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In the present paper a diagrammatic analysis of the density operator for the evaluation of nonlinear optical

quantities is considered. The present approach extends earlier diagrammatic analysis by treating the time

evolution of both the wave function and its complex conjugate. Time-ordered graphs result, each of which

corresponds to a term in the density matrix. Examples involving the third-order susceptibility are discussed

for both monochromatic and pulse excitation. In particular coherent rotational transient birefringence is

discussed. The diagrams provide a convenient means by which nonlinear optical processes can be precisely

defined and the susceptibility readily evaluated.

I. INTRODUCTION

In the present paper, we would like to discuss
diagrammatic techniques for the evaluation of
density-matrix elements to any order of perturba-
tion theory for the purpose of obtaining nonlinear
optical susceptibilities and polarizabilities. ' This
approach presents several advantages over a
straightforward evaluation of the density-matrix
equations. First, since each term of the density
matrix for any order of perturbation corresponds
to a diagram, a clear and distinct displ. ay of the
specific perturbation sequence that will result in
a particular density-matrix element can be dis-
played. Thus, the significant density-matrix ele-
ment contributing to a response can be uniquely
and correctly specified. Second, the algebra can
be significantly simplified for many calculations,
since once rules are established for the evaluation
of density-matrix elements associated with a gen-
eral diagram, perturbation theory is automatically
accomplished by applying these rules to specific
diagrams. In many cases in nonlinear optical cal-
culations such rules will become more important
as the number of density-matrix terms contributing
to a nonl. inear optical response becomes large. A

third significant advantage of the diagrammatic
(or Green's-function) approach isthatdamping is
more rigorously included. In contrast to the den-
sity-matrix phenomenologieal damping terms,
Green's-function techniques have been utilized to
calculate the characteristics of collisional. decay
from fundamental principles. A fourth advantage
to be obtained by the use of diagrams is that many
terms calculated from density-matrix perturbation
are similar except for time ordering of the various
photon interactions. This time ordering, which is
clearly displayed diagrammatically, is fundamen-
tal and can change the characteristics of otherwise

similar nonlinear optical processes.
The diagramrnatie evaluation of nonlinear optical

susceptibil. ities has been considered in the past,
in particular by Ward, ' Marcuse, and others.
Although many processes could be evaluated by
these authors, essential aspects were not included
which prevented a full application to the density
matrix; in particular, as will be seen, they omit-
ted an account of the time ordering, and a con-
sideration of damping, both of which are crucial.
Diagrammatic approaches. that have considered the
time ordering in nonl. inear optical calculations in-
clude that of Bonch-Bruevieh and Khodovoi, ' who
treated multiphoton absorption probabilities ex-
plicitly considering the time ordering. More re-
cently Omont, Smith, and Cooper' have utilized
such techniques essentially to evaluate the diagonal
components of the density matrix (transition rates)
to describe resonant spontaneous Raman scatter-
ing. The rate of resonant two-quanta absorption,
with a consideration of the Doppler profile, using
a diagrammatic visualization of the important
terms has also recently been presented by Horde. '

In the present paper, we use these diagrammati-
cal techniques for an evaluation of the density-
matrix elements and, in particular, for calcula-
tions of nonlinear optical polarizations. In order
to demonstrate clearly the advantages to be of-
fered by such techniques, we develop the rules
for the evaluation of the density-matrix diagram
for monochromatic excitation' and subsequently
apply these techniques to the evaluation of several
susceptibilities which have been deduced previous-
ly by density-matrix techniques. Following this,
the diagrammatic technique is applied to the deri-
vation of transient nonlinear optical responses
and, in particul. ar, to that of the molecular rota-
tions excited by electronically resonant ultra-
short pulses.
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II. GENERAL FORM OF THE DENSITY-MATRIX SOLUTION

AND ITS DIAGRAMMATIC REPRESENTATION

Yhe general nth-order perturbational solution
to the density matrix has been obtained by several
different authors and has been expressed in sever-
al different forms. For an arbitrary perturbation-
al Hamiltonian H'(f), the most useful starting

point for developing the diagrammatical approach
is the expression given by Slichter. ' Thus the den-
sity operator p(t, f) can be written

where p'"'(t, f) is the nth-order perturbational
term and is given by

x P[U(t —t„)U(t, —f„,)" U(f, —t„' „)U(f', —t„', ,)

x '' 'U(t' —f )]dt '''dt' ~

In this expression, X'(f„„f,) is the retarded
Green's function which provides the propagation
of the wave function' in the absence of an interac-
tion with the field as specified by the perturbation
Hamiltonian H'(f). K (f&, f&„)= [K'(f&„,f&)]* provides
the propagation of the complex-conjugate wave
function. pIO'(f) is the initial value of the fm ma-
trix element of the density operator. In this ex-
pression, spatial coordinates have been suppressed
since the important features are those associated
with temporal evolution. In general, Eq. (2) shows
that arbitrary initial values of the density-matrix
elements can be taken; however, the usual situ-
ations of interest are those for which E =m. For
the quantum state we shal. l use the designation
4„(x)=4„(r)e '""' for the wave function, where &o„

is the eigenenergy associated with the unperturbed
Hamiltonian H, . C „(r) is then the spatial portion
of the wave function. This wave function is as-
sociated with the state having a ket vector
~n)e '""'. In Eq. (2), U(t, —f, ,) is a unit-step dis-
tribution (= I if t, &t, , and 0 if f, , & t,). These
distributions express causality, and a specific
ordering of the time variables t„.. . , t~ and of the
time variables to, ty t2 t p associated with
the photon interactions to the left and to the right
of pI0'(f„ f,), respectively. P specifies that all
possible time orderings of the interactions must be
taken into account in order to obtain the full solu-
tion to p'"'(f, f) In practice. , only the significant
terms arising from all possible time orderings
usually are retained. The av in Eq. (2) rigorously
introduces damping and linewidth. It is taken over
a statistical ensemble of the molecules and, in

particular, over variables such as the collisional
parameters. The introduction of linewidth and
decay in this manner allows one to more easily
incorporate collisional theories into nonlinear
optics in a rigorous manner.

In Eq. (2) there are three distinct features: those
interactions and propagations to the left of p,', those
to the right of p,', and the relative time ordering of
the dummy time variables of integration t& on the
left side of the diagram with respect to the t& on
the right side of the diagram. In total, there are
n interactions: k to the l.eft of p',"and g-k to the
right of p',". Thus, in addition to time ordering,
A, can run from 0 to n and provide additional terms
to the density-operator element p'"'.

A term of Eq. (2) is conveniently represented in
graphical form as shown in Fig. 1. The time axis
is in the vertical direction. To the l.eft of the time
axis, the interaction sequence to the left of p',"
(ket evolution) is indicated, and to the right of the
time axis, the interaction sequence to the right
(bra evolution) of pIO„'. The selection of k specifies
the number of the n interactions which occur on the
ket, the remaining n-k interactions are then as-
sociated with the bra evolution. Kith the adoption
of the graphical representation, the enumeration
of the processes contributing to the nth-order
term becomes (a) selection of k, the number
of interaction vertices out of m which occur on the
ket, and (b) selection of the relative time ordering
of the interaction points on the left-hand side of
the diagram in rel.ation to the ordering of the n-k
interaction points on the right-hand side of the
diagram. This corresponds to a selection of one
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FIG. 1. Diagrammatic
representation of one of
the nth-order density op-
erator elements. The left-
hand side of the time axis
represents the evolution of
the wave function perturbed
by H'(t~), H'(t2), .. . , H'(t&)
at t~, t2, . . . , ti„respective-
ly. The right-hand side of
the time axis represents
the evolution of its complex
conjugate perturbed by
H'(t&), H'(t2'), . . . ,H'(t„', )
at tf, t2, ... , t„' ~, respec-
tively. Spec ific photon ab-
sorption and emission
operations have been cho-
sen in accordance with
Fig. 2.
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FIG. 2. Fundamental radiative perturbations of the
bra and ket by photon fields. The solid wavy lines in
(a) and (c) represent "negative"-energy photon annihila-
tion e «~ "~ ~ and creation operations, respectively, and
the dotted wavy line represents "positive"-energy
photon creation and annihilation operations, respectively,
acting on a bra. Each perturbation term has two alge-
braically equivalent interpretations depending upon
whether "positive"- or "negative"-energy photon in-
terpretations are chosen. Similarly, in (b) and (d) the
solid lines correspond to a "positive"-energy photon
interpretation and'the dotted lines to a "negative "-
energy photon interpretation. To maintain simplicity
and conform to the notation used by previous authors
for transition rate calculations (beefs. 1-4), we use
negative energy for the bra interactions and positive
energy for the ket interactions (solid wavy line).

of the time-ordered arrangements of the unit step
functions included inside the I' (or time-ordering)
operator. For any choice of P, the number of in-
dividual time-ordered possibilities is n

tlat!

(n
—k) I. The simplest case, that of 0 =0, has only
one contributing diagram.

Although the vertices (dots at which the interac-
tion occur) can represent the action of an arbitrary
perturbation [H'(f&) for the vertex at $&], of par-
ticular interest in nonlinear optics are vertices
of single-photon absorption and emission opera-
tions in the dipole approximation. These are re-
presented by the standard notation shown in Fig.
2 for emission and absorption operations on the
bra and ket. t refers to the time associated with
the dot (integration variable). The dipole inter-
action is chosen to be specific, and can be re-
placed by other absorption processes. In,these
representations i or e* can be an arbitrary func-
tion of time to thus represent a pulsed field. As
pointed out in Fig. 2, -we shall uniformly use solid
wavy lines to represent the perturbation interac-
tions.

III. INCLUSION OF DAMPING AND LINEWIDTH

Damping and linewidth are included in the present
formalism, in a manner similar to that discussed by
Qmont, Smith, and Cooper, ' through the statis-
tical average indicated in Eq. (2). Referring to
Fig. 1, tracing up the two sides in time, line-
widths are associated with the dephasing of super-
position states created by the absorption or emis-
sion field operations. Thus, for example, the in-
teraction at t = t, causes the ket to evolve into a
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state ~r), while the bra remains in state (m ~.

The off-diagonal density-matrix element resulting
from this photon interaction at t„p„, decays
as a function of time after the interaction at ty.
This decay is subsequently interrupted by the
photon interaction at t = t'„which. throws the bra
into the state (p ~, whereupon the corresponding
density-matrix element p„~ decays as a function
of time subsequent to t

If at any time both the bra and the ket refer to.
the same state on the diagram, the time evolu-
tion is that of'a diagonal component of the density
matrix, and the decay of this diagonal component
describes a populational decay.

This treatment of damping is well known from
the theory of scattering processes and will be in-
cluded here in an identical manner, and in enough
detail to establish the usual damping terms as-
sociated with the density matrix. Much work has
been done in relation to collisional theory, "and
is important in considering many optically non-
linear inter actions.

A basis for the introduction of damping is pro-
vided by first of all considering the ideal case
for which damping and linewidth are neglected.
K'(x„„x,) then is simply the retarded Green's
function for the freely propagating ket. "

K'(~,+g, f,) = Q exp[-i(o„(t„,—f,)] ] y„)Q&„( . (3a)

and

K (t~, tj„)= [ K'(f~„, t~~)]*. (3b)

We thus observe that for this situation the K'
and K factors are independent of the time order-
ing in Eq. (2). Thus, each of the time-ordered
terms has the same integrand except for the time-
ordered unit-step. factors. However, the sum of
the individual terms in P[U(f —t~)U(f~ —f») ' ' ']
gives a single term:

rectly calculate the density matrixbut to calculate the
evolution of the wave function and its complex conju-
gate independently and subsequently obtain the den-
sity matrix. The individual time orderings which
automatically arise in the density matrix would be
avoided. Examples of such a simplification are
provided later.

These non-time-ordered situations ean also be
handled diagrammatically by the approach develop-
ed by Ward', however, the individual time-ordered
contributions are lost.

On the other hand, when damping and coherence
loss are included, the relative time ordering of
the vertices associated with the bra and ket can-
not be avoided and the previous diagtgmmatie ap-
proaches, for which such a time ordering is not
included, are insufficient.

The importance of time ordering arises be-
cause K' and K in the statistical average of Eq.
(2) cannot be independently specified since it is
the density-matrix element which decays. K.' and
K are no longer given by Eqs, (3a) and (31). It
is, in addition, possible that, due to a collision,
the bra and ket might suffer important transitions,
in which case the operators K' and K, or the com-
bination of them, could have significant off-diagon-
al matrix elements.

The proper introduction of damping is performed
by considering the matrix elements of operator
K(t„ t, ) =K'(t„ t, )K (t„f, ) in the sense

((aa' [K(&„&,) [
&&')) = (a (K'(&„f, ) [ b)

x(b'IK « f.)la), (4)

where t, —t, is the time interval between two in-
teraction vertices (Fig. I). In the impact approxi-
mation'" f, and f, enter as f, —f„and K'(f„ f, )
can be written as K'(f„ t', )K'(t'„ f,), where

P[U(f f, )U(~, f„,) ~—~ ~)—
= [U(t —t~)U(f» —t~,}' ' ' U(t, —t, )7

x [U(f —f'„,)U(f'„,—f' „,) "U(f', —f,)], (3c)

Thus, one observes from Fig. 1 that the K'K
factors in Etl. (2) can be written as a product of

K(f2, f,') K(f,', t,)K(t„ to) = K(v~) K(7,)K(7 0)

which is a product of the two independent factors
contained in the square brackets which. involve
the wave function and its complex conjugate, re-
spectively. Thus, the evolution of the bra side
of the diagram is, in this ideal case, independent
of the evolution of the ket side of the diagram when
all the time-ordered nl/(k —n) Ik I possibilities
are taken into account. This also implies that,
in conventional density-matrix analysis, nt/(k
—n) /k' terms would be deduced which, if summed,
would provide a single si, mplified term. Although
more naive, in this case it is less laborious not to di-

factors with 7„7„.. . indicated in Fig. 1. Since
v„v;, . . .are independent parameters, the statis-
tical average of the products is the product of the
statistical averages and one thus obtains factors
of the form

((aa'
(
A(T)

)
bb')) = ((aa' I[K(t, —t,)]„(&b')), (&)

where the A(r} operators are familiar from the
theory of line broadening. '" In the so-called iso-
lated-line approximation, ' these operators have
been shown to have diagonal matrix elements (for
a nondegenerate system) of the form
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((ab iA(~)
I

a'b')&= 6aa. ebb. exp(-i~„r —Jag'),

where

4 ob 4ba yab + i ab ~

y„=y,', + —,'(I', + 1',),
P« =y, =y,'+I", ,

(6b)

(6c)

(6d)

strate this change of variables and the introduc-
tion of appropriate matrix elements of the K(v)
operators and the perturbation Hamiltonian for
times up to t,. From Eq. (2) and Fig. 1, one has
under the time integral&

K'(t„ t, )e'(t, )K'(t„ t, ) it)pP'

x (m iK-(t„ t', )a'(t', )K (t'„ t-,), (va)
and 1/1", is the natural lifetime of level a; y,' is
the inelastic collision frequency for level a. The
terms y,', and &„ account for collisional broaden-
ing and frequency shifts.

With these matrix elements, Eq. (2) can be ex-
pressed in terms of integrals over &y

and simple rules can be deduced by which to ob-
tain steady- state susceptibilities. We demon-

which becomes

K'(r, )K'(r, )H'(t', v, )K—'(r, )
i
1)p",„'(t,)

x(miK-(r, )K-(~,)IP(t, r,—)K (r,-) .(Vb)

Assuming that upon the interactions H'(t, ) and
H'(t,') the system enters the states indicated on
the diagram (Fig. 1), one has, upon averaging,

Ir&&r II~+(T,) lr&&rlK'(7 ) Ir&&riff'(tl —&i)lt&«IK'(ra)lt&pI"(t. )&mlK (rb)lm&&mjK (Tx)lm&

x &mlH'(t, —T.)IP&&PIK-(~)IP&&~j

= lr&&pip~)am~(ta)&&rplA(rb)lrp&&&& r m IA(ri)ir m&&&& tmlA("o)lt m&&&r la'(tb r, —Tx)it&(mls'(tb —Tb)IP& ~ (7c)

Thus it is seen that Eq. (2) can be written in the form
.0 0

p'"'(t, t) = Z d(-, ) d(- .)" « PI&(.)l P»
gm-- t -to-~Z-~Z- ~ ~ ~ to g3 e ~ ~

Iff'(t- .—.-" )/- +IP&« IA(,)l
x (rim(t- T, —r, —.~ )/tait&((t mii(t- T, —T, ~ ~ ~ -t)jim»
x p&:(t,)lr&&pl (6)

This expression is thus one of the possible time-
ordered terms indicated in Eq. (2) and shown ex-
plicitly in Fig. l. lt is a, simple generalization of
the Van Kranendonk-Fiutak equation for the calcu-
lation of transition rates and is formally identical
to the response-function formalism in nonlinear
optic 8.

lV. CALCULATIONAL RUI.K POR THE POLARIZATION
GF MONOCHROMATIC FIjELBS

Taking as a specific case absorption at frequency
&, at t, and absorptionat frequency co, at t,', assum-
ing also the dipole approximation, H'(t, ) = --,' ( p, e,)

x e ' ~'&, IP(t,') =--,'(p. ~ e,*)e" b'f. Also, using Eq.
(6) for the matrix elements of the A operators in
Eq. (6), we consider the integrations over r, and

For the initial conditions we shall set

Pp'( )texp[+i(~i. tA~.)t.—l = p'P.'.
For most cases of interest, the nondiagonal com-
ponents are initially zero and the diagonal compon-
ents assume a statistical distribution. However, it
is useful at this point to include the possibility of
an initially nonzero decaying polarization. To ex-
tract the steady-state va.lue we take the limit as

and assume diagonal matrix elements for
A(T, ) and A(T,) to obtain

I"'(t t)= d( ) d( )
' ' ( II(~y —~rm+ b4rm+ ~tm bAtm)

), I ~ y ~ I, exp[+ b(02(t - 13 —' ' ')]
It(&O, —&u, -—V„b+iQ„b+~~ -b@g )

x &pl exp[ i(~i i4-i )(t- -T. -' ")l.
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FIG. 3. Basic density-
operator diagrams for (a)
resonant sum frequency
generation and (b) resonant
coherent anti-Stokes Raman
scattering. We consider
the evaluation of polariza-
tion at time t indicated on
the diagrams. The propa-
gators T„'s in each case
have been obtained by
applying the rules below
Eq. (9).
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T»»s sufficient to extract the general rule for ob-
taining the susceptibility once the diagram is speci-
fied. As can be seen from this equation the rules
are the following:

(i) A factor of p, ' the initial value of the density-
matrix element.

(ii) Following the diagram in time multiply by
the matrix element of the first interaction, in this
case (v

~

—&(p Z, )~l), the coupling which brings the
system from state ) &) to ~y).

(iii) Propagate to next interaction vertex by mul-

tiplying by the propagator. This is given by + the
inverse of (a) the sum of photon energies corre-
sponding to the absorption operations up to and

including the interaction referred to in (ii), (b)
minus the sum of photon energies corresponding
to the emission operations up to and including the
interaction referred to in (ii)," (&) minus h times
the transition frequency of the superposition state
which the system enters as a result of the interac-
tion in (ii), and (d) plus 5 times the complex transi-
tion frequency of the initial superposition state.
The complex frequency is equal to &o,& iQ... whe-re

~;.= u; —~& where i represents the ket and j the
bra at the time of evaluation. The minus sign in
front of the propagator is taken if the interaction
which just occurred was on the right (bra) side of
the diagram and the plus sign if it was on the ket

side. Thus, in the present case, after the first
interaction [referred to in (ii)] the appropriate
propagator is

[n(~, ~„„+i—y„„+~,. iy, „)]—
(iv) Repeat (ii) to (iii) with each subsequent inter-

action and propagation. This brings in the addi-
tional coupling factor and propagators shown in

Eq. (9).
(v) Proceed up the diagram to time t, the time

desired; the last factor being a propagator from
step (iii).

(vi) Multiply by the frequency factor exp[-i(u&,
—&o, + ~ ~ ~ + v, —iP,„)t], as obtained from the con-
servation of energy" at each vertex. The factor
e-aPim~ arises from an initially decaying super-
position state. Its interpretation will become clear
in Secs. V and VI.

(vii) Multiply by ~n')(n~ to obtain the density oper-
ator at time t.

In this section, we consider some of the basic
nonlinear optical susceptibilities which are well
known but demonstrate the. utility of the dia-
grammatic approach. For these wg take p~'~

(o)= &&~pii and ~ii i4'is =0.
The simplest diagram is that for harmonic gen-

eration [Fig. 3(a)] or parametric conversion which

has no counter-rotating resonances and for which
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FIG. 4. Three time-ordered diagrams for the Haman effect. (a) Vibrationally resonant term, (b) and (c) the hot lum-
inescence terms of Shen (Ref. 21).

only one state is significantly populated. Time or.-
dering does not enter since the interactions occur
on one side of the diagram and the present ap-
proaches reduce essentially to previous diagram-

matic techniques. The diagram indicates one path
through the system which contributes to the sec-
ond-harmonic polarization. From the diagram,
applying the above rules, the density operator at
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time t is

p(t, t) = exp[- i(u), + (u, )t](c& T2&cl- p, ~
2 e, Ib& 7,

(10)

Figure 3(b) indicates the-significant diagram for
totally resonant coherent anti-Stokes Raman scat-
tering" ' ln'&, to be specific, is an electronic
level, lv& the vibrational level, ~, the laser fre-
quency, ~, the Stokes frequency, and +, the anti-
Stokes frequency. This is the only contributing
diagram (density-matrix element) if (i) &u, and ru,

are close to resonance, (ii) la& is the only signifi-
cantly populated level, (iii) a&, —&u, is close to the
vibrational resonance. As will be seen, if the
electronic resonances are not guaranteed and p„
is not the only significant term, other density-
matrix elements become significant. ' From the
diagram at time t

t (t, t) = 8 (~i)'e.*e '"'
I~& T.&nl - t i Iv&T.

x &vl-u. l~'& T,&n'I-t, l~&p! &al,

where &, and e, are the laser and Stokes field am-
plitudes, respectively, and p, & and p, , are the pro-
jections of the dipole operator along the directions
of the respective fields.

The diagrams shown in Fig. 4 are those providing
the polarization of the Raman effect, stimulated or
spontaneous according to the stimulated or spon-
taneous character of the field e, . At f, the density-
matrix element has the Stokes frequency &u, (= &u~

—~&+&a,); however, in contrast to the previous
cases, there are three time-ordered possibilities:
Figure 4(a) t, & t, & t„4(b) t, & t, & t„and 4(c) t,

t3 tg Each one of these thr ee cor re spond s to a

term contributing to the density-matrix element
p„„. Three perturbation terms thus arise from
conventional density-matrix analysis. " The three
density operator elements at time t are given by

p(t, t) = l~'&&~'I -2t Al~&p.".&~l-2t ~et l~&

x &nl-'p e Iv&&viz T,T, e ' ",
where the propagators T„T„and T, are shown
in Fig. 4 for each time-ordered case. Figure 4(a)
has the vibrationally resonant denominator and two
electronic. resonances; one terminating at the
ground state and one terminating at the vibrational
state. Figure 4(a) is the most significant term and
is the usual off-resonance Baman susceptibility. '
The other two diagrams have no vibrational re-
sonance, but become significant when u, is close
to an electronic-transition frequency. For n = n'
andfortime t'suchthatI', & t'& t, and t, & t'& t„re-
spectively, for these two diagrams, one observes
that the diagonal density matrix p~„enters into
the perturbation and exhibits a linewidth (or tran-
sient decay) associated with the lifetime of level
n'. These two diagrams for transient excitation
at ~, and a monochromatic excitation at the
Stokes frequency ~, provide the terms attributed
to hot luminescence by Shen"; the first diagram
provides the transient-Raman- scattering term. "'

Summing of the time-ordered diagrammatic con-
tributions when broadening and lifetime are ne-
glected can be readily performed for these three
time-ordered diagrams for the Raman effect.
From Fig. 4 the sum of the products of the propa-
gators T ' + T ' + T T

y
which is seen to re-

duce to a product of three propagators and thus the
density-matrix operator can be written (Fig. 5)

I

TQ
h(QJt QJpc }

h ( QJt
—

QJ &
—

QJ v e }

Tc =

~n'a )

+ I ~~t8
T (I)+T(2)+T(5) (t}

= Ta TbTc

FIG. 5. Non-time-ordered calculation of the Haman susceptibility. ' This can be obtained by summing the diagrams of
Fig. 4 or using the propagators for the independent evolution of the bra and ket (Ref. 22).
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p(t, t) = In'&&n'I -u '
2 & ln "&&n"

I
- p, ~ —,

'
el n&

x —,'Ie, !2e,e ' ~'. (12b)

I

T
I

&(+ut -tdn-n+'4-

I

T2-
&(»n ~-~n n+~$nn)

(a)

-I
T( =:

( +Q Qi I II +if I II )

-I
Tp

=

5 (+ 2 Q~ -en'n + ~ f n'n )

(b)

—
I

T~ =

~(+2~ -tttn'n+ 'fn'n )

n"

(c)
FIG. 6. Second-harmonic generation diagrams corres-

ponding to Eq. (2-29) of Ref. 1.

This is simply the product of (i) the density-ma-
trix element for the initial state, (ii) the propaga-
tor for the left-hand side of the diagram, (iii) the
product of the two propagators for the right-hand
side of the diagram, and (iv) the appropriate ma-
trix elements for the interactions. This ability
to sum is a particular example of the general re-
sults implied by Eq. 3(c). This also shows that if
linewidth and decay are neglected it is less labori-
ous to obtain the total susceptibility by a separate
perturbation analysis of the wave function and its
complex conjugate, since each time-ordered factor
is obtained from the density-matrix analysis. We
see, comparing Eqs. (12a) and (12b}, that when the
two diagrams Figs. 4(b) and 4(c) are added to that
of Fig. 4(a} the electronic resonance &u, —&u„„ is
changed to ~& —~„., and hence can be important
although it is small. We observe also that Eq.
12(b} has transition frequencies only to the initial
state as a consequence of the independent evalua-
tion by propagators of the ket and bra." This is
characteristic of previous propagator applications
to the calculations of nonlinear optical polariza-
tion s.'

Figure 6 illustrates the terms contributing to
Eq. (2-29) in Ref. 1 for the particular case of sec-
ond-harmonic generation. p(t, t) is of the form

with T, and T, the propagator s defined on the in-
dividual diagrams, and k=n, n', and n" for the
three diagrams, respectively. e is the electric
field of the fundamental. Figure 6(a) is that of Fig.
3(a) and provides the resonant terms proportional
to the initial ground-state population. The second
and third diagrams provide the resonant terms
proportional to the upper level and intermediate
populations, p„'t„i and p„'»„~, respectively. The two
further time-ordered contributions of Fig. 6(c)
provide the two additional factors proportional to
p„'.„~ xn Ref. 1.

We would, finally, like to consider in greater
detail a diagrammatic analysis of lowest-order
Raman anti-Stokes scattering which involves a
laser field of amplitude && at frequency ~&, a
Stokes field of amplitude ~, at frequency ~„and
an anti-Stokes field &, at frequency ~, generated
through the mixing of e& and e, with a resonant
mode of the medium. '

We consider those terms proportional to the
ground-state population providing the polarization
components at ~&, ~„and ~„respectively. Only
the coherent anti;Stokes process will be consid-
ered. Thus stimulated Raman scattering, for
example, will be neglected. Since the evaluation
of the polarization from the rules is straightfor-
ward, it suffices for this discussion to investigate
the diagrammatic contributions.

For the generation of photons at ~, by those at
~, and v„ there are 48 possible diagrams. The
four basic ones are given in Figs. 7(a) and 7(b).
The two diagrams of Fig. 7(a) have three time-
ordered possibilities, thus increasing this to eight
fundamental diagrams. The 48 diagrams are thus
obtained by permuting the three vertices of each
of these. eight fundamental diagrams. In the per-
mutation operations, the slopes of all photon lines
must be arranged in the way that the frequency of
the polarization is preserved.

The four basic diagrams (eight including time-
ordering) contributing to the polarization at fre-
quency ~, due to the fields at v, and ~, are shown
in Figs. 7(c) and 7(d). These are doubled by in-
terchanging vertices 1 and 2 and are also doubled
by interchanging 1 and 3. These, however, can-
not be doubled a second time because an inter-
change of the co, photons is canceled by the Bose-
Einstein statistics. Thus with the time ordering
considered there is a possibility of 24 diagrams
or density matrix terms.

Similarly, for the generation of photons at (d„
the contributing graphs are given by Figs. 7(e) and
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(c)

/a' s

Figs. 4(b) and 4(c) for the nonparametric dia-
grams] are those which give the two-photon reso-
nance denominators, which do not have a ground-
state vibrational resonance. . These terms can
contribute to X», the off-vibrational resonance
portion of the susceptibility; however, as seen
earlier, these small terms can contribute to a
shift in the electronic resonances of the time-or-
dered diagram shown with the vibrational reso-
nance, and hence can be important. ""

For off-resonant excitation all of the diagrams
of Fig. 7 must be considered. For near-vibrational
resonance, considering only the vibrationally reso-
nant part of the susceptibility X„, the diagrams
indicated by a central dot contribute significantly
(rotating-wave approximation). The second dot
signifies the inclusion of the exchange diagrams
with respect to vertices I and 2. (In addition, the
time orderings not shown explicitly are excluded. )
If counter-rotating contributions can be discrimi-
nated at both electronic and vibrational resonances,
only the diagrams with the central circles need be
considered; two diagrams at frequency co, and one
each at w, and co, are then important.

For q, initially zero, the only polarization of
interest is that at frequency &e, (q, and q, are as-
sumed constant). As is apparent from Fig. 7(e)
and 7(f), this coherent generation of anti-Stokes
radiation by both the lossless and lossy part of the
susceptibility, which has been treated in detail, ""
has 24 contributing density-matrix elements in-
volving the ground-state population alone. Addi-
tional terms arising from excited-state popula-
tions can also contribute significantly, 24 possi-
ble graphs for each excited state population, or a
possible total of 96. Since the vibrationally non-
resonant contributions provide terms to the non-
resonant background susceptibility that can be of
importance in the detection process, these, in
general, cannot be ignored.

(e)

PEG. 7. Diagrammatic representations for coherent
anti-Stokes Haman scattering. (a) and (b) are the four
basic diagrams for the generation (absorption) of pho-
tons at co& due to the presence of the fields at frequen-
cies co~ and &, . (c) and (d) are the four basic diagrams
for the generation (absorption) of Stokes photons at co~

by the fields at co& and e~. (e) and (f) represent the
generation (absorption) of anti-Stokes photons at co, by
the fields at co& and +~.

7(f) and the exchange diagrams with respect to ver-
tices 1 and 2 and 1 and 3. A total of 24 diagrams
is possible. ""

Qne observes that the two time-ordering possi-
bilities not explicitly shown [corresponding to

V. CALCULATIONS FOR PULSED FIELDS

Pulsed fields in contrast to monochromatic exci-
tation allow a diversity of interactions for which
no simple general calculational rules are possible.
The diagrammatic representation of the terms of
Eq. (2) are nonetheless unambiguous and thus are
more advantageous than energy level diagrams.
There are also specific transient excitations and
responses for which the derivation of rules is of
enough generality to be useful. This is true of the
pulse-excitation-pulse-probe techniques for which
strong excitation pulses initiate a transient re-
sponse which is probed generally later in time by
a weak probing pulse. As will be seen, consider-
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able insight and ease of calculation is attained with
the diagrammatic approach. In the present sec-
tion, we consider first the derivation of the com-
putational rules for third-order perturbation fol-
lowed by a specific application to coherent trans-
ient birefringence.

Three basic simplifying assumptions will be
made which eliminate complicating transient re-
sponses which, experimentally, are either weaker
than the coherent transient response to be dis-
cussed or can be separated from it. These as-
sumptions are the following: (a) The time varia-
tion of the complex amplitude q, (t) constitutes an

adiabatic change with respect to the first transi-
tion. (b) The time variation of the complex ampli-
tude of the probe field is adiabatic with respect
to the transition brought about at the third vertex.
(c) The probe field is temporally separated from
the exciting field.

We consider then coherent interactions for which
the first two interaction vertices arise from strong
excitation pulses; these two vertices can be on
either side of the diagram. Using Fig. 1 once again
as the specific time-ordered example, one inte-
grates Eq. (8) by parts over r, Th.is integral is
then given by

~ ~ ~

~ ~ ~

0

exp( —'~~ i —~rm i) lr&&rl —& ' &x(t — i )
I

&ex [
.

(t r „...)]dr &0&(

= exp [ i(u, (t 7, —~ ~ ~ )][+1/a((u, —(o„+iy„)]lr&&rl —p ~ —,'g, (t- r, —~ ~ ~ ) lm& p"'&ml"p[-'("--"'"- ~-"- t"'(' -"- "']
I

&(
I

~
'"

I
m & d. &m

I

where we have taken p, '=
p

Assumption (a) above implies the retention of only the first term in the above expression. This assumes
that

I
Bq, jar,

I

« I(~ —&u, + i/„) I. Since the first transition is assumed to be electronic, this assumption
is valid far off of the resonant excitation. As an electronic resonance is approached, however, if the life-
time is longer than the pulse, transient polarization decay must be considered. Thus, for pulses of the
order of a picosecond, the analysis of the coherent effects discussed here are strictly expected to be
valid for the constraints ~ —&u, »10" or $»10". These assumptions are equivalent to those requiring
an instaneous response from the first transition.

At the second vertex, for which the field interaction arises from the strong pulses (Fig. 1), ,one has the
integral over v, which can be written

0

&~F2]&m I
w' &,*(t —r, — ~ ~ ) exp[i(u, (t —7., —~ ~ )]j 2iI lp&

x &r
I

——,
'

p ~ ~, (t —r2 —~ ~ ~ ) exp [ i (u, (t ——r, —~ ~ ~ ) ] I
m&

~.&p.".'&t i

1=
g( )'~[-('""+&"&(+t-"+")]«rlt. lm&&mlt. l»)lr&p.".'&Pl,.

(14b)

where the variable of integration has been changed to t —r, —r, ~ . Here also q, ($) and q, (f) are the
amplitudes of q, (() and q, ($) and we have taken p, , and p,„ for simplicity of notation, as the components of
p, along the vector directions of q, and q„respectively. In obtaining Eq. (14b), we have used the absorp-
tion operation at ~, at the second interaction vertex. In general, the choice of either the absorption or
emission operation varies from case to case, but the procedures of the calculations are the same. Thus,
the present approach includes two-photon resonance and transient two-wave mixing as possibilities for
establishing coherent excitation.

Equation (14b) provides the off-diagonal density-matrix element between states Ir& and Ip& and hence is
that which provides the polarization excited by the spectrum of the field product Qgf2 and associated with
transitions between the excited states r and p.

To deduce the polarization associated with a probe pulse it is necessary to consider the interaction at
the third vertex. With the assumption of a nonoverlap of the strong exciting pulses and a weak probe pulse,
in Eq. (14b) the limit t —r, can be set equal to ~ and the time dependence is simply exp[i(~„~+ P„~)(—t+ r, )]
Thus, as is apparent from Eq. (14b), the excitation pulses prepare a decaying superposition state. Assum-
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ing an adiabatic interaction for the third vertex (f, of Fig. 1) similar to that of the first and

«sp lA(r, )
l
sp)& = exp[—i(o,p, —p, b7', j,

the integration by parts over r, as expected from Eq. (8} gives

+00

x ,' a,—(f)e'"&' ,'q,*(P-)e'" 2'e xp[i~„~+/„~)g]d(. (15}
~ 00

In general, for any excitation-probe technique
with the three basic assumptions stated at the be-
ginning, the density-matrix element providing the
polarization between states

I
s& and lp& is obtained

by multiplying the following factors, listed in ord-
er of increasing time along the diagram, together.
(a} The initial population p~~'. (b) Dipole-matrix
element (rl -p, lm) associated with the first ver-
tex. (c) Propagator between the first two vertices,
in this case,

+ 1/(5 [(o, —((o —ip„„)j}.

(d) Dipole-matrix element (m
I
-p,

l p& associated
with the interaction at the second vertex; (e} Ef-
fective propagator between the probe and excita-,

tion as weighted by the excitation pulse.

e'"'E,(()E,(g) df,
'c 00

where E,($) and E,($) are the electric fields as-
sociated with the interactions at vertices (1) and
(2}, respectively, 0 is the complex resonant fre-
quency of the superposition state of the system at
a time before the probing pulse and after the exci-
tation pulses, and the plus (minus) sign is used if
the second vertex is on the ket (bra), in this
case, A=a ~-iP„~, E,($) =-,'e, (g)e ' &, and E,($)
=-,'ef($)e'~2 . (f) Coupling factor for the probe
vertex & sl ——,'(p ace)) r). (g) Propagator fac-
tor up to time t of the superposition between

l
s&

and &p l
created by the probe interaction with the

I

+bc 'abc)

&& al

T2

la&

0) I

T - —62(t&) )(+ca i/co-2~)) t
2 4ib

I

&(~2'~cc ~4cc cc ' '4ca )

I

"~+cb '4cb + t)

6'~ (t )Es(t )/4
I

X e' "o~ - ~%ad +"g ~s ~ t 4t'

I

T= ~ 4
&(+od —(9'od + +p —+co + ~9'co

FIG. 8. (a) Diagram-
matic representation of a
pulsed sum frequency
generation process with a
two-photon resonance.
co& and ~2 are the two
optical carrier frequencies
of the temporally nonover-
lapped excitation fields.
(b) The diagrammatic
representation of a pulsed
Raman-type process in
which &

& (t) and e~(t) are
overlapped excitation
fields and e&(t) a delayed
probe field. The system
is in a superposition of
states ~a) and &cf~ after
the second interaction.
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superposition state after the second interaction
vertex as the initial superposition state (in this
case, it is between

~
r) and (p

~
). In the present

case this propagator is

+ I/{g [(—(u, + 0) —((u,~- iP,~)]].

(h) The frequency factor exp[-f(A —e,) t]. (i) The
ket-bra

~
s)(p

~

to provide the operator.
The propagator in (g} and the frequency factor

can be further clarified by considering a conser-
vation of energy associated with the vertex inter-
actions. Conservation of energy at the first ver-
tex implies that, subsequent to the absorption op-
eration associated with the field containing fre-
quency components around or„ the density-matrix
element oscillates at e '"~'. After the second ver-
tex, which is associated with an absorption opera-
tion in the neighborhood of frequency ro„a net
energy absorption equal to I(v„~—iQ,~

—&o, + &u,)
has occurred. This is represented by the integral
in (e) above which shows it to be extracted from
the spectral content of the field product &y&2 of the
pulses. Thus, after the second vertex and the ex-
citation pulses, a decaying resonant response of
the transitions tv) -~p) is obtained and thus the
density-matrix element has a frequency factor
exp[-i(&o„~ —i Q„~)t]. This density-matrix element
established between states

~

r) and ~p} is taken into
account by adding its energy quanta to the probe-
photon energy in the final propagator (g} and in
providing the final frequency dependence (h} of the
matrix element providing the polarization between
states ~s) and ~p).

With these rules it is possible to analyze many
phenomena involving picosecond pulses; the main
restricting assumption being that the response is
not probed during the excitation.

The pulsed two-photon resonant excitation in-
dicated in Fig. 8(a) in which a third-order density
operator has a frequency component at or, + or„
which is identical to or, + 2or, on exact two-photon
resonance is an example. Qf more relevance to
the present paper is the coherent transient re-
sponse involving these Raman-type transitions as
shown in Fig. 8(b). After the two strong excita-
tion pulses at laser frequency or, and Stoke fre-
quency or, at the first and the second vertices, re-
spectively, the off-diagonal density operator oscil-
lates at its superposition frequency or,d and de-
cays with the T, response time (= I/g, „}.This is
detected by the probe pulse at frequency or~. Kai-
ser, I aubereau, and co-workers'~'" have per-
formed such experiments for the ease in which ~,
is generated through stimulated Raman excitation.
In the present case the intermediate states of in-
terest are the rotational states.

VI. COHERENT TRANSIENT ROTATIONAL RAMAN

BIREFRINGENCE

Ne have been particularly concerned with ul-
trashort-optical-pulse excitations fdr bandwidths
of pulse envelopes which overlap Raman modes,
and can thus excite coherent interference
through several different Raman mixing pro-
cesses.""Probing these excitations to detect
polarization can be accomplished either through
the observation of radiation scattering off of these
exeitations" "or by detecting the perturbation in
the birefringence of the medium. ""For rota-
tional Raman transitions, the scattered radiation
is frequency shifted by a relatively small amount
and hence the simpler and superior technique has
been the observation of the coherently induced
biref ringence.

The transient polarization associated with the
ground-state rotational Raman spectrum has been
considered for linear and symmetric-top mole-
cules for excitation and probe fields of picosecond
duration with optical carrier frequencies far re-
moved from any electronic resonances. ""Co-
herent birefringence bursts associated with this
effect for ground electronic-rotational states has
been observed in CS, vapor at approximately two
atmospheres. " A similar exyeriment has been
performed for the vibrational Raman transitions
of the isotopes of CC14.'4

In the present section, we wish to consider
several aspects of the coherent excitation of ro-
tational transient birefringence which are- of in-
terest. Qf most interest is the resonance enhance-
ment believed poss-ible in Cl, in the region of the
second harmonic of the 1.06-p.m pulses of the
glass laser. %e also show that there is a possi-
bility of observing excited-electronic-state Raman
modes. %e wish also to consider decay of the
coherent excitations. Picosecond pulses for exci-
tation and probing have been used successfuIly to
study the decay and, in particular, T, of vibra-
tional modes in liquids. " Similar experiments are
possible for rotational, transitions in which both
the widths of the coherent birefringence peaks and
the amplitudes are influenced by populational and
polarization decays. %e wish finally to establish a
relationship between the rotational experiments
and similar experiments being performed with
typically single-vibrational modes with coherent-
anti-Stokes Raman scattering (CARS) techniques.

For these transient Raman effects, there are
basically four types af diagrams to consider: the
parametric arid three time-ordered diagrams with
two interaction vertices on each side. The four
basic diagrams are those shown in Fig. 9, on
which the propagators, states, and fields have
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FIG. 9. Four basic diagrams contributing to coherent rotational transient birefringence. (a) The parametric dia-
gram. The two possible sequences of angular momentum values are given. (b) The nonparametric Haman type of
diagram contributing Fourier components at the ground-state rotational frequencies. The $ and O sequence of J
values are also possible for this diagram. (c) and (d) provide Fourier components at the excited-electronic-state
rotational frequencies. The two possible sequences of J values, Q& and Q2, are given. For all of these the rules in
Sec. V have been used to obtain the propagators. q& represents the lth component of the excitation-field complex
amplitude and q& that of the probe field amplitude.

been labeled. q, is assumed to be the laser-field
amplitude, p, , will be taken as the component of p,

in the direction of p, . p& is similarly taken to be
the complex amplitude of the field of the probe
pulse g~.

State
I
a), which refers to the initial state (in this

case a Z, M rotational eigenstate), is assumed to
be incoherently populated according to a Boltz-
mann factor at a temperature T:

exp [-J(J+ 1)hBc/h 7]
Paa =

Q (2J'+ 1) exp[-Z(J'+ l)h Bc/hT]
(16)

For the particular process of interest, the inter-
actions at t, and t, arise from the same strong optical
pulse. The interaction at t, is due to a weak
probe pulse physically delayed in time from t, and

t, . We now evaluate from the rules deduced above
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the contributions due to each diagram. For Fig. 9(a), which is the parametric diagram, it is seen that
(a)-(h) give for this contribution to the density operator

ld)(dI-', (p' e~) la) j„(le,(t') I'/4ik) exp[+i(~„-ip„)t']dt' (al p, lb)(bl p, lc)
a, «, c,I i«((do+ Q7 —i/ —(og«+ 6 f&g~) @(+ +«c+ tt'«c)

x p,",'(c
~

exp[-i((o„—iy„+ (o,)t]. (1Va}

In this expression, it is assumed that e, (t) is zero for times t such that e~(t} is significant. The sum over
a, b, c, d is a sum over intermediate, initial, and final states arid in this particular case these are sums
over the angular momenta Z, M at each level subject to the selection rules. These sums will be carried
out subsequently.

p,"' cannot in this case be identified totally with CARS processes although to have a dipole moment the
initial state must be the same as the final state. Nonetheless the first process, that associated with the
excitation pulse, can be a Raman anti-Stokes process as well as a Stokes process in which case the probing
involves coherent Stokes generation.

One obtains for the density-matrix operator attributable to the diagram of Fig. 9(b)

-Id ) (dl-,'( p; e~}la ) „(Ie, (t') I'/-4i@}exp[+i(&o„-i@„)t']«' p,",'( al p, lb ) (b I p, lc ) (c I

xexp [-i(co„—iP„+(oo}t].

The terms in this expression in general provide Baman-like contributions to the susceptibility since the

firial state is different from the initial state. Both Stokes and anti-Stokes rotational processes can occur.
The state notation in diagram Fig. 9(b), in particular having ~a ) as the initial state rather than ~c),

has been such that the corresponding p,"' and p,"' both have frequency components at v„which is a ground-
electronic-state rotational frequency.

These two diagrammatic contributions to p"' thus provide coherent birefringence associated with the
ground-state rotational constant and, furthermore, are the primary contributions when the optical fre-
quencies of the pulses are far removed from any electronic resonance. This can easily be seen from the
four diagrams. Only Figs. 9(a) and 9(b) have an emission operation directly following the initial absorp-
tion, thereby putting the molecule into a superposition state involving a rotational transition. All that is
necessary for a strong rotational excitation is for the amplitude spectrum of the pulse to overlap the ro-
tational transitions. Figures 4(b) and 4(c}, on the other hand, involve two initial absorptions bringing the

molecule into virtual electronic states. Unless the electronic frequencies are close to resonance, a strong
rotational excitation due to the amplitude spectral spread cannot occur. It is also apparent that if such
electronic resonances occur, these two diagrams provide susceptibility contributions which involve ex-
cited-state frequencies ~~~. These excited-state diagrams, evaluated as given by the propagators of
Figs. 9(c) and 9 (d}, provide the following two contributions to the third-order density-matrix elements,
respectively:

&» }
Id ) ( d I p, , la ) p~' ( a I p, I b )J'„" (I e, (t') I'/4ik) exp[i(&o~« —i/~«} t'] dt'

5(+ OP +«0 «
—Ajh «}

(bl& p~e~lc)(cl exp[-'2 ((alp« —Spy«+ (do) t]
&~O+ ~d« iv'd«+d«+ i~dc&

(18a)

Id ) (dl p, , la ) p,",'('al p, , lb )J„(le,(t') I'/ —4iti) exp[i(&o~« —i/~«) t']dt'
t«(&0 —(iD~+ + if& ~)

(
.' ' . exp[ i((o„-iy„+-&o,}tj.(bl& ~pele)(cl

0 f g«Qg«g«+ Zfg«
(18b)
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For these diagrams to have ~„, nonzero, one
observes that one side of the diagram must in-
volve a Stokes process and the other side an anti-
Stokes process. This, in turn, demands that the
final state be the same as the initial state.

VII. ROTATIONAL COHERENT TRANSIENT

BIREFRINGENCE RESONANTLY ENHANCED

~~.~,If')) = g (-1)'~ "~ Ij.m. ,j,m, &&

mgffl Q

x &jJ~m, —mc lrtQ&

where (j,j,m, —m, IKQ& is the Clebsch-Gordan
vector-coupling coefficient, for which A is di-
agonal in K and Q, the evaluation of the matrix
elements is difficult, and which is diagonal in

(19)

The expressions for the transient evolution of
the dipole moment as given by Eqs. (17) and (18)
will now be considered in more detail for exciting
intensity profiles possessing spectral spreads
sufficient to overlap rotational transitions. When,
in addition to this spectral spread, the frequencies
of the incident radiation fields are sufficiently
close to single-photon resonances, considerable
enhancement of the polarization is possible and
is expected experimentally to provide a sensi-
tive time-resolved spectroscopy.

We treat here the response of a linear molecule
with its 2J+ 1 degenerate rotational eigenstates
Ia& = I/M'&. The A(r) operators are not strictly
diagonal in the sense of Eq. (6a) with a = IZ„M, &

and b = IZ„M,&, since M, and M~ change during a
collision. Although rotational invariance allows
one to form coupled states given by""

j, and j~ only for isolated lines for the various
intermultiplet transitions. y,~ is then a function
of K and provides the relaxation rate of the K
multipole between levels a and b. For present
calculations, we neglect this multipole behavior
and calculate the density-matrix contributions of
Eqs. (17) and (18) assuming that the matrix ele-
ments are independerit of M, and M~ and that the

rh

most important matrix elements of A are the
diagonal terms. This provides the same effective
decay rate for each of the degenerate rotational
superposition states prepared by the initial optical
pulse (the region of the diagrams having the ef-
fective propagator involving the integral of the
squared a.mplitude of the optica. l pulse). Thus
we use the rotational eigenstates

I
J'„Mg directly

for a numerical estimate of the polarizations due
to Eqs. (17) and (18). As pointed out by Omont,
the more accurate approach considering the in-
dividual multipole contribution provid'es an anal-
ogous result except for a weighted sum over the
individual multipole decay rates. '

Using the more compact notation (p&)(„=(b I p& Ic),
we now wish to combine the polarization terms
resulting from Eqs. (3.7a) and (17b) and Eqs. (18a)
and (18b). The combined Eq. (17), as previously
discussed, is expected to be the dominant off-
resonance contribution; Eqs. (18), the electron-
ically resonant contributions involving the excited-
state rotational constant.

If ('. , (t'), the electric field of the exciting pulse,
is assumed polarized in z direction, then the
macroscopic dipole moment P, due to the pro-
cesses shown in Figs. 9(a) and 9(b) (using &u„
—&o~, = &0~ = -~~,), is given by

2 g[(t.g)(l,. &$)(l .).b(P.4.]
Ja Jbs Jce Jd

I~, (t)I &, , (x ' . Iexp[i((u„—iQ„)t']dt'(~(;(~ ~ ))'

I p(0& p(0)

g( t 'y ) @( ) 'y ) p[ ( ac ~ac+ o) ]' (20)

Similarly the two excited-state contributions, when combined, give a polarization contribution p, :

P2= Z 2+['P (((P )() (P ) ()(tu ~ &y)() ]
J~ Jy, J~ Jg g

&Ie (t')I'
x

I
'4.

@
exp [i((0„,—i&„,)t'] d t'

4sS

x exp[ i(conc —i @-„,+ (0,)t] . (21)
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To proceed, it is necessary to consider the
Raman Stokes and anti-Stokes contributions
to the sums over J„J„J„andJd h, nd the sum
over the magnetic quantum number M. We neglect
the transitions which make a and c the same in
Eq. (20) (Q-branch Raman transitions) and b and
d in Eq. (21) (S- and 0-branch Raman transitions)
which contribute a Rayleigh component at the probe
frequency. The corresponding terms are zero
when loss is neglected since the large square
brackets in Eqs. (20) and (21) are then identically
zero.

From the dipole selection rules for linear po-
larization, which we consider here, 4J=+1,
4M= 0, there are only two nonzero sequences in
the sums over the angular momentum quantum
numbers. For Figs. 9(a) and 9(b), we choose to
write these as J,=J, Jb=J+1, J,=J+2, J'„=J+1,

d Ja J+ 2& Jb J+ 1t Jc J& Jd J+1, respective-
ly. The second is the anti-Stokes sequence in
accordance with nomenclature from CARS for
Fig. 9(b) and the first is the Stokes sequence for
diagram 9(b). For diagram 9(a) it is the reverse,
the second sequence being that of the Stokes and
the first that of the anti-Stokes sequence. We shall
refer to these in accordance with the Raman no-
tation for Fig, 9(b); the first sequence thus being
the 0 sequence and the second the 8 sequence.

For the diagrams of Figs. 9(c) and 9(d) [as
described by Eq. (21)], the excited-state contri-
bution arises from the interference between the
two possible Q-branch Raman contributions. The
two possible selections of the J's shown (Z, =X+ I,
J„=J+2, J„=J,J,=J+1, and J =J+1, J =J,
J„=J+2, J,= J+ 1) correspond to an interchange
of the Stokes and anti-Stokes sequence on the
two sides. Taking the Raman notation, we shall
refer to these as the Q, and Q, sequences for these
two diagrams.

The periodic nature of the polarization arises
from the final sum over all possible values of
8 for these four sequences (S, 0, Q» and Q,)~

The significant values of J which must be included
are determined by the initial populations p'~'. [Eq.
(16) for a Boltzmann distribution] and the spec-
trum of the pulse amplitude which provides the
strength of the Fourier components at the rota-
tional Raman frequencies. Since these are evenly
spaced, &o~„,~=4vBc(2J'+3) with 2=0, 1, ... and
B the rotational constant [excited state for (21)
and ground state for Eq. (20}], the basic period
being 1/(2Bc), periodic bursts in the polarization
induced by the probe pulse are observed. Bursts
are also observed halfway between the fundamental
period, these bursts having a time-reversed
amplitude profile with respect to those at the fun-
damental period. In addition nuclear spin can

introduce additional bursts. For CS„Jodd is not
possible for the rotational frequencies above
which is introduced a burst at 1/8Bc following the
excitation pulse. "

With Eqs. (20) and (21) we can consider the
frequency behavior and time evolution (damping
and widths) of the periodic birefringence bursts
associated with the ground state and the electronic
excited state. The damping in the first approxi-
mation (all P~, equal) provides an exponential
decay of the coherence without any influence upon
the temporal profiles. Experimentally, inves-
tigations of the width of the coherent bursts and
their temporal decay will be interesting with
regard to both this approximation and the initial
neglect of the product state formalism to evaluate
the matrix elements for A.

The frequency dependence of the two contri-
butions Eqs. (20}and (21) are quite different.
Far below resonance we can set vb, —vb, —vd,

—= v„
the electronic-transition frequency, this being
accurate to within the rotational frequency. Neg-
lecting linewidth, Eq. (20) indicates that p, is then
-[I/(&o, )'](p,',"—p"') and is generally appreciably
larger than p, -p,",'[1/(v, )'](&o~~/&u, ) from Eq. (21).
vdb is ideally a rotational transition frequency

10" rad/sec. Thus, the ratio p, /p, has a max-
imum value of

10" p,,
1015 (0) (0) I

~cc -~aa ]
for typical molecules (CS, at 296'C). This is most
likely an overestimate since only a single elec-
tronic transition has been assumed.

Thus, we conclude that the dominant coherent
rotational response below resonance comes from
the Stokes and anti-Stokes sequences of Eq. (20)
and hence the first two diagrammatic contributions
of Fig. 9. In this limit, Eq. (20) reduces to the
previously calculated index-of- refraction change
for the coherent response. " This can be shown by
considering Eq. (20) for the probe field z& po-
larized in the ~ direction. Vfe express the sum
over M of the matrix elements which enter into
the induced polarization [Eq. (20)] in the z direc-
tion in terms of the matrix elements p,„, the purely
electronic dipole moment parallel to the linear
molecular axis, and p,~, that which is perpen-
dicular to the linear molecular axis between the
two electronic states. For either the Stokes or
anti-Stokes sequence, one obtains"

Z (u.4(v.4.(u.).,(v.)„
= 2 I(~.),I'I(~.)..l'



T. K. YKE AND T. K. GUSTAFSON

Introducing the electronic polarizability paraQel
to the molecular axis o'i(+) =

I &~ I
/[Ii'(~ + )] and

that perpendicular to the molecular axis o.~(&o)
=

I p, I'/f@(&o -(o,)], we see that Eq. (20), when
damping is neglected and- for the 0 sequence, can
be approximately written

@ ) = -Z exp[-'(~z, z«)I](pr .z+ —&zz)

(,)~ ( )
2 (J+1)(8+2)' 15 (2J'+3)

+co (e (Il)I2
—exp[+i((o~ ~„)t']

&&dt —c e

H = =[ «((d) sin 8 —6 (47)] IE (t) I (24)

Similarly, Eq. (21) can, with the same approxi-
mations, be writtten for the Q, sequence

e~ ~„ is the rotational transition frequency of the
J' J'+2 transition vz —&oz, = 4v-Bc(28+3) and
«((0) Qg((0) Qg((0) ~ The 8 sequence gives the
complex conjugate of the complex susceptibility
index of Eq. (23) [d)(, -=2{p,),/s, e «"o'] and thus
the total susceptibility is 2 Re(&)(,) = 2 4)(, which
is identical to that previously obtained using the
class ical effective Hamiltonian"

(I,),=Q exp[ i((o-', „,)I]p",.', „,«(~,)«(~')
15
2 (J+1)(J+2)

(Is) P
- ~e q g e-&o)ot

mOO w g
(25)

where co~ ~+, = (d„» the rotatj. onal transxtj. on fre-
quency in the excited state, = 4mB,c(2—J+3). B,
is the excited-state rotational constant. As above,
the Q, sequence gives the complex-conjugate sus-
ceptibility &y, (v)* so that the total susceptibility
ls 2 Re(+)(2) = 2+)(~ .

Equations (20) and (21) show that considerable
resonance enhancement of the coherent rotational
response can be obtained from the electronic re-
sonances. In particular p» the excited-state con-
tribution, can become of the same order of mag-
nitude a,s p, or larger since (&o~, —&u„)/(~' —sr~
+i&~), coming from the square bracket in Eq.
(21), can probably be made to exceed (p,",' —p,',")/
p,',"by an order of magnitude or so.

Theoretically, since the matrix elements are

in general not known, it is difficult to calculate
the refractive-index change from Eqs. (20) and
(21). Based on Eqs. (23) and (25), we have es-
timated the values of 2&y, and 2&y," as a function
of frequency from the known susceptibility for
0,. With subpicosecond pulse excitation at room
temperature approximately 15 rotational states
provide significant contributions. The calculated
results are shown in Figs. 10 and 11. Both &g",
and &g," exhibit the resonances associated with
the linear susceptibility. &g," has an additional
resonant enhancement due to the additional term
1/((o' —(o,) in Eq. (25). For 0„"it is estimated
that &y, becomes larger than &y", , although the
approximations limit the validity of &X", and &X,"
gi~~~ by Eqs. (23) and (25) in the region

I
~ —~el

25&1
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24—
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FIG. 10. Theoretically predicted susceptibility change induced by a Gaussian optical-laser pulse in 02 at room tern-
perature. The solid curve has a fundamental per'iod (2$pc) and a subperiod (4Bpc), and arises from the diagrams of
Figs. 9(a) and 9(b). The dashed curve has a fundamental period (2B~c)" and a subperiod (4B~c)"~ and arises from the
excited-state diagrams of Figs. 9(c) and 9(d). F& and F2 are two constants specified in Fig. 11. For 02 Bp=1.446 cm
and B&=1.05 cm ~ (Ref. 35). Here, the effect of the nuclear-spin statistics rvhich demand the absence of odd J' has also
been taken into account {Ref.28).
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esu (Ref. 35) and Xo the linear susceptibility.

~ 4m/v, where r is the pulse width.
Experimentally, it appears possible to observe

a resonant enhancement of coherent transient bire-
fringenee in Cl, at the second harmonic of the Nd"
laser. Verification of the excited-state contribu-
tion is also possible and is presently being pur-
sued.

In the present section, we have considered ex-
clusively coherent rotational effects associated
with a ground state and an excited electronic state.
If two phase-related coherent pulses with com-
plex amplitudes a,e '""and 628 '"2' with fre-
quencies co, and a, differing by a vibrational re-
sonant frequency, are used to excite the medium,
one field at t, and the other at t, of the diagrams
of Fig. 9 or t, a,nd t', in Fig. 1, then the molecule
is thrown into a rotational sublevel of the vibration-
al state by the excitation. Thus, in conventional
CARS, an exact-vibrational-resonance coherent
transient rotational birefringence should be ob-
servable. The probe pulse in this ease would cor-
respond to vibrational anti-Stokes scattering. As
e, —co, is tuned off of the vibrational resonance
the integral in Eq. (14b) can be approximately in-
tegrated as

exp{+[i~„,—i(&o, —&o,) + P„,](t —&, — ))
+ gQP~p —Z COg —402 + ~p

and the susceptibility goes over to ihe monochrom-

atic CARS susceptibility. Thus the rotational co-
herent response would be expected to disappear
with detuning. This coherent rotational effect for
properly shaped picosecond pulses can be large
and might provide a means of observing CARS
without the bothersome interference associated
with nonvibrationally resonance terms contributing
a nonresonant susceptibility in monochromatic
CARS experiments.

VIII. CONCLUSIONS

In the present paper we have investigated the
diagrammatic representation of density-matrix
elements. In general, a diagram is used to repre-
sent two sequences of interactions, one of which
is associated with the wave function and which is
time ordered with respect to the second interac-
tion sequence which is associated with the com-
plex conjugate of the wave function. Each of the
two sequences represents a possible time evolu-
tion of the molecular state. The time-ordered dia-
gram portrays the interference between the two
possible evolutions which gives rise to dipole
moments and population changes. Each diagram
corresponds to one term of the density matrix
and a set of rules can be used to deduce polariza-
tion directly from them for monochromatic in-
teractions and many pulsed interactions. In the
absence of broadening, it has been shown that the
sum of all possible time-ordered graphs for a
particular set of interactions on the wave function
and a particular set on the complex-conjugate wave
function results in a term which is independent of
the time ordering of the wave function interactions
with respect to those of the complex-conjugate
wave function. It is easily established that the
conditions for this to be true can be relaxed to
P„„=0 if n is the initial state and Q„,„+Q„z, = Q„,„„
for any other states n' and n". This is also called
the damping approximation. The evolution of the
density operator can then be determined by the
product of the evolution of the wave function and
that of its complex conjugate taken separately.
Calculations of nonlinear polarizations from the
resultant non-time-ordered graphs are well known
and are described in the literature.

The time-ordered propagator approach uniquely
identifies a particula, r perturbation process; in
many cases it allows a simplification of the cal-
culations by employing the general rules; and it
should provide a means of conveniently incorporat-
ing broadening processes more rigorously. In
the present paper, we have considered several
processes including second-harmonic generation,
coherent anti-Stokes Raman scattering, and co- '

herent transient birefringence. The combination
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of time-ordered terms in the damping approxima-
tion was illustrated with the diagrams for the
Raman effect. Resonant denominators for which
the transition frequencies are solely between the
initial state and excited states result, as is evi-
dent from Fig. 5.

Transient perturbations when viewed diagram-
matically can in many cases be interpreted clearly.
For the Raman effect, it has recently been shown
that the time-ordered diagram of Fig. 4(a) pro-
vides the transient Raman response, and Figs.
4(b) and 4(c) the hot luminescence (HL) transients
as defined by Shen. " As is apparent from the dia-
grams, the HL terms involve the density-matrix
element p„,„propagated by T,. With n' usually
equal to n, this is equivalent to the decay of the
excited-state population. In the present paper,
we have deduced calculational rules for a special
class of transient interactions for which the sys-
tem is on resonance after the second interaction
vertex (Fig. 1) and this excitation is probed by a
delayed pulse. Several new aspects of rotational
coherent transient birefringence are treated. When
the excitation frequency is far removed from a
single-photon resonance, only two time-ordered
diagrams [Figs. 9(a) and 9(b)] have been shown
to contribute to the susceptibility, and coherent
bursts in the birefringence separated by (48,c) '

are obtained, where &, is the rotational constant
of the ground rotational states. As the excitation
frequency approaches a single-photon resonance,
two additional diagrams [Figs. 9(c) and 9(d)] be-
come important and contribute terms which re-
sult in coherent bursts separated by (4&,c) ',

where 8, is the rotational constant of the excited
state involved in the first-vertex interaction.
Apart from the rotational coherent transient bire-
fringence, the rules deduced can be used to ob-
tain the pulsed responses of CARS experiments
and coherent pulsed two-photon excitation.

The diagrammatic approaches can also be used
to evaluate transition probabilities since

The polarization terms p„are evaluated up to the
order desired. Taking twice the imaginary part
of p„multiplied by H„jh then immediately pro-
vides the transition rate. ' This reduces to the
usual Fermi "golden rule" when both sides of the
density-matrix diagram are the same in terms
of interactions and states involved.

The density-matrix diagrams cari easily be
generalized to include other types of interactions.
Photon exchange between different molecular
species through the introduction of the photon prop-
agator and the treatment of tunneling phenomena
by the transfer Hamiltonian are two such inter-
actions whi. ch have been considered.
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