization about 0, then yields

I,Vp=(y(@,}, %(t=0) =0. (3.5}

where the linear operation I is given explicitly by

(3.6)

Thus, the first-order correction W satisfies a
linear, variable-coefficient, nonhomogeneous in-
itial-value problem. The. choice of vanishing in-
itial data is equivalent to the assumption that in-
itially the wave is precisely the pure soliton state
C,. In (3.5), the inhomogeneity or "effective~ ~source" 8: is given by

1 2(/v+u+2I;& sp

where, in the calculation of the partial derivations,
(X,(t). ..XI/,„,2L(t)j are held fixed. Note that the
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effective source includes a correction to the per-
turbation f because, since the parameters of Ãp
vary with time, W, is not an exact solution of the
unperturbed sine-Gordon equation. In the calcula-
tion of this effective source, dp&/dt =0(e), so the
correction is O(1), not O(1/e) as the notation makes
it appear.

Equation (3.5) for the first-order correction 'W

is a linear initial-value problem that can be explic-
itly solved using a Green's function. This proced-
ure is discussed in detail in Secs. VI and VII. In
particular, this Green's function is useful for the
computation of the radiation generated by an accel-
erating fluxon; however, if only the modulations of
the fluxon itself are of interest, the calculation is
much shorter and very easy. Generally the solu-
tion VT)(x, t) of Eq. (3.5) tends to grow with time t
When this growth occurs, the first-order correc-
tion a% becomes large, and approximation (3.3)
becomes invalid. Mathematically, the origin of
this growth is a resonance between the source 5'

and the Green's function for (3.3). We must choose
the modulation of the parameters {p&) to eliminate
this resonance; thus, we obtain a valid approxima-
tion. The worst secularity (linear growth in t)
arises from a resonance between solitons in the
effective source F(%'p) and the same solitons in
the Green's function. This leading secularity will
be eliminated if the effective source F is orthogon-
al to a certain finite-dimensional subspace ("dis-
crete subspace") of the null space of an operator
L~ that is a formal adjoint of I,

(( 0) „—cas(,
)

—cos
IIp y) y p

We denote the null spaces of L and I" by R(L) and
R(L~), and the special discrete subspaces by
X~(L) and Ot~(L~). These subspaces have dimension
2(N+M+ 2L).

The idea is to select the modulation of the
2(N+M+2L) parameters {p~(t)) in a manner which
forces the effective source 8' to be orthogonal to
3t,(L~),

F~m, (L'). (3.8)

This orthogonality condition actually is an ordin-
ary differential equation that determines the flux-
on's response to the perturbation f. To obtain this
differential equation, let {b~(x),j =1, 2, . . . ,

2(N+M+2L)) denote a basis for the discrete sub-
space Ot„(Lt). Then, using the definition (3.7) of
the effect source 5, we put the orthogonality con-
dition into the form

8Pz] &~a

j= 1, 2, . . . , 2(N+ M + 2L) (3.9)

where we have used the "inner product" notation
for the integral over x,

(F,5) -=dx Fr(x)C(x) dx

Equation (3.9) provides a 2(N+ M+ 2I )-dimensional
first- order system of ordinary differential equa-
tions for the slow temporal variations of the flux-
ons' parameters. We complete this section by
showing that a basis for X~(L~) can be computed
directly from the multifluxon waveform 4', ; thus,
system (3.9) for the modulation of p depends only
on the multifluxon waveform.

First, we notice from (3.9) that we need the basis
{b~) only through O(l) in e. This permits us to
freeze the time dependence of p(t) in the computa-
tion of {b&(x)). Thus, in the computation of the
basis, we can replace (3.4) with (3.2).

Next, we observe that members of R(L) can be
generated by differentiating Pp with respect to the
2(N+M+2L, ) parameters p. To see this, note
that (3.1) has no explicit dependence upon these
parameters; thus, differentiation of (3.1) with
respect to a parameter p,. becomes simply
LdW, /gp& = 0. Here the notationd/dp& is to remind us
that in this case, when computing 9/Bu, , one does
not hold X,=u,.t consta. nt. In this way 2(N+M+2L)
independent elements

dW=-~ c 3t(L)
GPg

can be generated. But we seek elements of R(Lt).
To find these note that if V cX(L), then jV cX(L"),

(To verify this claim, begin with V c X(L),

1 () = 0 - 5,()+ ( .

)
()= 0.

-&„„+cosQp 0

Multiplying by J gives

((,W+z( z'W=o,0 -].
-s„„+cos(t)p 0

or I"JV= 0.) Thus, to lea-ding order in t,

Dlq(L )—:spanIJ' ——;1=(,2, . . . , 2(((+I+21)

Finally, since

VF —Sp(x ) u) t +x» ~ ~ ~ ) uz+u+pgt +x))(~u 21, u),

d%p t &Op sV)fp

du~ ex~ &I)

where on the right. -hand side one holds {X,) fixed
in computing the partial derivatives. Thus, for
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fixed f as functions of x, span(JiAV0/dP, ]
= span(J'RV0/Bpt). In this basis, (3.9) takes the
form

where

8 = O(x, t) =-*(x—
t
x(t )d't'-x, (t)) [1—x'(t)]'t'

gal

j= 1,2, . . . , 2(N+ M + 2L ) . (3.9 ')

These equations are the main result of this sec-
tion. They are the basic working tool of soliton
perturbation theory. Equations (3.9') for the vel-
ocity and location parameters permit the response
of the fluxons to a structural perturbation f to be
computed directly from the multisoliton waveform

No information is needed beyond an analytical
formula for the multifluxon waveform. To compute
the acceleration of the solitons caused by an exter-
nal perturbation f, we take system (3.9') [or, equi-
valently, system (3.9) in the arbitrary basis] as
the starting point for the calculations.

From a broader perspective, our perturbation
theory has reduced an infinite-dimensional sys-
tem (the original partial differential equation) to
a finite-dimensional system. The reduced system
is a 2(N+M+ 2L)-component system for the salient
features of the solution, namely, the soliton posi-
tions and velocities.

In the Secs. IV and V we illustrate such ealculax«
tions and then in later sections we check the ac-
curacy of the approximations by computing the
radiation generated by the fluxons as they respond
to the perturbation f.

IV. PERTURBATION ANALYSIS FOR A SINGLE FLUXON

In this section, we use the perturbation scheme
summarized in (3.9') to study the dynamics of a
single fluxon under the influence of an arbitrary
structural perturbation. The results are then
applied to several specific pex'turbations that are
of practical interest.

A. General dynamic equations

Suppose a single fluxon (or antifluxon) experi-
ences a generic perturbation cf. In this case, the
modulated waveform VF0 is given by (3.4a) with
velocity parameter u and location parameter x,.
System (3.9') or, equivalently, (3.9), is a coupled
system for these two parameters which can be
written in the form

—= pe —,'(1 —tt') f[(2I)0(6,x, t)] sechede,dQ

« to

Equations (4.1) govern the response of a single
soliton to a generic perturbation. In the remainder
of Sec. IVA, we show in some detail the actual
reduction of (3.9) to (4.1); and, in addition, we
make several observations about the structure of
system (4.1). We present this reduction process
in full detail, without introducing any general no-
tation that might tend to hide algebraic complicaa«

tions, in order to emphasize that only a few rather
easy analytical manipulations are involved. Then,
in Secs. IVB and IVC, we study some particular
choices for the perturbation f.

We begin from system (3.9) for the single flux-
on 40 with parameters (p„P,) = (u, xo) and consider
the null space

st, (n) span —(tt-=„{(),I.~Q ~xp

The calculations will be easier if we use a slight
modification of this basis. Note (i) in (3.9) we only
require the basis elements to O(1) in a, and (ii)
to this leading order,

{(t (t p,
)Bt&0

1 BW,
exp Q

Thus, to leading order, the null space Ol~(I ) is
spanned by (BW0/Bu, BW0/B])], and

sr, (dt) spanId
w d=BW B

Bg

More explicitly, a basis for K~(L ) is given by

(~0 ~ tt b ]( 0 t std
l & 2

&- Ao, t &- 40,.
where the notation "="reminds us that we only
need the O(1) part of the right-hand side. With
this choice of parameters and basis, (3.9) takes
the explicit form

(f (P ,P, P P„)d.)'. -.
s (PP„—P„P,)dx) x =a ,f f(P)d, dx,

«40

(4.2a)

' =-c~(1—u')'t"
dt

(4.1a) (f (P ,P P.P ,)dx)x. .— .

e,x, t 6 seche dx, (4.1b) (4.2b)
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where we have written (t) = (t), for typographical
convenience. Concentrate upon the first equation,
(4.2a). Since Q, is given by

x-x, —f,'u(t )dt'-
$, =4tan ' exp +

$«and (t), „are even functions of x, while their
t derivatives P, «and P, „,are odd. By these sym-
metry considerations, the coefficient of x, vanishes
and (4.2a) reduces to

(d , dh —d„„d„d„ei,ds)dn)d x= fsf(did, dx,
~N

where we have made the substitution (3I)« = P„„
—sing. One integration by parts then yields

OO

(—,'Q', +-,'(t)„'+1 —cosQ)dx u =c f(P)P, dx.
W OO w IO

This is just the energy equation

u=s f f(d)d, dx

which is discussed in Sec. II. Finally, for a single
soliton H(P) = 8/(I —u')' ~' and (4.1a) follows direct-
ly.

Now consider (4.2b). The coefficient of u van-
ishes identically. Integrating the second term by
parts yields

,d P, = „d

Writing Q, =4 tan '(exp8) completes our derivation
of (4.1b).

We conclude this subsection with two comments
concerning the general structure of (4.1). First
consider (4.1a) for the case in which f is indepen~
dent of Q, and depends only upon x.. This situation
describes a soliton under the influence of an ex-
ternal force, and (4.1a) can be put in the form""

du
eff ~

hand side vanishes if the perturbation
f[(t,(x, t), x, t] is an even function of 8. In this
case, 10=0 and the energetic analysis of Sec. II
is entirely equivalent to the first stage of the per-
turbation analysis. However, with the general per-
turbation presented in (2.2), the terms

g p,.&(x —a,.) sing

(which represent the presence of microshorts of
magnitude p,. located at x = a,.) destroy the even
symmetry off. The effects of these shorts will
now be discussed.

B. Pinning by microshorts

Consider first a single microshort located at the
'origin (x =0) with maximum Josephson current p.
Then the perturbation becomes

cf=-a(t, +PQ„„,—y —p &(x) sing.

Assuming this perturbation to act on a single flux-
on, we define the location of the center of the flux-
on as

X = u t' dt'+x0.
0

Thus,

X=gg+x

and, after performing the integrations over this
perturbation, (4.1) becomes an autonomous set
of ordinary differential equations in the variables
u(t) and X(t):

4Q 1 1—= a-, vy(l -u')'~' —o'u(l -u') —3pu+ —,)u(1 -u')
dt

X X
x sech' (,)u, isnh (,),1,),

(4.3a)

dX
dt

=Q —2

where the effective potential is given by

()„,—=s —,(1 —u')'i'f f[e(1— )'i's) —xu)
~00

x $,(6)d6,

2x sech
(1 ),&,) isnh ( (), ))).

(4.3b)

and where X =X(t) —= f u(t') dt'+x, defines the cen-
ter of the fluxon as a function of time. This form
of equation (4.1a) emphasizes the particle nature
of the fluxon. Its acceleration (caused by the per-
turbation f) is governed by a form of Newton's
equation with an effective potential given by the
external perturbation averaged over the fluxon
itself.

Second, consider (4.1b). Note that the right-

—+ sech'(Xo) tanh(XO) = 0 . (4.4)

Consider some representative numerical inte-

These equations are conveniently analyzed in the
(u, X) phase plane. Singular points (where u = 0
and X= 0) are found at

u =0 and X=X, ,

whereX, is a root of'
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{'x

a =.033
P=0
y =.02

ju. = 0.5

FIG. 7. Comparison of a pinning trajectory obtained
by numerical integration of (4.5) (solid line) with the
approxiInate trajectory computed from (4.6) (dashed
line).

C. Quantum flux shuttle

We are now in a position to consider the "quan-
tum flux shuttle" that has been proposed by Ful-
ton, Dynes, and Anderson' as a Josephson-junc-
tion version of a shift register. This device con-
sists of a normal (hyperbolic) transmission One
that is periodically loaded with discrete Joseph-
son junctions. Fluxons can remain stationary
("pinned") at locations between the discrete junc-
tions. VVhen a pulse of current bias is applied
with the appropriate amplitude and duration, each
fluxon is translated one period along the line.

The qualitative features of this device can be mo-
deled by considering the case o.'00, p0 0, y=y(t),
and taking the microshorts to be discrete Joseph-
son junctions of equal spacing and equal strength.
Then (4.3) is augmented to

il' —= —,
' p(l+ —,

'
vyX, )[2 sech'(X, ) tanh'(X, )

—sech'(X, )] .
Since X„ through (4.4), is a function only of i{. and

y, the same is true of O. Figure 8 is presented
to clarify this function. As y-O, 0'-2my; and,
as y is increased, a critical value (y, = 4g/w3M3)
is reached at which 0' falls to zero. From a dif-
ferent perspective, y, is the value of bias current
above which (4.4) has no roots so pinning cannot
occur under any conditions. From Fig. 8 it is
evident that the oscillation frequency remains less
than unity with the value of p (0.5) chosen for the
computations in Figs. 5 and 6. This is an impor-
tant point for the applicability of the simple per-
turbation theory. Since the frequency of small-
amplitude radiation, from (1.4), is greater than
unity, no radiative coupling to the pinning oscilla-
tion will occur. Thus the "Q" of this oscillation
will be 2/(n+ P/3) as is indicated in (4.7).

—= —,
' vy(l -u')'~' —o.u(l -u') —~pudt

+ —,'a{1-u')P set:h'(, „,)n
2 1 2

X -na
x tanh (l,)~g,

dX X -na—„=u--,'gu {x-ma)seclP {,{~,)n

X —f/'
x tanh (l 2)1/2

(4.8a)

(4.8b)

where, as before, X locates the center of the
fluxon, and n = O, a&, +2, . .. . With bias current
y equal to zero, the equilibrium position for a
fluxon is just half-way between the concentrations
of Josephson current, i.e. , at

X„=(I --, )a.
Thus (4.8) has a periodic array of singular points
located at (u, X)= (O, X„).

Suppose a fluxon is resting at one of these sing-
ular points (say X,= =,'a) when a bias-current
pulse

y(t) =as(t)
is applied. Then at t=O', u jumps from zero to
an initial value

u, = 1+ ~

.02

0
0

4p
c

I

I . f2 . l4

FIG. 8. Pinning oscillation frequency (squared) vs y.

after which (4.8) evolves with y= 0. Note that the
systems cannot operate properly as a quantum
flux shuttle in the dissipationless limit; c{,P = 0.
'The reason for this failure is that if u0 is large
enough for the fluxon to get by the first junction
(at x =0), then the fluxon has enough energy to
pass them all. In a shift register, however, it is
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required that y(t) move the fluxon just one step
along the periodically loaded JTI,.

If n or P is not zero, the area A of the stepping
pulse y(t) can be increased so the fluxon has
enough energy to get by the first junction but dis-
sipative losses prevent it from passing the next.
In the "nonrelativistic" limit (A « —,'7)), u

=-(n+ 3P)u, and the fluxon spends a time of the
order a/uo in moving a step. Thus 4u=-(n+ 3P)a
and the allowable tolerance on A will be of the or-
der

~-—(o', + —,p)a.
4
71'

(4.9)

This tolerance is relaxed as the spacing a between
discrete Josephson junctions is increased. But a
cannot be made too large or it will become ener-
getically possible for tsoo fluxons to remain sta-
tionary at one location of the shift register. To
investigate the design requirement that only one
fluxon be able to rest between any two discrete
Joseyhson junctions, we consider the static case
($,=0). Then setting y(t)=0 yields the ordinary
dif ferential equation

2p
= sin 4 ()+ g g I!(x —ma)) .

n

(4.10)

More generally, the quantum-flux-shuttle designer
would be interested in solutions of Q"=E(x) sing,
where E(x) =E(x+ a) is an accurate representation
of the Josephson current. From this point of
view, a further simplification of (4.10) to

V. FLUXON INTERACTIONS

A. Fluxon-antifluxon coBisions

In their design of a Josephson computer, Naka-
jima, Onodera, and Ogawa' use two types of
JTL: (i) destrutive line on which a fluxon and an
antifluxon will annihilate each other upon collis-
ion, and (ii) nondestructive line on which a fluxon
and an antifluxon will pass through each other af-
ter collision. In a similar way, the line termina-
tions are divided into (i) reflectionless, and (ii)
reflective varieties according to whether an inci-
dnet fluxon disappears at the termination or is
reflected as an antifluxon. Since the boundary
condition at a termination ()t)„=0) can be satisfied
by assuming collision with a virtual antifluxon,
the critical values of line parameters that disting-
uish between destructive and nondestructive lines
are identical to those for ref lectionless and reflec-
tive terminations. Analytical control of the fluxon-
antifluxon annihilation is therefore of fundamental
importance for the design of JTI, computer com-
ponents.

To begin the perturbation analysis of fluxon-anti-
fluxon annihilation, note that an exact two-soliton
solution of (1.1) is given by the doublet solution of
(1.5) in the special case of constant u, x„and to.
This represents a nondestructive fluxon-antifluxon
collision.

Suppose now that n 4 0 and y+ 0 so the nonlinear
partial differential equation becomes

,= t), sing g 5(x —na) (4.10')
y„—y„„+sing= ny, -y-. (5.1)

is also a more-realistic model of an actual quan-
tum flux shuttle. ' Solutions of (4.10') are readily
constructed as "piecewise linear" functions which
change slope by p, sing at the points x=na Su, ch.
a solution for which P changes by 37) as x increas-
es from 0 to a corresponds to the trapping of two
fluxons and requires p, a=-', m. Thus,

pa& ~m'

is a design condition to avoid the resting of two
fluxons at one location of the shift register.

Thus we see that a-1 is a reasonable choice.
If a«1, the energy minimum between discrete
Josephson junctions is not deep enough; if a» 1,
two or more fluxons can be stored between junc-
tions without energetic interaction. Thus, the
tolerance on the area of a pulse y(t) will be of the
order of the dissipation factor n+ —,P. From (4.7),
we see that setting c). + —,'P - 0.3 (say) will also en-
sure that the stepped fluxon settles rapidly to its
stationary position.

For the perturbation expansion W= W, + n~+, an appropriate form for the slow modula-
tion of the doublet is

, s in'[ Jo u (t') dt '+ x,(t)]/(1 u')'t '}-
u cosh([x -x,(t)]/(1 —u')'~']

together with a corresponding formula for the sec-
ond component of p.

This expression has only three independent para-
meters (u, x„and x,), rather than the four which

might be expected for a two-soliton solution, be-
cause it contains the assumption that the magni-
tudes of the fluxon and antifluxon velocities are
always equal. (This is necessarily true at a term-
ination where the antifluxon is "virtual. ") If the
magnitudes of the fluxon and antifluxon velocities
are initially equal, they remain so since that sym-
metry is preserved by this perturbation.

The first-order perturbation, %~ col()t)„)t), ,)
is governed by the effective source (where again
we write )t = Q, for typographical convenience)
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~ ~ ~1 . 1 . 1=Pu+ —Qx -—f x1 ~ Xg 0

~(vr, )=
~ ~

&-t -~ -~ &22u+—~&.txz-~ &.,~"0

Three independent elements in Z(L~) are found by
differentiating P, with respect to x, f, and u.
These are

.Ot-

(Computed from(5

(Oestructive)

(Nondestructive )

.00 1
OOOI .001 .0't

If the parameter x, is chosen to be zero, the
orthogonality condition (6', b, ) is satisfied immed-
iately. After eliminating terms that are zero,
the other two orthogonality conditions can be written,

(Ceil' 4.gA~)«)&-
a 40

FIG, 9. The critical values of y and n which separate
nondestructive collisions from destructive ones (fluxon-
antifluxon annihilation).

d~ u+xo
df (1 -u')'~2

'I

and analysiS of (5.2b) shows that, as u - 0, xo
«nu Thu.s to zeroth order in u, T=u/(1-u2)' '
and to first order in o,'

and

(ot f22+ y p, )dx, (5.2a)
~ 00 (1 u2)«2

+ ~

AT u

(f (@.,e..-@...@.)«)'.

,+y „ch, 5.2b
~ 40

with P= P,. Just as in Sec. IVA, (5.2a) can be
written in the form of a power-balance condition

u ' = - (a&20, +yP, ,)dx., dH($0)
. . cfQ

Here

H(Q, ) = 16(1 -u') '~'

since the asymptotic form of $0 is a free fluxon
and antifluxon each with energies 8(1 -u') '~'.

Thus, 8 can be evaluated to be

Al =E(y, a,u, T),

where

w(I -u2)'~2coshT u'(1 -u') cosh T
4(sinh2T+u2)'~2 sinh2T+u2

( 1 ln 1 u ' [(sinh2T+u2)' ' —sinhTjJ~

I,u2 sinhT(sinh2T+u')'~2

J2 u(f') df'+x, (t)
(1 u2)1/2

From this definition of T,

This equation has been numerically integrated
from the initial condition u =u„at T = -~, where
u„ is the power-balance velocity of an isolated
fiuxon given in (2,11). Of particular interest are
the critical values of y and n which separate non-
destructive from destructive collisions. This criti-
cal situation is determined, for a fixed value of n,
as the maximum value of y for which the velocitypar-
ameteru falls tozero. For all larger values ofy, the
velocity parameter will remain positive and even-
tually rise again to the power-balance velocity,
u„. The critical locus is plotted on the y-n plane
in Fig. 9. Comparison is made with the approxi-.
mate values obtained by Nakajima et nl."from
direct integration of the full partial differential
equation (5.1). Evidently the agreement between
these two calculatians is good, even far rather
large values of n, where the perturbation approach
cauld be expected to become inaccurate.

B. Breather decay

In our description of a nondestructuve f�luxo-
nantif�lux collision, the velocity parameter u falls
to some minimum value and then rises again to
u„. If u'& 0, however, the fluxon and antifluxon
become bound together in a "breather" state de-
scribed by (1.6). Note in particular that the ener-
gy of a breather is

H~ = 16sinv
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and that (1.5) is obtained from (1.6) by substitut-
ing

(5.4)

Thus whenu'=0 and v=&m, the total energy is
equal to the rest energy of a fluxon and an anti-

fluxon (i.e. , 1'6). For g'& 0, v&-,'m and Hs & 16.
Under the perturbations indicated in (5.1), v will

relax from &m to zero as t-. The first-orderor-
dinary differential equation governing v(t) is obtained

, from the perturbation analysis, or from substitution
of(5.4} into (5.3):

dv tanv cos[(cosv}t] tanv cos'[(cosv)t]
dt {tan'v sin'[(cosv)t]+ 1}~/' tan'v sin'[(cosv)t]+1

x 1— ~

~

lnl {tan'v sin2[(cosv)t]+ 1]'/' —tanv sin[(cosv)t]I
tanv sin[(cosv)t]{tan'v sin'[(cosv)t]+ 1]' ~ (5.5)

The dynamics of breather decay is important
for the design of a JTL computing system becauseJ
the residual energy of breathers may be an im-
portant source of computer noise.

As v-0, (5.5) becomes approximately

dv I—=—4%@cost —2av cos t .

the radiation is governed by the linear partial
differential equation v„„—v« —v= nv, which is
damped at the same rate as the breather. Thus,
although some of the breather energy may be
transformed into radiation field energy, the total
background energy (i.e. , noise) should not be
affected.

Averaging over a period of the breather oscillation
then gives

C. Flux bundles

Consider the perturbed sine-Gordon equation

d(v)
dt

A~ —4.+»n4= P4.i &4'r ——X (5.6)

Thus, the mean free time of a breather is approxi-
mately a '. If 8 breathers form per unit time
and per unit length of the JTL, the resulting noise-
energy density will be approximately 16B/z.

This estimate has ignored loss of breather
energy due to radiation into the continuum of
periodic waves, indicated in Fig. 2(d). Since the
lowest frequency of small-amplitude radiation,
from (1.4), is e = 1, and the frequency of a
stationary breather (cosv) is always less than

unity, we expect such radiative interaction to
become important only as v O. But in this limit,

It has been known for some time that this equation
supports traveling-wave solutions that consist of
"congealed" states in which an arbitrary number
of fluxons can participate. The stability of some
of these solutions has been established by direct
integration of the partial differential equation and
also from measurements on a mechanical analog. '

In the context of the present discussion, it is
interesting to inquire what a solition perturbation
analysis can add to our quantitative knowledge of
the properties of these states. The simplest case
involves two Quxons for which a corresponding
unperturbed solution of (1.1) can be written,

j./2

~2 l ~ [ (l 2) (l 2)] 1/2 (1 2)1/2 (1 2)1/2

X Xg —Qgt X X2 —Sat



D. W. McLAUGHLIN AND A. C. SCOTT 18

There are now four independent components of
the null space of I.~ which are obtained by dif-
ferentiating Q, with respect to the four parameters
Qy Q2 x],x,. The corresponding four orthogonality
conditions can then be written as the system

(5.V)

where A is a 4&&4 matrix of appropriate inner
products of the null-space components.

The congealed state of two fluxons owes its
existence to the P term; if this P term were absent,
no congealed state would exist. For fixed values
of (o. , P, y), the congealed state of two fluxons
travels with a fixed speed u, =u, (o., P, y), with its
two fluxons at fixed separation x, -x,=x, (o., P, y).
The entire state possesses a translational degree
of freedom. In this perturbation analysis, the
special values for the speed and location pre-
sumably arise as equilibrium solutions of (5.V),

that is, as those special values of u, =u, =u, and
of x, -x, which make the right-hand side of (5.V)

vanish. Clearly, these equilibrium solutions are
functions of the parameters (n, P, y). Presumably
no equilibrium solution exists if P = 0.

As a computational procedure to establish the
existence and properties of the congealed state,
this perturbation approach must be compared to a
direct traveling-wave analysis of (5.6) in which
it is assumed that Q = Qr(x -ut). Then the partial
differential equation (5.6) becomes the third-
order ordinary differential equation

-pup'r" + p'r' (1 —u') + nuQ'r —sing r —y = 0. (5.8)

Since the phase-space dimension for (5.8) is 3

when P t 0 and only 2 when P = 0, elementary
topological (i.e., continuity or "shooting") argu-
ments confirm that P 4 0 is a necessary condition
for Quxons to congeal into traveling wave bun-
dles. "'" Numerically, it appears more attrac-
tive to deal with (5.8) than the right-hand side
of (5.V) for several reasons: (i) (5.8) is exact
while (5.V) is an order-o. approximation. (ii) Four
parameters must be adjusted in (5.V) while only
one (u) is needed in (5.8). (iii) More fluxons in the
congealed state add no difficulty to (5.8), but the
right-hand side of (5.V) has 2N components for
N Quxons.

Although the traveling-wave analysis of (5.8) is
superior to the perturbation theory for establishing
the existence and shape of the congealed states,
perturbation methods should be useful to under-
stand the stability of congealed states and, in
particular, to describe time-dependent transitions
from unstable to stable congealed states. Num-
erical analysis of (5.8) shows that for an N-
fluxon congealed state (N& 1) there is a critical
value of y below which the state does not exist.
As y is increased above this critical value, two
traveling-wave solutions for (5.8) appear
Numerical study of the partial differential equation
(5.6) indicates that the faster branch (A in Fig.
10) is stable and the slower branch is unstable.
This observation is to be expected from a simple
energy argument. From (2.8) it is clear that
along the traveling-wave locus indicated in Fig. 10,

2mNy =g (y „+ (5.8)

I

I

I

I

I

I

I

I

uc

FIG. 10. Traveling-wave locus near a critical point
for a congealed fluxon state.

4

If y is increased above this value, H &0 and u will
increase. This carries a fluxon bundle away from
branch B and toward branch A. If y is decreased
below the value in (5.9), Jf &0. Then u will de-
crease again moving the bundle away from branch
B and toward branch A. Thus branch 8 should
be unstable and branch A, stable. The perturbation
theory provides a method to investigate the time-
dependent, nonequilibrium transition from an
unstable to stable branch of this bifurcation dia-
gram. At the time of this writing we have not
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done this calculation, but it should proceed from
(5.2) using methods simHar to those described
recently by Newell. "

VI. A GREEN'S FUNCTION FOR FLUXON RADIATION

Our next task is the computation of the radiation
generated by a multifluxon waveform as it responds
to the perturbation. The primary tool in this
calculation is a Green's function 9 for the linear
perturbation equation (3.5). In this section, we
present explicit constructions of 8; in Sec. VII,
we describe a typical application of this Green's
function to compute the radiation emitted by a
Quxon. In addition to such analyses of the struc-
ture of the radiation field, this Green's function
provides a systematic derivation of the ortho-
gonality conditions (3.9) that we have already
used to compute the fluxon's response to a per-
turbation, and permits us to check the accuracy
of these computations.

A few comments about the organization of this
section seem appropriate. The most systematic
construction of 9 employs direct and inverse
scattering theory. This theoretical method pro-
vides a complete set of functions (together with
orthogonality relations) that is a natural basis for
the construction of 9. This representation of 9
is valid for any zeroth-order solution, although
it is not very explicit unless the zeroth-order wave
is a pure multiQuxon waveform. In this special
case, which is our problem, an alternative con-
struction of 9 can be given using Backlund trans-
formations. This derivation minimizes the use
of scattering theory and has other advantages that
are described in the text. Thus, in this section
we construct 8 with the Backlund transformations,
and present its systematic construction through
scattering theory in the Appendix.

Many of the formulas of direct scattering theory
that we present in the Appendix are new, although
their derivations are natural extensions of work
of Kaup and Newell" "for the "Zakharov-Shabat
eigenvalue problem" to an eigenvalue problem
of Takhtadjian and Fadeev. " The theoretical
representation of 9 derived in the Appendix ex-
tends work of Keener and McI aughlin"'" to
the sine-Gordon equation. The use of Backlund
transformations to construct the Green's function
is new.

A. Definition of the Green's function

The solution of the linear inhomogeneous equation
(3.5) for the first-order correction 'tV can be re-
presented in terms of a matrix Green's function:

8 ~ t~' t' & ', I,
" dx'dt', (6.1)

where the matrix kernel 9(x, t~x', t') is defined by
the homogeneous initial-value problem in (x, t)
coordl. nates,

S(x, t~x', t') =0,
~xx+ cos4'o ~t

t & t' ~ 0 (6.2a)

lime(x, t~x', t') = 5(x -x').0
t~t 0

Equivalently, 8 satisfies an adjoint problem in
(x', t') coordinates,

lime (x, t~x', t')= 5(x-x').1 0
t'~t 0

B. Representation of 8

In general, P contains %+M + 2I fluxons to-
gether with a continuum of radiation at all wave-
lengths. Just as we can differentiate Q with re-
spect to its 2(N+I+2Q fluxon parameters, we
can differentiate it with respect to the amplitude
of its radiation components. In this manner we

Thus, the columns of the matrix 9, as functions
of (x, t), .belong to the null space of I., 'R(L, ), while
the rows of ri, as functions of (x', t'), belong to
the null space of I ", 3I(Lt). To find a represen-
tation of the Green's function 9 we must study
these two null spaces,

In our application, the zeroth-order wave P
= W, describes a pure X+AI+ 2I -fluxon waveform
with speed and location parameters (p;, j= 1,
2, . . . 2(%+M +2L,)) that modulate in response to
the perturbation ef. The first-order correction
% describes the radiation field that is created
by these modulating fluxons. Since the linear
operator I arises from linearization of the non-
linear equation about the multifluxon waveform
W„some members of the null spaces 3't(L, ) and
X(I,t) can be generated by differentiating W, with
respect to each of its velocity and location param-
eters fp, , j=1,2, . . . , 2(N+cVl+2L)j. Clearly,
this finite collection of parameters cannot gen-
erate all members of these infinite-dimensional
null spaces; we must enlarge this collection of
parameters into an infinite set that generates a
basis for each null space. With these bases, an
explicit representation of the Green's function
9 can be constructed. "'"
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generate an infinite number of members of K(L),

S = ' —,j = 1,2, . . . , 2(N+Af + 2I,);
(x, t)

8

5@(x,t), (.'.)
-- "--)

Here p, (A, , 0) is the initial value (at t = 0) of a
certain "forward-reflection coefficient" that
characterizes the radiation density at wave num-
ber k(l() = 2A. —1/8a. p, is precisely defined in

(A4) of the Appendix.
In our application, Q

= W„a pure multisoliton
waveform with no radiation, and p, (A., 0) is not
explicitly available in W, for differentiation.
Thus the derivative 5$/bp, must be computed
before p, is set at zero. One procedure for this
calculation is presented in Sec. VI C, and an al-
ternative method in the Appendix.

The set S includes the discrete components pre-
viously computed plus an infinite number of
radiative components that depend upon the param-
eter A. . This set is complete (for functions of x
at fixed t); it spans 5'((L) and can be used to con-
struct the Green's function 9. The discrete com-
ponents span the 2(N+)))I+ 2L)-dimensional sub-
space of R(L) that we have earlier called the
"discrete subspace. " The "continuous subspace"
of R(L), X, (L), is defined as the span of
(6$/bp, ,(A, , 0), ~ &X&+~).

Since the set s spans X(L), we seek a re-
presentation of the Green's function 9 in the form

8 (x, tlx', t') = s, (x, tlx', t') + 9,(x, tlx', t'),
where

9, (x, tlx', t') = ' A ( xt';X)dX
" 5y(x, t) -, ,
„5p, x, o

and
2(N+N+ 2L)

8,(x, tlx', t')= P ~( ' ) A;(xt').
~Pg

Here the expansion coefficients ]A(x', t'; l)),
A&(x', t')] are to be found. Note that the expansi(n
is guaranteed to satisfy the differential equation
(6.2a) since the columns (as functions of x and

t) belong to X(L). The expansion coefficients must
be selected so the initial data is satisfied. This
selection can be made since the set /8//BP&,
5$/bp, (X, O)) is complete.

In the Appendix, we derive formulas for these
expansion coefficients. In particular, the con-
tinuous component of 9 is given by"

6q (x, t)
8, (x, t IX', t') = ——,7)t

( t) T
x ' jdA. . (6.3)

5p (x, 0)

In this formula, p (l() denotes a "backward-
reflection coefficient" which is precisely defined
in (A4) of the Appendix, and should be viewed as
a different characterization of the radiation den-
sity in y. The integration density

I a(A)] ' is the
square of a transmission coefficient which is de-
fined in the Appendix. Its magnitude is related to
p, (A.) by the formula

la(l )I-'=1+ lp, (l ) I'.
In the case when Q is a pure N+M+ 2L-fluxon
state, a(l)) is given explicitly by

(6 4)

where the complex parameters Q&,j = 1, 2, . . . ,
N+ Jd + 2L$ are equivalent to the "velocity param-
eters" (Pr, j= 1, 2, . . . , N+)rf+2L}. The f, must
be pure imaginary or must lie in pairs (f&, p; )+
for which P&

= -(&~„. A (; on the imaginary axis
corresponds to a. ftuxon with asymptotic velocity

16','. + 1

16',' —1

A pair (g, , —gP) implies a breather with envelope
velocity

eg
g ~( 1 gg+ 1 (g-1

16

With this representation of 9„ the structure of the
first-order correction becomes apparent. Using
this 9, in (6.1) with the evaluation of f. including
the modulating parameters, we obtain

~(x, t)=, ' m (~, t) N. ,„6p, (l(., 0 (6.5)

C. A more-useful form of g,

In order that the representations (6.3) of 9, and
(6.5) of W be practical, we need explicit formulas
for the variations 5(l)/5p, at least in the case (t)

= W„a pure multiQuxon waveform. That is, we
must compute

where

~(" "= 4. ( ) J j (4i (4 O))
'

x 0:(x', t') dx' dt' .

Recalling that 5$(x, t)/bp, (X, O) denotes the com-
ponent of the radiation field at wave number
k = (2l). —I/8A), we note that uP(X, t) is the amplitude
of radiation at wave number k that has been
created by the effective source S' Formula . (6.5)
then gives the total radiation emitted by N fluxons,
M antifluxons, and L, breathers as they respond
to the perturbation ef.
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6 j(x, f)
6pt. (A. t 0) p 0( p)- p

0

which we denote by t()), (x, t; A). In this notation,

9, takes the form

Qp(x, t~x', f') = ='7ri,
( )

(I)(x, t; )a' ~

e

x (I)'(x', i'; A.)J dA. . (6.6)

There are several methods for the computation
of (I), (x, i; A). One approach that useS "squared
eigenfunctions" from the inverse scattering
method is described in the Appendix. Here we
introduce an alternative approach through Back-
lund transformations which we believe has two
advantages. First, it uses the idea that is behind
our construction of 9—that members of the null
spaces ['X(L),X(L t)] can be generated by dif-
ferentiating the zeroth-order solution with respect
to free parameters. Second, the Backlund-
transform approach requires less background in-
formation than inverse scattering theory.

Clearly, p, belongs to R(L); that is, it satis-
fies I,P, = 0. In components, this equation takes
the form ip, =— col( (II„B,Q, ) and

ingredients into (6.6) yields the representation

( t „, t, )
i y" di(ttc -i)

x exp( —i[k(X)(x —x ')

+ (u(l(.)(t —f')]] .

To put this into the usual form, we change the
variable of integration from A. to k using the def-
initions k(l).) = 2X —I/8X and (t)(X) = 2X+ I/8&. Thus,

dX dk

Furthermore, as A. runs from - to 0, k goes
from - to+~; and, as X proceeds from 0 to
+~, k goes again from - to+~. Also, co is neg-
ative (positive) when X is negative (positive).
Thus, we have the Fourier representation

9,(x, f
i
x ', i')

costs(t —t ) —sine('t —t'))(
=

—,'fn
—tc tints(t —t') costs(t —t ))'

[s « -8„„+cos(I)](I), = 0. (6.7)
&& exp[-ik(x —x ')],

As can be seen from (A2), (A8), and (A9) of the
Appendix, p, must satisfy the boundary conditions where co = k + l. .

(I), (x, t; z) =—exp[~i[ k(~)x + u)(x) f]],
as x-v~ (6.8)

where k(A) = 2A. —I/8A. and ~(X) = 2A. + I/8A. . Once
we solve (6.7) together with boundary conditions
(6.8) for (I), and then compute s, (I) „we will have
all the ingredients necessary to construct 8, .

Note that (d'(n) = k'(A) + 1. Thus, boundary con-
ditions (6.8) are indeed consistent with Eqs. (6.7)
since Q —0(mod2)() as x a~. The normalization
factor 1/vX will be seen to be correct as we begin,
for orientation, with the simplest situation.

1. Zero-soliton case

Here (t) =Ot(6.2) reduces to the Klein-Gordon
equation (8« —S„„+1)(I),=0 and the solutions that
satisfy boundary condition (6.8) are the Fourier
modes

(t),(x, i; X}=—exp(u[k(X)x+ (d (X)t]] .

Since the scattering potentials (g, and (t)„; see
the Appendix) are zero, the inverse transmission
coefficient a(A) is equal to 1. Putting all these

2. Single-fiuxon case

Next, we construct 9, for p(x, f} a single fluxon.
Thus, we seek solutions of (6.7) with

X —Qt —Xo
(t) = (t), = 4 ta,n ' exp

(1

One approach" is to Lorentz-transform the in-
dependent variables from (x, f) to $ = (x —ut —xo)/
(1 —u')' ' and 7'= (f —ux)/(I —u')' ' Then (6.7)
takes the form [8« —&„—(1 —2sech'g)] j,=0.
Upon separation of variables, the eigenfunctions
can be found on pages 734-5 of Ref. 27. Al-
though we favor the use of old tools whenever ap-
propriate, in this case a more-general approach
will help prepare the reader to deal with multi-
soliton cases. To this end we direct attention
to the Backlund transform. Recall our difficulty.
Although the pure multisoliton waveform is de-
fined by the complete absence of radiation, we
must differentiate this waveform with respect to
the amplitude of radiation at wavelength 2)T/k in
order to generate solutions of (6.7). We need a
generalization of the pure multisoliton wave that
consists of a multisoliton wave "riding over"
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radiation. The Backlund transformation can be
used to generate such a solution.

The Backlund transform takes a given solution
of the sine-Gordon equation and "adds" a soliton;
that is, it transforms a solution of the sine-Gordon
equation into another solution which can be in-
terpreted as the first solution with one additional
soliton. "" The Backlund transform is a "soliton
creation operator. " The usual application of the
Backlund transform begins with the trivial so-
lution (t[=0. The Backlund transform applied to
this "vacuum state" generates a pure fluxon.
Next, the Backlund transform of the fluxon gen-
erates a pure bvo-soliton waveform, either a
doublet or a breather depending upon a choice of
parameter. In this manner, the general X+M+ 2J—
pure-multifluxon waveform can be generated from
the vacuum by a sequence of %+M+ 2I Backlund
transformations. Here, rather than starting from
the vacuum, we begin with a pure radiation state
at wave number k. In this manner, we generate
a multifluxon waveform riding with radiation at
wave number k. Such a wave can be differentiated
with respect to the amplitude of this radiation,
after which this amplitude can be set at zero."

Analytically, the Backlund transformation is
most conveniently described after introducing a
coordinate change

whereupon the sine-Gordon equation becomes

/~=sing .

It is easily demonstrated that if p„ is a solution
of the sine-Gordon equation then Q, generated
from integration of the pair

satisfies (6.9). Thus, we can differentiate both
(t(„and (t( with respect to the amplitude parameter
a,

j„(x,f; X) -=—y„(x, f; l[., a)(,.„
y(x, i; X)

-=—y(x, t; X, a)], ,

Clearly from the sine-Gordon equation, Pz satisfies
0

snfr=kr i

while (({[ solves

8 (t(+ (cosp, )p = 0,
where (t[, denotes a single-soliton state. On the
other hand, we can differentiate the Backlund
transformation (6.9) with respect to a and find

p satisfies

8 ((f& —Q„)= 4g cos(g(f& )[Q+ (f)„],

(6.10a)

(6.10b)

(6.11)

~,(Q+ (t[„)=4. cos(2$,)[p+ p„] .

This linear first-order pair of equations (linear
B'acklund transformation) is easier to solve for
{([ than is (6.10b). Moreover, given that (i „solves
(6.10a), any solution p of (6.11)will also satisfy
(6.10b). Thus, in the single-soliton case, in order
to compute the ingredients of 9, .(i.e., p, ) we must
choose for P„a solution of (6.10a) that, when
Backlund transformation by (6.11), will generate
functions {(([, that satisfy the appropriate boundary
data (6.6).

Let's concentrate on (t'&„. In this case, we must
find (t, satisfying

e,(j,—j„)= —4ig(tanbx)( j.+ p„),
——,'(y —y„)=4g sin-,'(y+ y„),

8
~(&f&+ P„)=4. sin-,'((t[ —{([„),

(6.9)
s,(j.+ j„)= . (tanhx)( j.—j„),

4 1
y, (g, v; x) =—exp[-i [k —(o)x+ (k+ (d)r]},

is also a solution. The integration of these first-
order equations effects a Backlund transforma-
tion from an "old" (i.e., known) solution p„ to a
"new" solution (t(. The new solution has one ad-
ditional fluxon component with velocity

u = (16$'+ 1)/(16$' —1).

The location of this fluxon is determined by the
integration constant.

We let (t[„(x,i; A., a) denote a pure radiation state
with wave number k(~) and amplitude fixed by
constant a. An explicit formula such as (1.3) could
be given for Q„. Since (t{„depends upon the para-
meter a, so does its B'acklund transform (t which

x=-4ig(x+ g,) —r/16+

and we have used the fact that for a single soliton
Q„cos—,'(t{,= -tanhx. If we choose

j„'{e,e; X)=—( ) exp( —([(.'(X)cele(l)e]j,

we find
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1 t'+h'+2tl tnnh1')
(g+ ~)2

x exp(-i[1'2(X}x+~(11)t]] . (6.12)

of the soliton hierarchy, explicit integrals can be
obtained algebraically from commutability of the
Backlund transformation. Thus it is readily shown
that"'" a iwo-fluxon wave riding over ttt„ is given
by hatt„where

Note that this satisfies the boundary condition
(6.8) since (for t; pure imaginary) x- +~ as
x- -~. Similarly, the choice

~A+ ~B (6.14)

tI1„(x, t; X) =— exp ]+i[A(X)x+ &a (X)t])
1 f —x

1 t'+t' —.hit tnnhh)
mx (f+ x)'

Here, pA (ps) denotes a single soliton with speed
fixed by the parameter f A(g ) riding over the back-
ground radiation hatt„, and ttt2 is a, Backlund trans-
form of &f&A through t~ and simultaneously a trans-
form of &f&~ through rA Di.fferentiating formula,
(6.14) with respect to the amplitude of radiation
and then setting the amplitude at zero yields

&& exp(+i[t2(A. )x+ e(A. )t]] .
With these ingredients we construct the Green's

function 9, from (6.6) for the single-fluxon case.
Explicitly, we find

9,(x, tax', t')

=,', f 4h(4" 4")
@21 g22

exp (-i[1'2(11)(x —x ') + v (11)(t —t') j
x(P - ~')'

where
(6.13)

g» =—(f2+ X2+ 2)X tanl8')

x [iu(p+ 11. —2&11 tan18 ') —2i&Xm( f)sech'x ]

g„—= —(f2+ A2+ 2)A. tanhx) (f2+ X' —2/11 tan18')

g» —= [ i&a()2+ -1t.2+ 2LX tan18)+ 2it;Au&(K) sech2x j
x [(f2+ X2 —2f& tan18' ') —2if11&u(L) sech'x ']

g2, —= [+4&(f'+ X2+ 2)11tanhx)-2if4v(g) sech'x]

x (f2+ 1t.
2 —2)11 tanhx ') .

In these formulas,

x' —J u(t') dt" x,(t')—[1,2(tt)]1/ 2

O'. T~o-fluxon case

In order to construct the radiative Green's
function about a two-fluxon solution, we apply a
Backlund transform once again, this time using
a single soliton riding over a periodic wave as the
known solution. Fortunately, at higher levels

and x is given by the same equation with the single
primes dropped.

~A ~B 44D
42 ter j g cos21 (~ ~ ) (4 A tttB)

where ttt~ denotes a pure double-fluxon wave with
speed parameters f A and/~, hatt» ($22) denotes
a pure single fluxon-state with speed fixed by fA
(Ls), and tttA (butts} denotes the derivative of tttA (y2)
with respect to the amplitude of radiation. We
can compute tttA (hatt s) as in Sec. V'I C 2. Analyti-
cally, &t&o is given by (6.14) with hatt„set at zero

LA+0,
tan4tt&o — tan4(ttt2A —ttt2s) .

A.

(6.15)

Clearly, tt2 satisfies the linear equation (6.V).
Next, we choose hatt„such that the boundary con-
dition (6.8) is satisfied. In particular, the choices

j'„=exp I,+i[k(X)x+ (u(X)t]j

(6.16)

1
~ 4

.
4 4+$2 COS4$D

'

t —t con-';(4 „—4 ))

where

f„'+~' ~ 2g„~ tanhx„
(gA'- X')

~

fz~+ X2 + 2(&X tanhx~

(g,2- X')

1 - 16$A2+ 1
xA ~A 16' 2 16' 2 1 OA

and similarly for x~.
Substitution into (6.6) gives the radiative Green's

function for a two-fluxon solution.
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4. Breather ease

Here the formulas are the same as in the two-
fluxon case but the parameters g„and f~ are com-
plex and satisfy f„= f-g

t

5. Nultisoliton case

The same techniques can be used at each level
of the soliton hierarchy. Differentiating with re-
spect to the amplitude of the radiation component
and then setting the amplitude at zero gives

~, g~+ f cos 4((f g~ —Qg{)({~))
~&2+ g, g, — cosa

A. Find the nonradiative motion of the fluxon

The motion of a fluxon is described by the
formula

x-X
(f&o

—4 tan exp (I

where

u(r) dr+ x,(t) .

From Sec. IV C, the appropriate ordinary dif-
ferential equations obtained from the orthogonality
conditions (3.9) on the discrete subspace of X(IP)

x ({I) y,),
where pz~ is a pure N-soliton wave, p, &)){,i is the

pure N —2-soliton wave with solitons of velocities
related to f~ and f, missing, and Q» (Q~,) is a
pure (N- I) soliton wave with the soliton of vel-
ocity related to i;, (g~) missing. Just as before,

p&, and (I), are the corresponding radi, -
ative solutions of (6.V). With these formulas, all
ingredients of the radiative Green's function 9,
are explicitly available.

VII. RADIATION FROM A FI.UXON

u=-4)ry(I -u'-)')" —nu(& —u') —cpm+ 2 p(I -u')

Integrating these equation (as in Figs. 5 and 6) to
obtain the periodic motion

Here we present a brief recapitulation of our
perturbation scheme in the concrete context of
analyzing a fluxon generator for electromagnetic
radiation. Although results equivalent to those
presented here have been obtained from an analy-
sis based upon a less elaborate theoretical per-
spective, ""we discuss this work for the follow-
ing reasons: (i) It provides a simple example of
our perturbation scheme in action. (ii} The oscil-
lation structure to be considered may be of tech-
nical importance at electromagnetic wavelengths
of 100 p, m or less, and the equations we develop
are directly applicable to the design of this os-
cillator. (iii) Once understood, our perturbation
scheme is readily extended to calculations of radi-
ation from multifluxon collisions and breathers
and to estimates of radiation reaction on fluxon
motion.

The structure we will analyze is the quantum
flux shuttle discussed in Sec. IV+, but in practice
it may be modified into the annular shape of Fig.
ll(a) for technical convenience. We assume that
the bias current y is large enough so the fluxon
does not become pinned between microshorts but
executes a wobbling" motion of frequency coo and
mean velocity u . Our aim is to estimate the
power radiated by the fluxon.

~ Radiation

Rodioti

FIG. 11. (a) JTL fluxon oscillator. @) Modification
of the structure in (a) to permit increased lateral radia-
tion.
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u(t) = u(t+ 2w/(oo}

then determines the wobble frequency. v, and the
mean fluxon velocity u„. To zeroth order, these
will be related by the condition

where a is the spacing between microshorts. At
this point, the dc power input to the oscillator for
nonradiative dissipation P„can be calculated as
the product of the Lorentz force on the fluxon y
times the mean fluxon velocity. Thus

f= -Q—o (+—$o „„g———— ~(x —uc) sinpo,
0

will have a corresponding periodicity. To zeroth
order this can be evaluated by approximating

X—= u~t+ xo

in evaluating p„ f, u, and xo. Then F can be
written as a Fourier series in v, :

Pnr = yum ~

B. Calculate the effective source

(V.I) F(x', t') = Fo(x' —u.t')+ F,(x'- u„t')e'"ot'

+ F~+(x —u~t )8

+ (higher harmonics)
From the periodic modulations in u and xo the

effective source

1 . 1 C. Calculate the first-. order corrections

Here it is convenient to consider separately each
harmonic in the Fourier series begi.nning with the
average term

I " ', "d, exp( —i[k(X)(x-x')+ui(X)(t-t')]}
(V.2)

To zeroth order, the components of [g,z] depend upon x' and t' onIy as (x'-u„t'). Thus, integration over
x' leaves a t' dependence in the integrand as the factor exp(i[&a(A)+k(A}u„]t'}. Integration over t' from 0
to t in (V.2) gives the transient response caused by turning F, on at time t= 0. Instead, since we are in-
terested in the steady-state behavior, we integrate over t' from -t to+t and then let t-.+. Then

lim exp[i(&o+ ku„)t'] dt'=2v5(or+ ku ) .
tw oo ~g

Final integration over A. then gives

'No=%~(x-u t) . (V.3)

Thus the steady-state perturbation caused by F, rides with the fluxon. It is a "meson dressing" of the
zeroth fluxon that makes a first-order correction to the shape of po. 'o This first-order correction can
be neglected when Po is used for other first-order calculations.

Consider next the effect of the fundamental harmonic in 5 on the sinusoidal steady-state response de-
fined by

1
'iz'„,(x, t) =—„- . lim

PZ g~ co

, exp(-i[k(X)(x —x')+ &o(X)(t —t')j}
x(t," x')'

x [g,y][F,(x ' u t')8'"o' + F—+(x ' —u t')8-'"o'] .

Again integration over x' introduces a factor
exp(iku t') so the t' integral involves only the
factor

exp(i[or(X)+ k(A)u„~ |do]t'}dt'

This drives radiation at the Doppler-shifted wob-
ble frequencies -(ku„+&so). For oscillator ap-
plications the higher frequency (g&+) is of primary
interest. Here

41~= —((do+ k+u )

=2v5(ar+ku„+&so) . A'+ = 43+ —1
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so

Mm&o+ ((dn + Q~ —1)
1 —Q m

load would be

~ II

p P
A

(7.6)

u [\ —(1 —u'„)/~*„]'&*)
1 —Q m

(V.4)

g, , x- Q t x' exp ik, x'

xF (x') dx'+c. c. ,

where g„. [see (6.13)] is evaluated with &

=i[(1+u„)/16(1—u )]'~' and z = —,'(k, +u), ).

Note that as u -1, &u, --&u,/(I —u ) so a sub-
stantial increase in the radiation frequency is ob-
tained through the Doppler shift.

The final integration over A, is effected by intro-
ducing a variable change from A. to e through dX/A
= dko/k. The final result is

exp[-i(k„x+(u, t + —,'z)]
k, [(1+u„)/(1—u )+ (k, +(u, )']'

with an efficiency of 100 P,/(P„+P„„). It should be
possible to increase the number of fluxons up to
the number of discrete Josephson junctions (8 in
Fig. 11) with a corresponding increase in output

power and somewhat lower efficiency.
/

F. Final comments

The above discussion has been presented entire-
ly in the normalized units discussed in Ref. 2. In
laboratory units, the limiting velocity of a fluxon
c is about 1/15 of the velocity of light or 2 x10'
m/s. Setting a = 1 means that the microshorts are
separated by a distance equal to the "Josephson
length" X~=5x10 'QJ, p. m, where J', is the Jo-
sephson current density measured in A/m'. With
a current density of 10' A/m', A. ~

= 5 p. m and the
wobble frequency f, =u /A~ would be 4x10"(u /c)
Hz. As previously noted, the corresponding Dop-
pler-shifted radiation frequency would then ap-
proach

D. Determine the radiated power

We begin by writing the amplitude of the higher-
frequency Doppler radiation as

I

~~@g ——col(w~ wt)

Away from the fluxon this radiation is governed by
the linear Klein-Gordon equation gg„„-u « =zg for
which the corresponding energy (Hamiltonian) den-
sity is

Using the dispersion. equation (zo'=0'+1) and the
plRne-wRve relations zg =-k zg Rnd zg =-Go gg

this can be written

X=Egg = 4)+81 e

This energy propagates at the group velocity
d&u/dk= -k, /&u, . Thus, the radiated power is

[u„(u, + (a)', + u' —I)'~'] [(u, + u ((o2+ u' —1)'~'] zo'

(1 —u')'

(7 5)

f, -4x10" " Hz
C —Qm

as u - c, thc relativistic limit. For I /c= —„this
corresponds to a free-space wavelength of 0.075
mm.

If the oscillator structure of Fig. 11(a) is to be
useful, the radiation field must be effectively
coupled to an external load. In terms of (I.6), n"
must be a significant fraction of o. . This re-
quirement is somewhat difficult to meet for the
JTL structure because the fields are concentrated
between the shielding effect of the two supercon-
ductors. To alleviate this problem, the junction
width should be decreased; and in the limit of zero
width we arrive at the structure indicated in Fig.
ll(b). Here the radiation is into an open wave

- guide with rather favorable geometry for lateral
emission, and the Josephson effect is entirely
concentrated at "weak link" junctions. Our per-
turbation theory will not be quantitatively correct
for this structure, but we expect the performance
to be qualitatively similar to that of Fig. 11(a)."

E. Determine output power and efficiency

The radiated power will be absorbed by the loss-
es n, P of the JTL and by a useful load. Let us
assume P=0 and suppose n is composed of two
components: (i) o. ' represents internal losses and
(ii) o." represents power absorbed by a shunt load.
Then a = a'+ n" and the power absorbed by the

APPENDIX: . BASIC DERIVATION OF THE GREEN'S

.FUNCTION

Here we sketch our derivation of the Green's
function 9 from the viewpoint of inverse-scatter-

ing-transform theory Tak. htadjian and Faddeev"
have completely integrated the sine-Gordon equa-
tion (1.1) using the associated linear problem
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1 0 dx 1 0 16k. 0 e'~

x ~= ~. Al.

g(x. X)= e ""' ' " as x--~.1
(A2a)

(A2b)

and

('(x A)= e '"' '~ * as x-+~ (A2c)

f(x A) = e~ '" ' ' " as x-+~1
-Z

Here k(A. ) = (2X —I/8A). The solution f can be ex-
panded in the basis {g,g),

f(x;1)= a(X)g(x; A. ) + b(X)g(x; A. ),
similarly,

(A3a)

Here, P(x, t) is a solution of the sine-Gordon equa-
tion (1.1) that vanishes (mod2») as x-+~, ao —= P„
+ P„and A. is an eigenvalue parameter. Consider
two linearly independent sets of solutions of (A1),
{g,g) and {f,f) that are defined for real A. by the
following asymptotic conditions:

m,". = b, /ih, , (A5b)

where g,. -=da(X)/dz l„~ .
From (A4) and (A5) we can define two equivalent

sets of "scattering data":

3, —= {p,(X) for all real x; z, , m,'.

for j = 1,2, . .. , N) . (A8)

'll.'akhtadjian and Faddeev have shown that there is
a one-to-one, invertible map between the poten-
tials {P,gg) and the scattering data 8, (or 8 ). If
the potentials {P,go) evolve according to the sine-
Gordon equation, the corresponding temporal evo-
lution of the scattering data is trivial:

I, ={p, (X; t ) = exp[+i&a(X) t ]p (&(; 0 );
X,(t ) =X,(0);m,' (i) = exp[+i(u(}(.„)t]m', (0)),

(A7)

where &u(A. ) —= 2A + I/8X.
As discussed in Sec. VI, components of the

Green's function can be obtained by varying solu-
tions of the sine-Gordon equation (P, P, ) with re-
spect to a family of parameters. Here we use the
initial values of the scattering data for these pa-
rameters. The variations are computed using a
form of the Marchenko equation that compares the
potentials (Q+ 5p, m. + Qo) to the reference poten-
tials ((II&, go)." Thus,

g(x; X) = a(X)f(x; A, ) + I)*(A)f(x; A. ) .
From (A3a) and (A2),

f(x.z) = e""~))'"" as x-+m1
l

&(~) &[ik(x&/2jx+ I y )
1 1
l —l

(A3b)
(,)

I g, (x, x)g, (x, l
))

7T OQ A.

2. " g, x;X, g, x)A,
k

g, (x; X)g,(x; X)+02'
dX

)( e f -fA~(X)/2]x
2i

5u (x) =—' [g', (x;~) —g,'(x; ~)]5p, (~)

Thus, [a(X)] ' is a transmission coefficient and
b(X)/a(A) is the reflection coefficient which we
called p, (X) in Sec. VI. In a similar way, the as-
ymptotic behavior of g define the reflection co-
efficient p (A). So we record the definitions

p, (X) -=I (Z)/s(& ),

p (X) =- I&*(z)/a(X).

(A4a)

(A4b)

m,. -=(iiz, b, ) ', (A5a)

Next, we label the bound-state eigenvalues as
{X,.) for (Al) and their corresponding normaliza-
tion. [These parameters fix the solitons in
P(x, i).] At an (upper half plane) eigenvalue, g
and f are proportional so f(x; X,.) =—b,.g(x; X,.). In ad-
dition to the 5, , we define

+ 4$ Pp Xj Xp Pg Xy Ag CfPlp

+I',
z
—[g*,(x;x) g (x; z)), d—z,

)&',, ,
where all functions are to be taken at time t.
From these variations, it is clear that

5y (x, f) i g, (x;~)g, (x;~)
5p, (~, i)
5y(x, f) . g, (x;~&)g,(x;X&)
5m,' (f)

5$(x, i) 2. ,
)

d g, (x;X)g2(x;X)

=—g,'(x;i ) -g', (x;z)),
5ga (x, i ) 2i

5p, X, t g
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C (x;Z)

g, (x; X)g,(x;X)

\2['( ) '(») (' ' ' '
))
(AS)

Then, after using the definitions w = (t), + (t)„, (II)

= col((t), P,), the variations take the compact form

6(t)(x, t) i
( )

Vp, (1., t) ~

5$(x, t) 2. ( )Cm'(t)

=2zm'. (t)4(x).

(A9)

After defining the "adjoint state"

C) (x; X)

2 ~ g 2 .g 1 +p 2

x

(ASK)

similar computations yield

5$(x t) z „( )
ap (1., t) v

'~'" "=2;~e.(.') (A9K)
6m (t)

a (x, t)
m. ;(t) =2zm,-(t) JC "(x),

where, as before, 5P/D. , means the variation of
(t) with respect to X„while holding the rest of the

scattering data 5 constant. These variations with
respect to scattering data at time t can be con-
verted to variations with respect to the initial
values of the scattering data using temporal evolu-
tion (AV); for example

=—exp[-i(v (X )t]C (x;X), (A10)

5w(x, t)
Oman (t)

4g g2

pygmy

gy XpAy

5X,'(t, .'
)

=4»»x,'(t) —
(X,(x») -g ,'(x;»))»

where 5(t)/D. „' denotes the variation of (t) with re-
spect to A., while holding the rest of the scattering
data 8, constant. Note that these variations are
naturally expressed in terms of the quadratic pro-
ducts of the components of the eigenfunction g;
hence, we define

with similar formulas for the other variations of
(AQ) and (A9a).

Note from (A10) that exp(-i~t)O is a derivative
of (t) with respect to a parameter; hence
exp(-i(»t)C belongs to Sl(1) and satisfies

h'(x) = (h, (x), h, (x))= Iz(X)C '(x;X) dX,

where

h(~)=, . .. (h( ~ ),~"(",~)&

[h, (x)C,"(x;X) + h, (x)
1 A,

4n'z a' A,

xO,"(x;A. )]dx,

and where we have used the definition of the "in-
ner product" (, ),

&h( ) g( )&-= [h, (x)g, (x)+ h, (x)g, (x)]dx.

Note, in particular, that no complex conjugates
are present in this definition. In these formulas
(and in Table I) 1 denotes a contour in the com-
plex I plane running from A. =-~+i0' to 0 and
then from 0' to A. = + ~+i0' and chosen to lie above
all zeros of a(A. ) in the upper half A, plane. "

For an analogous eigenvalue problem (the Zak-
ha. rov-Shabat system), Kaup" has shown that the
squared-eigenfunction basis is complete. His
proof uses a set of Marchenko equations to show

Thus we see that the "squared eigenfunctions" pro-
vide a natural set for the expansion of g. In par-
ticular, the first component satisfies

[s« —s„„+cos(t)](e '"'C,) =0,
while C, is obtained from s, (e ' 'C, ) =e ' 'C, . To
find C, we must solve this second-order linear
equation subject to the correct boundary data.
This fact is the basis of the "Backlund transforma-
tion method" to generate 9, which we discussed in
Sec. VI.

The orthogonality and completeness relations
for this "basis of squared eigenfunctions" are
summarized in Table I.

Table I needs some explanation. The properties
summarized in this table permit one to expand
two-vector valued functions of x on the basis of
squared eigenfunctions. For example, it follows
immediately from the "completeness relation"
that
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TABLE I. Properties of the basis of squared eigenfunctions.

Basis:

4'(;)() for all real&; (;X&), 4'(';)()(& for&=1, 2, . . . , &
d

Adjoint basis:

C (;)(.) for all real)(. ; O+(;)(.~), C~(;)(.)~& for @=1,2, . . . ,

Orthogonality relations:

(c' (';)(),4(';)()) = a ()(.)6()( —)(), A, , )( both real
4@i

=0, all other cases.

(c'"( )() @( ))=(4'"( ) @( v))

0, p real

~2
gg6g~q p =AyjA& k

~ „
(C'g, (') @,('))= —

d~ ~ ~ ~ e(~)

Completeness relation:

6(x -x') = . 2
4~(x';)(.)@r(x;)(.) &~X 0

'( )
N

(x';&)4' (x; A, ) cQ. + "discrete state" or residues
4xi g2(~)

that the squared-eigenfunction basis is equivalent
to a Fourier basis. %e are certain that Kaup's
verification can be extended to (A1) although we
have not carried it through.

Note from (A9) that our basis of squared eigen-
functions O(, )(.) actually consists of
6$(x, t)/68, (t). Since this basis is used to ex-
pand functions of x, it is equivalent to 5Q/5g, (t = 0)
by such formulas as (A10). Finally, the members
of the basis C ( ~, )(.) are the eigenfunctions for an
operator 2 wt)ich is not self-adjoint; g "(~;)(.) are

the eigenfunctionsof the adjoint of J. This lack of
self-adjointness is the reason the "orthogonality
relations" are biorthogonality relations involving
the pairs (4, O").

The verification of these orthogonality relations
is a painful but straightforward manipulation in-
volving Wronskian identities and the asymptotic
behavior of the eigenfunctions f and g. Our tech-
niques follow those of Zakharov and Manakov" for
the Zakharov-Shabat eigenvalue problem. For ex-
ample, consider

(I"(;)(), C (~; )()) = lim t I,"(x;)()O,(x; )() + 4", (x, )()C,(x, )(.) dx
g~+ oo

d A(x;g)f, (r;I&i) (g, (x;x)g, (x;x))= lim

2[@'(x.)(. ) -g', (x;X)]

d g, (x;)(.)g, (x;)(.)
dx A,

The following Wronskian formula follows directly from the eigenvalue problem (A1):

(A11)
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g*(x X)f '(x 2) 'g(x 2)f''(x 2) 'g(x;2)f (x;2) g(x;2)f (x;2))

g2( 2&)f2(x)P) R'2(xf")f2( 2 A
l (

.~) (
. )

(
( .

) ( . )

~ ~

~ ~ ~

~ ~ ~ ~

p, A.
,

A. p,
~g, x;A. , x; p 6

e "g„x;X,x;]f.
p,X

i', (x;z)f, (x; p.) g2(x; x)f, (x; g)
( „) ( )

p. A.

Using the eigenvalue problem (Al), we see that the integrand of (A11) is proportional to the right-hand side
of this Wronskian identity; hence the integrand is a perfect x derivative. Evaluation of this integral places
(A11) in the form

(gx(. . ) @(..2))
XII ) (g (x'&)f (x'l4+g (x;X)f,(x;I!))

(& A(—&+ I ), ,
1 1—,+—,[g,(x;) )g, (x;X)f (x; p. )f,(x; p,)]

Next, we use formulas (A2) and (A3) to express the large-I. behavior of g(+L;X), f(+L;A) in terms of the
scattering coefficients g and b. The result is

(@ ( ) @(",2)) =2 (2+ lim "[5"(2)-2 (2)]''1@p, ,„xp.
" 2[&(&)+&(p)]

2+X, (I. «2[2I[2(X) —2(III]r)x'(2)«2[-2I, [2(l)-2(X)]])
2[0(x) —a(p,)] 2[0(z) —b(p)]

This limit must be evaluated in the sense of dis-
tributions. We use the identity

~i A&

lim =)fib(k)
I ~oo

and the symmetry of the scattering coefficients

b(-A. ) = -b*(X), A. real,

to obtain

(C "(,p), C( ~, X)) = a'(X)b(X —q).

The other orthogonality relations are evaluated
with similar manipulations.

Since the basis is assumed to be complete, these
orthogonality relations quickly yield the "com-
pleteness relation. " For, consider the vector
colI6(x- x'), 0] and seek an expansion of the form

b(X; x')O(x;X) dX

E

g [b,'(x')O(x; X,)+ b', (x')4(x; ~,)].

Taking the inner product with 4"(x;A. ') yields

2,"(x';2')= f ii(2; )(2 ( 2 )2x( 2)) g"X. , ', .
,

oo

2(',.) "'.(.)2(. ~ )) g.

=[I(X'; ')] —,-x'(2')),

where we have used the orthogonality relations.
Thus, the expansion coefficient 5 is given by

b(Z;x') = —.—,
( )

e,"(x';X).
4gs a' A.

In this manner, the completeness relation is ob-
tained.

This completes our discussion of the properties
summarized in Table I. %ith these properties,
the computation of the Green's function 9 is
straightforward. Recall that 9 is defined as the
(matrix) solution of

LB=I ' le(x, t l
tx')=0

](,-8„„+cosQ, 8, j

lim 9(x, t lx', t ') = 5(x —x') .1 0

Thus, the columns of 9, as functions of (x, t ), be-
long to the null space of L,, and we seek an ex-
pansion of the form

9(x, tlx', t')= ' X (x', t';~)d~.5$(x, t) r
5p, A. , t =0

Using (A10) places this representation in the form

9(x, t lx', t') =— exp[ i&@(x)t]4-(x, t;A)

xA ( xt', g) yd.

Forcing this solution to satisfy the initial data
yields the expansion coefficient A(x', t '; A. ):



18 PERTURBATION ANAL YSIS OF F LUXON DYNAMICS &679

iimg(x, t~x', t') = B(x-x')0

t~t'

exp[-i~c(Z)t ']C (x, t '; X)
7T

xA'(x', t', y)d) .

Using (A10), the squared eigenfunctions in this
formula can be replaced by variations of (B with

respect to the scattering data. This leads directly
to the representation of u, in (6.3).

From the completeness relation we see that
A(x', t '; X) must be given by

1
4ni

A. dA,
exp[-i(o(X)(t —t ')]e(x, t; X)

a

x [C "(x', t ';X)]'.

A (x', t '; X) = ——,
'

exp [i&@(X)t ' ]a A,

xC "(x', t';X).
In this way, the Green's function is represented,

S(x, ti 'x, t')
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