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Localization of high-power laser pulses in plasmas
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This paper considers the nonlinear propagation of an intense laser pulse in plasmas. The equation for the

wave envelope is derived accounting for the nonlinearities originating from the electron-mass variation as well

as the self-interaction of the laser field. It is shown that the wave equation and the equations governing the

slow plasma response can be represented in terms of the energy integral of a classical particle. The analysis

of the potential reveals the existence of the localized solutions. The criteria for the latter to occur are

obtained. A small-amplitude limit is also discussed.

I. INTRODUCTION

According to linear theory, an electromagnetic
wave cannot propagate beyond the cutoff point in a
plasma. However, plasma nonlinearities can lead
to a downshift' of the wave frequency. As a result,
the wave can still propagate into the overdense
region. The wave energy can thus reach the main
body of the plasma, l.eading to anomalous wave ab-
sorption. This phenomenon is important in laser-
induced fusion, ionosphere modification by radar,
and the interaction of pulsar radiation with its
plasma environment.

%hen the intensity of the laser light is relatively
weak, the self-interaction (pondermotive force)
nonlinearity can cause wave filamentation. ' In
particular, the gradient in the time-averaged field
intensity resulting from the filamentation forces
the plasma out of the region of high field strength.
Refraction of the radiation into the region of de-
pressed density allows the wave to tunnel through
the cutoff point. Localized filaments were first in-
vestigated by Gurovich et al.' and Karpman, 4 and
later by Val.eo' and others. '

On the other hand, in the presence of strong
laser radiation (e.g. , 10"-10«W/cm' for a Nd
glass laser with X = 1.06 p m or 10"W/cm' for a CO,
laser with X = 10.6 p, m, where A, is the laser wave-
length) the oscillatory velocity of the electrons can
approach the speed of light and the resulting variation
of the electron mass can also cause strong nonline-
arity. The latter leads to an instability" whose
growth rate can compete with that of the self- inter-
action nonlinearity'. Computer simulations' have
verified these findings. Similar to the modulational
instability caused by the self-interaction nonline-
arity, the evolution of this instability also leads
to a solitonlike structure for the wave envelope. "

This paper is concerned with the nonlinear pro-

pagation of intense circularly polarized electro-
magnetic waves in an unmagnetized plasma. The
wave equation accounting for the nonlinearities
arising from both the relativistic mass variation
and the self-interaction" of the intense laser
fields is derived. It is found that both of the non-
linearities contribute to finite-amplitude wave
localization.

In Sec. II, we present the basic equations and
derive the wave equation. The response of the
slow plasma motion to the laser electric field is
calculated. Using a modulational representation,
we show that the slowly varying complex envelope
of the wave electric field obeys a nonlinear Schro-
dinger equation. Section III considers the station-
ary solution of the system. The coupled set of
equations can be written in the form of the energy
integral of a classical particle in a potential well,
which is analyzed. ' The conditions under which
wave localization occur are given in Sec. IV.
Section V contains a brief discussion of the results
of our investigation.

II. FORMULATION

Consider a two-component electron-ion plasma
in the presence of a circularly polarized electro-
magnetic wave in the form

A =A[icosp+P sinQ], (1)

where A is the vector potential, Q = coot —k~ is
the phasor, e, and k, are the wave frequency and
wave number, respectively. For linear wave pro-
pagation, we have

(d2 2 + g2$2

where ~~, =(4wne'/m, )' ' is the local electron-
plasma frequency, and other notations are stan-
dard.
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VVe now study the nonlinear interaction between
the laser light and a warm, collision1. ess, rela-
tivistic electron-ion plasma. The basic equations
governing this interaction are

t

+ V '
(tip vg) = 0,

follow from Eqs. (3), (4), (10), (11). The last
three equations can be combined to yield
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Equation (14) is satisfied by

ps =~cock (16)

We define the scalar and vector potentials pand A

by the fo1.lowing equations:

1 ~A -VQc ~t (10)

9=Vx',
1 8$

V A +- —=O.
c dt

The notations are standard.
It is well known that an electron in the presence

of intense laser fields can acquire a relativistic
speed. Consequently, a nonlinear current is pro-
duced which gives rise to a modification of the
linear dispersion relation. Owing to this and other
nonlinear effects, the wave can propagate into the
overdense region.

In this paper, we are concerned with the non-
linear propagation of a wave pulse, that is, we
shall study the 1.ocalization of wave electric fields
due to the various nonl. iriearities. In particular,
we shall take into account the nonlinearities orig-
inating from relativistic mass variation, as well
as those due to interaction of slow plasma motion,
with the laser electric field. Both of these appear
on a time scale l.onger than that of the laser field
variation.

Taking the curl of (8) and using Eqs. (9)-(12),
we readily obtain the wave equation for the laser
light

82A

gp, -c'V'A=4vcJ

where S= —n, ev, is the total current density, and
n, is the slowly varying density produced by the
low-frequency electrostatic perturbation Q induced
by the laser fiel.d.

The slowly varying electron density perturbations

together with a low-frequency momentum balance,

P V(P)
2 (1 ~a)u2

= V4 -V» &8 (1V)

where $ =eA/m, oc', p=c'/v'„, u„=(T,/m, )'~, and
we have normalized /by T, /e, n by no, and the
space coordinates by A, , A,, -=(T, /4nn, e')' being
the electron Debye length.

We note that due to the circular polarization, g'
does not contain any high-frequency component.
This allows us to separate the high- and low-
frequency components of (14), as done in obtaining
(16) and (IV).

The (nonrelativistic) ions are coupled with the
electrons via Q, so that we have for the ions

~Sf
et

+V ~ n v. —0i

8vi
+ v& Vv& ——-VP (19)

(20)

where for simplicity the ions are assumed to be
cold. In (18) to (20), and in the following equations,
we nondimensionalize t and v& by e~& and c, re-
spectively, where u~, =—(4wn, e'/m, )'~' is the ion
plasma frequency, and c,=-(T,/m, )

' is the ion
acoustic speed. It is of interest to note that the
low-frequency equations (17)-(20) yield, within
the adiabatic approximation, together withthe linear
ion response, the relativistic ponderomotive po-
tential" Pp.„d=~„&'[(I+g')'" —Ij/e.

Equations (13), (14), and (17)-(20) form a
coupled set. As is well known, '" the linearized
system is modulationally unstable in time. Ac-
cordingly, we look for the long-time asymptotic
behavior, assuming one-dimensional spatial varia-
tion.
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Within a modulational representation, we take
the amplitude to vary slowly, namely,

(30}then gives a relation between g and N. Dif-
ferentiating Eq. (30) we have

y = -,' P(v, &)(2- i$)exp(-i(o, t +i k~) + c.c.,

where S/Sv «~0. Thus, Eq. (13) becomes

(21)
1 M 2,(2 Bn

(1 +0')'"—
sg

=
pn 222 sg' (31)

Multiplying Eq. (26) by 8$/8$ and using (31) we get

sf eg "pag2+ ~ (1+(y(2)'" '

where e = (m, /m, )'k((g, /(u2, ), (u22, = 4mn, e2/m„,
a= 2c2ko/&o22p„and 4 = (&o20 —c2k22)/+222. The con-
vective term in (22) can be easily transformed out.

(32)

Integrating the above equation once and using the
boundary conditions at infinity (n =1, $ =0, &g/S~
=0), one obtains

III. LOCALIZED SOLUTIONS

(23)

(24)I=n(g),

v, =v((),

We are interested in the stationary solutions of
(17)-(20) and (22). Accordingly, we express"

0 =P(5)exp{i[&(~)+A(0)]),

Using the boundary conditions at g =0, we find
from (33) the nonlinear frequency shift, namely,

(34)

where the maximum electric field g„and the
minimum density N are related by

22)
P st2 +6& =(1,~2)ie (26)

6 =& —2e 6, + 2k~2/&/~, + e2M'/p

is a nonl. inear frequency shift to be determined
later, and

where f, =&-Mt, and M=V/c, is the Mach number.
In the fol.lowing, we shall. for simplicity drop the
tilde on P.

From Eqs. (22) and (23) it foll.ows that

(1+/„) =- — — ——1 — -+l.AP ln&
III 2P +2 p

From (31) and (24), one finally obtains

1 &n
+V(n 5 M) =0

2 9 9 9

where the potential energy V is given by

jn 1+M2/-n M'+ '—6']222y2
(1-M2/222)2(I + y2)

and $2=$2(n) is given by (30).

(35)

(3V)

Q(g) = eMg/P. (2V) IV. ANALYSIS

We should now find a relation between n and P
from the equations governing the slow plasma
motion. In particular, from (IV), one finds

y ~P[(1+y')'" —1]+Inn,

where we have assumed the plasma to be unper-
turbed at infinity, and accordingly used the boun-
dary conditions n =1, $ =0 at ($(- ~.

Equations (18}-(20)and (28) give

v =(n -1)M/n

(1 + y2}1/2 I
2p n' p

where again the boundary conditions at infinity
have been imposed.

We are interested in local. ized solutions in which
the electric field has a maximum at the location
where the density perturbation is maximum.
Therefore, we let p =g„and 22=&at g =0. Equation

In Sec. III, we have derived from the coupled
set of fluid and wave equations a conservation
law in the form of the energy integral. of a classical
particle. Within this picture, Eq. (36) describes
the motion of a particle in the potential well.
Localized solutions for n exist provided V & 0 be-
tween two points n =N and n =1. Solitary wave
solutions exist if the "velocity" 822/&g approaches
zero infinitely slowl. y at the latter point, so that a
"particle" with zero total energy starting from
n = 1 (V =0) takes infinite time to return.

We now derivt.' the conditions under which the
potential (3V) has a form required for localized
solutions as discussed above. First, the physical.
requirement g2& 0 yields for an expansion 22 =1+6n,
gn«1 the result

fIn (1- M ) & 0,
that is, subsonic solitons could only exist for den-
sity dips and supersonic solitons are accompanied
by density humps. Second, V(n)&0 demands
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FIG. 2. Helation between maximum amplitude Pm and
the corresponding density (maximum or minimum) N
for p =2 and different Mach numbers M. According to
Eq. (35), solitons only exist in the dotted area. For
N &1, the region of existence is bordered by the M =0
and M =N lines, whereas for N & 1 the M 2 = P+ (N) line
representing condition (44a) limits the area where super-
sonic solitons accompanied by density humps can appear.

5n&0
N=0. 75
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FIG. 1. Regions of existence of solitary wave solutions
{dotted area) in the (p ~, M) plane for two typical values
of density minimum (N =0.75) and maximum (N =1.25),
respectively. For N&1, i.e. , density dips, solitons
exist below the line M =¹the line M2=P (N) repre-
sents the condition (44b) whereas the condition (41) is
here not restrictive at all. For N &1, i.e., density
humps, condition (44a) represented by the M =P+(N)
line is most restrictive; condition (41) is shown by the
1/P =Q{N) line, and the M =N line is not very signifi-
cant here.

(
M

+n —1 —M' +—PP'& 0
n 9

P-'& 2(1 +f /a)/a =q(N), -
where a =-', M'(N ' —1)+lnN, and 5 =(1-M'/N)
x (1-N). Furthermore, it can readily be shown
that V(n- 1)~ —j5n~'. Thus the potential is proper-
ly behaved near n =1 if (39) and (40) are satisfied.

Let us now investigate the behavior of V(n) near
n =Ã. Because of the choice of 5 in (34), the con-
dition V(N) =0 is satisfied. Letting n=N+5n, we
obtain, near n=@,

V (1+P )(1-W9r-2) (42)

Thus, V(n-N)~-~6n~, which is necessary for
sol.iton existence, provided

1 5(1+&2)i/2/N&0

Eliminating g„, we obtain from (43), for N&3,

M' &D+Z'" -=e, (N), (44a)
which together with (38) yields 5&1, or

g2 &-2P ~[N —2 —M (N —1)]. (40)

and

M &D —E ~P (N),

Eliminating g, we can also write (40) in the form

D =[(N ' —l)(l -N ')P '+2(P 'lnN —l)(N ' —N ')-(Ã ' —1)(P 'lnN-1)]/

[2P '(N ' N')(N ' 1) —-(N '-1)'P-'2 ']

E=D'-[2(l —N ')(P ' lnN —1) —P—(P
' lnN —1)'+P]/[P '(N '-N ')(N ' —1) —4 'P '(N ' —1)'J.
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In Fig. j., we have given the existence regions of
solitary waves using (41) and (44). In Fig. 2, we
have presented the g'„vs N lines for different
values of M.

To conclude this section, we present the small-
amplitude limit, for which it is possible to give an
analytical solution. Accordingly, we let n =1+5n
and N =1+5%, where %s, &X«1. %'e obtain

25N(1 —M ) 6NM'

ping 1 —M

g'„= —(25N/P)(1 —M'),

(45)

(46)

Hence, the potential for small-amplitude limit is
given by

V (5n)

=- 4P {(1-5)5n2+ ~ [P '(1- M) +1] n6'), (48)

where g'«1, 1—5=0(5s), and M2 —1&O(5n) have
been assumed. As a result, the usual hyperbolic-
secant soliton solution emerges and the results
are known in the literature. "'

V. DISCUSSION

Recent progress in laser-fusion and pulsar
physics calls for a detailed investigation of the
interaction of radiation with plasmas. In the ex-
isting literature, " a consistent picture describing
the nonlinear evolution of the modulation instabil-
ities associated with such interactions has been
worked out only for cases in which effects such as
radiation pressure and relativistic mass variation
are studied separately. The argument usually
given to justify such a treatment is that the time
scales for growth and saturation of the instabilities
associated with each mechanism can be different.
However, when considering the long-time behavior
of an interaction such as soliton formation, several
mechanisms and the interplay between them
should be simultaneously considered.

The ponderornotive force appears because of the
interaction between the high-frequency wave and
the background plasma. Because of the large ion
mass, the ponderomotive force acts on the elec-
trons, and ultimately also on the ions owing to the
resulting ambipolar fieM. Due to the expulsion of
particles from the region of high field intensity,
locally the plasma density is reduced, thus trapping
the radiation. This argument is essentially un-
changed when relativistic effects are included. In
fact, only the magnitude of the ponderomotive
force is altered" because of a different dependence
of the field intensity.

The relativistic electron-mass variation by it-
self also causes trapping of radiation, since, due
to the large electron quiver velocity, the electron
mass increases, causing the local plasma fre-
quency to decrease. Such a decrease is produced
by the ponderomotive force by reducing the local
plasma density. It is then expected that both the
effects of self-interaction and electron-mass
variation can cause the formation of localized
wave packets. ""

In this paper, we consider the propagation of
an intense circularly polarized electromagnetic
wave in a collisionl. ess plasma. We include the
effects of relativistic mass variation, the relativ-
istic ponderomotive force, as well as the fully non-
linem' electron and ion dynamics' within the fluid
approximation. Our investigation thus extends
beyond the existing works' in which either the
relativistic effects alone are treated, or a weak
nonlinearity is assumed.

Our main resul. ts are presented in Figs. I and 2.
These describe the regions of existence as well
as the properties of the solitary waves. Thus,
supersonic solitons of a given speed can appear
only when P

' is sufficiently large, while subsonic
soiitons can appear for all J3 '. Furthermore,
from Fig. 2, we see that sub- and supersonic
solitons are associated with density depressions
and humps, respectively. We note that solitons
with speeds M= j. are of vanishingly small ampli-
tude.

A new phenomenon occurs when the effects of
relativistic mass variation and ponderomotive
force are included simultaneously. This is the
appearance of supersonic sol.itary waves with
density humps when the relativistic effects are
sufficiently strong. Such a situation can occur be-
cause the relativistic mass increase dominates
over the density increase associated with the den-
sity hump, the combined effect still being a net
reduction of the local plasma frequency. Quantita-
tively, one can understand the above discussion by
considering the small-amplitude limit as follows:
The local. plasma frequency, including the pondero-
motive force modification of the density n =1-PP/
2(1-M') and the relativistic 'mass variation m
=m, (1+/')'~'= m, (1+~/'), is given by &o~,= [1 —@'/
2(1 —M') —& P']to~20. Modulational instability and
soliton formation is possible if the nonlinear fre-
quency shift &v~2, -~~, is negative, or q =—PP/
2(1-M') —~ g'&0, which clearly allows the ap-
pearance of M'&1 solitons as long as P/~1-M') &1.
On the other hand, in the nonrelativistic limit,
which is realized by letting P-~ while keeping
Pg' =E'/8nn, T, fixed, the above condition becomes
—p/'/2(1-M') &0, so that only M'&1 solitons can
appear.
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Since qP is simply the small-amplitude limit of
the nonlinear term in the nonlinear Schrodinger
equation (22), we take this opportunity to discuss
the time scale associated with the ponderomotive
and relativistic effects. The time scales are de-
termined by the growth rates of the modulational
instabilities associated with these effects. They
are ~EJ' and P ')Eo[' for the ponderomotive and
relativistic modulations, respectively. Here we
took the purely growing mode (M=O), and Eo is
the pump electric field amplitude normalized with

(8wnoT, )' 2. Thus when P =c'/v„=1, the two effects
are equally important. "

The application of our investigation to problems
of recent interest, such as mode conversion,
profile modification, and shock formation, shall
be presented in forthcoming publications.
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