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This paper investigates the effective field acting in an infinite, nonmagnetic, inhomogeneous medium. A self-

consistent, integrodifferential equation may be written for the effective field -at a point, accounting for
scattering at every other site in the medium. One may solve this equation by iteration to write the effective
field as a power series of operators acting on the uniform-medium effective field. %e rewrite this series so
that all local fields are augmented by all orders of the self-field. This means that each order of scattering is
represented by a single integral operator. The action of this scattering operator on an arbitrary field may be
expressed in terms of integrals over reciprocal space, if the product of the fluctuating function and the field

is Fourier transformed. One of the integrals contains a weighting function that discriminates in favor of
Fourier wave numbers similar to the uniform medium wave number. This integral gives the Bragg-like
contributions to the effective field. The other integral extends over all of reciprocal space and contributes

equally to the effective field for all fluctuation wave vectors. This integral determines the background
effective field. A general term of the complete multiple-scattering expansion for the effective field is given. If
the fluctuation distributiori has a single cosine Fourier wave vector, then the effective-field expansion
simplifies considerably. The Bragg contributions are examined. Finally, the background effective field that
ignores all Bragg-like contributions is given, where all osiers of scattering are considered. This field is.

modulated by the fluctuations in the medium in a straightforward way and it obviously provides a better
approximation of the local field than either the incident or uniform-medium fields. This background field is
used to find the effective dielectric constant that is correct for media in which the inhomogeneities are
uncorrelated over lengths comparable to a wavelength.

I. INTRODUCTION

In considering the propagation of an electro-
magnetic field in an infinite, inhomogeneous, non-
magnetic medium, the effective field that polarizes
a macroscopically small region is of vital con-
cern. In classical electromagnetic theory, one is
in the habit of dealing with macroscopic fields
which are the appropriate averages of the effec-
tive fields. ' The macroscopic fields obey dif-
ferential equations involving macroscopic pa-
rameters (e.g. , the dielectric constant). One of
the more significant problems of electromagnetic
theory in dealing with media is the means by which
these macroscopic parameters are related to
microscopic properties. This forces considera-
tion of the local effective field. %e are familiar
with the textbook procedure of finding the con-
tributions to this field from the near and far reg-
ions in the medium. The nea, r region is treated
discretely and the far region, as if it were con-
tinuous. If there is no contribution from the dis-
crete summation, then one is led to the familiar
Clausius-Mossotti or I.orentz-Lorenz equation. '

In general, the effective field is of interest be-
cause: (i) in wave propagation, the coherent, for-
ward propagating field is the average of the ef-
fective field and (ii) the scattered field at a point
is the summation of fields scattered from every
point at which the effective field has acted. Con-
ventional treatments of wave propagation are based

upon self-consistent integral equations that relate
the effective field at a point to the scattered fields
emitted from all other points. These equations
are merely self-consistent because the scattered
fields are radiated by dipoles induced by the ef-
fective field itself. In inhomogeneous media the
polarizability fluctuates. But if the range of fluc-
tuation is much smaller than a wavelength, then
the entire medium may be considered to be con-
tinuous. The effective field can be solved for in
terms of the incident field and is found to propa-
gate with the wave number k„„=(e„„)'~'ko, where
e„„is the uniform-medium dielectric constant and

ko is the vacuum wave number, equal to 2n'/4 The
uniform-medium dielectric constant is of course
related to the local polarizability by the Clausius-
Mossotti equation. This approximation is approp-
riate for optical fields in molecular systems, for
example. '

There are two complementary approaches for
dealing with the self-consistent integral equations
for the effective field, when one may not ignore
the fluctuations in the polarizability. They are
multiple scattering and perturbation theories. In
a recent paper4 the two approaches are discussed
and the perturbative approa, ch is further developed.
There we followed the same procedure used in the
uniform case by treating the inhomogeneities a.s
perturbations from a uniform dielectric instead
of from vacuum. This results in a perturbation
expansion for the effective field in terms of the
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uniform-medium effective field. In the original
form of the perturbation expansion, ' each member
of the expansion contained both a self-field term
and a scattering term represented by. an integral.
In Sec. II of this paper, we rewrite the expansion
so that the mth member is of the ~th order of
the sa,me integral operator. A consequence of this
is that at each order of the operator (i.e., for each
order of scattering) the local field must be modi-
fied by all orders of the self-field.

Section III examines the action of this integral
operator on an arbitrary vector field. The spatial
dependence of the integrand is complicated by a
curl-curl operator acting on the Green's function.
Nevertheless, after Fourier transforming the
portion of the integrand that fluctuates with the
medium, all the spatial integrals may be eval-
uated. What remains are two types of integrals
over reciprocal space. The first contains a
weighting function that discriminates in favor of
wave numbers similar to the uniform-medium
number. This results in Bragg-like contributions.
The second integral extends over all of reciprocal
space and contains no weighting function. Need-
less to say, the field obtained after applying the
integral operator to an a,rbitrary vector field con-
tains both nondepolarized and depolarized fields.

Section IV then uses these results to write the
first few terms of the expansion for the effective
field. One may then generalize to an arbitrary
term in an obvious way. In principle, this a.lows
the complete specification of the effective field
considering all orders of scattering if the Fourier
transform of the fluctuating polarizability is
known. In fact, the expression is not very tract-
able. Section V helps the situation by emphasiz-
ing regularity in the medium; we assume that the
fluctuating polarizability has only a single cosine
Fourier component. This results in a. much more
tractable series expansion for the effective field.
The consequence of the exact Bragg condition is
discussed. Finally, if all Bragg-like contributions
are ignored, the expansion may be summed to
give a closed-form expression for the background
effective field. This field is modula. ted by the
fluctuating medium and includes all orders of,
scattering. This field completely describes all
wavelength-independent corrections to the uni-
form-medium field due to the inhomogeneities.

Section VI discusses the various approximations
for the effective field in an inhomogeneous med-
ium. Comparisons are made to results of other
authors. The background field is used to derive
an expression for the effective dielectric constant
that is correct to all orders of scattering as long
as the inhomogeneities are uncorrelated over
lengths comparable to a wavelength. This result

is of general interest and ha, s often been mis-
represented. Finally, we include a few comments
about the use of the effective field in determining
the scattered field a,nd irra. dia, nce.

II. PERTURBATION EXPANSIONS FOR THE
EFFECTIVE FIELD

In Ref. 4 we considered the propagation of an
electromagnetic wave in an infinite, inhomogen-
eous, and nonmagnetic medium. To start the
present discussion, we will write again the per-
turbation expansion for the effective field as'

E'=(1+L+LL+. . ) E„„. (2.1)

In Eq. (2.1), the operator L acting on the arbitrary
vector field F is

LF =c,n, (r)F(r)+c, V„x V„

x G„„(~
r —r, ~ )n,(r,)F(r, ) d'r, , (2.2)

where &, and , are the constants

c, = —
&~ n(1 +~~ z n„„)

c, =(I +~ w n„„) '(1-—', n n„„) '.
(2.Sa)

(2.3b)

The inhomogeneities of the medium are described
in terms of the dimensionless polarization function
n(r ),

n(r) = n„„+n,(r). (2.4)

—(g )1/2k
(2 6)

where kp ls the vacuum wave vector, and

e„„=(1+~3mn„„)/(1—~~3' n„„), (2.7a)

or
~ w n„„=( e„„—1)/( e„„+2), (2.7b)

the usual Clausius-Mossotti equation. It is im-
portant to note that one of the consequences of
writing a perturbation expansion in terms of the
fluctuations in the polarizability about o.„„is that
the propagator in the integral operator of Eq.
(2.2), is the uniform-medium Green's function

We have taken the polarizability to be the total
dipole moment per unit volume divided by the ef-
fective field. We have also a,ssumed that the
polarizability varies continuously over a macro-
scopically small range. Note that the average
polarizability is n„„(i.e., (n, ) =0), and if n = n„„
then the effective field equals the uniform-medium
effective field,

(2.5)

This field propagates with the wave vector
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G.n(lr-rll) =e""nn ' "i'/tr-rid (2 6)

Note also that the integral of LF excludes the
small volume a' about the point of interest. This
represents the volume of the infinitesimal region
on which the effective field is acting. The limit
in which this volume goes to zero is always im-
plied. The first term of the vector field LF is
the self-field, the second is the field of the sum-
mation of poIarization potentials. In Eq. (2.1)
the term of the nth order in L includes all com-
binations of m self-field terms and n-m integral
terms (where m =0, 1, . . . , n). The first task of
the present paper is to rewrite Eq. (2.1) as an
expansion involving another operator where the
action of this new operator may be expressed as
a single integral. To begin, we first take the curl
curl inside the integral in Eq. (2.2), making use
of the identity'

80

LF = ca,(r)F(r )

+c2 Vr X Vr X Gun

where

(2.10a)

C = Ci +~~ 7l'C2 . (2.10b)

g»gf = Vr» X Vr» X un

(2.11)

To facilitate our reordering of the perturbation
expansion, we define

V„x V„x G„„r-ry ry

(r)+(f v, x v, x g„.((V-V, I)f(F)dr, ,
a

(2.9}

Note that the functions inside of Z»~ are evaluated
at r~. Any function appearing without a 2 operator
to the left is evaluated at the point of interest for
the effective field, taken to be rp. Then the con-
tribution to E'(r,) involving n orders of L is

+ 2[a 1 ~01a1~12al a 1 (~01a1~12 1 ~01 1~12 1}

( 01 1 12a1 01 1 ~12 1}1

+ + c,"[2,a,Z„a, ~ . 8&„,&„a,]]E„'„. (2.12)

E'(r0) =p E„' =S[1+c2201Sa,
O=P

+ c2 201Sal 212Sal + ' ' ' )Enn v

(2.13a)

where 8 is the power series

S=Q (ca,)"= (2.13b)

which is evaluated at the position vector pre-
scribed by the preceding Z»~ operator.

We will now define a new function to describe
the inhomogeneous medium,

p(r) = c,a,(r)/[I —-«,(r)l. (2.14)

Then the expansion for the effective field is

E'=(1- ca,) '(I+ZP+gPZP+ ~ ~ ~ )E„'„, (2.15)

If we nom sum over all n and group the new series
in terms of powers of c, (i.e., orders of 2), we
find that,

where we have dropped the subscripts on the
operator 2 given by Eq. (2.11). Note that each
term contains all powers of a„ the original fluc-
tuation. Finally, Eq. (2.15) obviously reduces to
the following closed form:

E'=(1 —ca,) '(1 —Zp) 'E„'„, (2.16}

where one must determine the operator (1 —ZP} '.
Equations (2.15) and (2.16) are the principal

results of the present section. In Eq. (2.15) each
order of Sp corresponds to the summation of an
order of scattering contributing to the effective
field. The consequence of reducing the operator
to a single integral is that all the fields are aug-
mented by self-fields to all orders of 0, That is,
the leading term of the expansion goes from E„'„
to (1 —ca,) 'E„'„. The former is the uniform-
medium field, the latter is the uniform-medium
field plus the self-fields involving all powers of

Similarly, within a multiple scattering term
(e.g., ZpRp. . . ZpE', ), any integral now has the
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form of ZpF, where F stands for the vector field
resulting from the operators to the right. F(r')
is the field at r' due to the prescribed number of
scatterings elsewhere in the medium. Within each
integral, the field has been augmented by a factor
of (1 —co,) ' which accounts for all orders of
self-fields.

where by the convolution theorem

(3.4)

P(r, e)=fd'pe '"''P(-r+p), (3.5a)

and P(r, ~) and E,(r, ~) are the Fourier transforms

HI. VECTOR FIELD LPP Fi(r, ir) =f d'pe '"' eF(r+p). (3.5b)

In order to use Eq. (2.15) to determine the ef-
fective field in an inhomogeneous medium, one
must determine the vector field ZPF, where the
operator 2 is defined by Eq. (2.11) and F is under-
stood to be the field resulting from all the scat-
tering operators acting on E„'„to the right of pres-
ent one. The derivatives of the curl curl in the
integrand of Eq. (2.11) act only on the argument
of G„„. Thus, with the change of variables, p
=r-r', we may write

V, x V, x G„„(p)F= V, [V, ~ G„„(P)Fj
—V', [G„„(p)F]. (3.1a)

But,

Note that all of these transforms are between p
and ~ space; all functions remain dependent upon
the position r. Within these equations that de-
pendence may be viewed as fixing the origin;
though, by writing the arguments in this fashion
we are explicitly allowing for the inhomogeneous
nature of the medium. Using Eq. (3.3) in Eq.
(3.2b), the ith contribution to ZPF is

(2 ), Fq(r, IT:)I,q(K). (3.6b)

(~PF); =
2 . 6J(r, ~) d'i e*"'G..(p)g;&(P)

(3.6a}

—V p[G„„(p)F] = —F V p G„„(p)

=+F[k2„G„„(p)+41r&(p)]

—k„'„FG„„(p), (3.1b)

We have defined I;~()i) to be the spatial integral
in Eq. (3.6a), which is evaluated in the Appendix.

Using Eq. (A13), we rewrite Eq. (3.6b) as

since p =0 is excluded from the integral.
Then considering the vector components of F,

and hence of V~[V p G„„(p)F], we can give the field
ZQF in the tensor form

2]6F =2 PF, (3.2a)

where

+ 6(K —k„„) 6~(r, z),
2~un

(3.'I)

(3.2b)

d, ,(p) =(k*„.+—(ik„,—1/p)) 4„

(ZFF), =(p FF),. = f d pG (.p)d„('p)„„.
a

xP(r+ p)F)r +p)

where 6' stands for the Cauchy principal value as
in Eq. (A11). We may now choose the coordinate
directions. If we use spherical coordinates with
respect to the vector ~, then the tensor 2 is
diagonal, and the vector field ZpF may be written

gpss =4ef, ((- -,'+k(e)][eke(r, ii) +ppe(r, ii)]

p,.p,. „, 3ik„„s'I
p' p p~ (3.2c)

——',pF6'„(r, Pc)j (3.8a)

In Eq. (3.2b) we have used the summation con-
vection, all repeated subscripts are summed over
the three coordinate directions. Equation (3.2b)
gives the ith coordinate contribution to ZPF evalu-
ated at the position r. If we take the Fourier
transform of PE&, then the integral over coordi-
nate space in Eq. (3.2b} may be evaluated That.
is, we will write

3

P(r+p)EJ(r+p) =,e'"' 8'~(r, z), (3.3)

K
, 6'(r, x~

K+,il(e')P (ii)p(F, ii)),
'(3.8b)

where

S(~) =]4' 6'~, , ~+ &(~-k„„), (3.8c)
1 ] iv)
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longitudinal components of the field with respect
to the i direction.

Let us consider the second integral in Eq. (3.8b).
It has the -form

Pr(ii) is the transverse projection operator with
respect to )i, and (ii, 8, P) are the spherical unit
vectors at the position ic. Note in Eq. (3.8a) that
there is no mixing among the transverse and

'i4ii, a(K)PrF(r, )i) =, K'dK dO 6'~, & + &(ii- 0„„) PrF(r, i~)
d'~ - 1 ", & 1 im

~—+un 2k'un

2 . f '"" '„«'( P, (P,r)«) f 4
«'(P P(r, «)&)

+
UII

where we have used

4«(p $( ))r —=«$44«p P(r, iT). (3.9b)

8w
(~PF)i =-—

3
K

(2')'

+4w, 6()c)([1—(k)2]Fi —(ii)i(k}&$&

—(k) i(k)~~.). (3 11)

Here i denotes one Cartesian component and j and
.(i, the other two and (k); = i ~ )i, etc. Again, we
find two types of summations in ~ space contribut-

From Eq. (3.9a) we see the role of the function
n()(), within an integral in )~ space. It produces
a summation that is weighted in favor of wave
vectors of magnitude similar to k„„. That is, the
second integral of Eq. (3.8b) draws primarily
from the transverse components of F(r, )i) that
have z= k„. In a perturbative sense, the field
F will have Fourier wave vectors similar to k„„.
Combining these two conditions and using Eq. (3.4),
we see that the weighting function b.()~) causes
contributions to the field that draw upon a limited
range of Fourier components of the fluctuation
function P. That is, the most significant com-
ponents will have wave vectors (Q) that obey the
following approximate selection rules:

Q = i~ —k „„with )i = k„„. (3.10)

This constitutes a loose form of the Bragi'; con-
dition. Hence, we will refer to all field contribu-
tions that involve the weighting function n(ii) as
being Bragg-like.

The first integral of Eq. (3.8b) is decidedly dif-
ferent. It involves no weighting function; and
therefore, draws indiscriminately from all Fourier
components of P. Contributions of this sort will
determine the background effective field.

In writing the general form of the field CPI", it
will be useful to use the Cartesian coordinates
(x, y, k), with z and k„„aligned. Then the tensor
Z is not diagonal, though it is symmetrical. A
generalized expression for the Cartesian com-
ponents of the field ZPF may be written from Eq.
(3.7) as

ing to the field. In Eq. (3.11), the first integral
is over all of e space with no wave vector-depen-
dent weighting function and results in a contribu-
tion to the background field. The second integral
contains not only b(a'), but also geometric terms
that resulted from our change to Cartesian co-
ordinates. Referring to Eq. (3.11},we will write
the field CPF in tensor form as

d K
ZPF =4m, y(Z) 8'(r, ii), (3.12a)

where the components of the tensor are given by

y; J(77) =[- —,'+h(a)]|);~- b()i)(k);(k) . . (3.12b)

where we want to evaluate

()(r «) =f 4'«« '"'()(« «i'l, (4.2)

in order to rewrite
3 I

g(r, Pc)=,P(r, a')F(r, Z-Pc') . (4.3)

In Eq. (4.3), F(r, i~) is the Fourier transform of
the field F = CP ~ ~ CPE'„. We will assume that
a,(r) has the Fourier transform o((2")(r, Pc} (note
that in the transform the superscript in paxentheses
does not denote a power); that is,

n, (r+p) = d K «2 ei)4222 p &(«2)(r K ) .
(2 ~)3 2 2 rr« (4.4)

Then, using Eqs. (4.1) and (4.4) in Eq. (4.2), we
write

IV. GENERAL TERM IN THE EXPANSION FOR THE
EFFECTIVE FIELD

The vector field Zp[Zp ~ CpE„'„]= ZpF is a
general term of the expansion for the effective
field, Eq. (2.15). Equations (3.8) and (3.11) specify
ZPF in terms of summations involving the Fourier
transform 8'(r, i('), Eq. (3.4). In this section we
will first write 5 in terms of Fourier transforms
of powers of the polarizability fluctuations, o.,(r),
to then derive the general form of the field ZPF.
From Eq. (2.14), we write

oo
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3

p(r, g ) = c, g c", ",", n«+» (r, &(„„)
n (2 1l')

dg+ &-t P ~ (e -I(:n+ &)

= c c n~(n+ j.) r (4.5)

F,(r, &(') =E„'„(r)(2»)'6(ic-k„„}, (4.7b)

f,(r, Ti) =E„'„(r)c,g c"n&"+ '(r, pY-k,„). (4.8)

where k„„ is the uniform-medium wave vector,
extending in the z direction. Using Eq. (4.7b) in
Eq. (4.6), we find that

eik„„~ r
UI1 (4.7a)

Then, using Eq. (4.5) in Eq. (4.3), we write,
I

&(r, Pc) = c, g c" „n,""',(r, &T') F(r, P7- k') .
n 2 &&)

(4.6)

We will now give the expressions for contribu-
tions to the effective field due to first- and
second-order scattering, at which point the form
of the mth-order term will be apparent. From
Eq. (2.13), the first-order term is ZpE„'„. that is,
Fj E' . The uniform- medium effective field is a
plane wave if the incident wave is planar. Hence,
we will write

Then using Eqs. (4.8) and (3.12a), the field ZPE„'„
may be written as

APE„'„=E„'„e'"U~ '4nc,

3

(4 9)

The second-order term is ZP ZPE„'„=ZPF„where
F, = ZPR„'„and is given by Eq. (4.9). First write
out the transform F,(r, z) and then substitute it
into Eq. (4.6) to find f,(r, k). After propagating
the & functions through the resulting expression,
we obtain

3

F,{r,VF) =8' e' ~~' '4»c' c"&'"2 ' n«x+~&(r, Fc- 7&;,)n™~+"(r, p7, -k gy(&(, ) e.
ngn2

Again using Eq. (3.12a), the contribution to the effective field involving second-order scattering is

(4.10)

3 3

8 pZ pE„'„=E„'„e'"~ 'n'(4»'c )' c "i'"2 ', ' n("&+'&(r, &)(, —Tc,)n'("a+ &'(r, g -k„„)y(a ) gz, ) e. (4.11)
nyn2

We may now generalize in the obvious way to write the mth order contribution as

E' =(SP}~E„'„=E„'„e» ~ (r(4 c,)~

3 d K
&(.

' c"]'' ' ''"~ ' ~ n«&+~& (r g —&I) . n("m-&+~&(r &( —p7 )
(2 n)' (2 &&)3 1 p Nl $ ns

+ n, "m+~ (r) &~ kun) 'Y(~))' ' 7(&m) (4.12a)

where we can now write Eq. (2.15) as

E'=(1 —cn, ) '(R.'„+E,'+E,'+. ~ . ) . (4.12b)
(5.1)

Equations (4.12) are the major result of the pres-
ent section. If the Fourier transform of all powers
of the polarizability fluctuation function a,(r }
about all points in the medium are known, then the
effective field is completely specified by these
equations.

V. EFFECTIVE FIELD DUE TO A SINGLE&OSINE

FOURIER COMPONENT OF THE POLARIZASILITY

FLUCTUATION

Equations (4.12) specify the effective field in an
inhomogeneous medium in terms of the Fourier
transform

where n, (r +») is the polarizability fluctuation at
r+p, Eq. (2.4). In simple periodic media, the
transforms of n, (r) will have few Fourier com-
ponents. If the primary cause of the polarizability
fluctuations is a planar acoustical wave, then n,
will have the same single-cosine Fourier com-
ponent at all points. Even in random media, some
components may reappear everywhere. For every
coherence length of the medium (e.g., that as-
sociated with the nearest-neighbor distance} there
will be a characteristic Fourier component of
a:,(r). These considerations lead us to find the
general contribution to the effective field for a
single Fourier component of n, (r ) of wave vector
q.
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We will assume that the fluctuating function has
the form

()(,(r ) = u, cos(q ~ r ) = —,
' o.,(e' q ' ' + e ' " ' ') . (5.2)

Note that u,(r) remains real at every point in
space and that o., is now merely the fluctuation

amplitude. We will have to restrict ourselves to
placing the origin at a maximum of a,(r). For an
infinite beam in an infinite medium this should
present no difficulties. Taking the n+1 power of
n, (r ) in Eq. (5.2) and using it in Eq. (5.1), we may
write the convoluted Fourier transform as

w f1+].
ottn+1)(r )() = ~! d')) e (' ' "[e&("+')q ('+o) +(n+ 1)e((n ~) q' (~+y) + - ~ ~ +e-'(n+» q' (r + p)]]. & 2)(

=(2&)' ~l e " '(~[)(-(n+1)q]+(n+1)&[(Y—(n —1)q]+. ~ ~ +()[((+(n+1)q]).2] (5.3)

(5.4a)

or, after reordering the summation in terms of the ~ functions, we have

Qc"n'""'(r (() = e'"'' j()()()] 2l ' +6l ' +20I ' + ~
'

~ ~

a=0

In our expression for the )nth-order contribution to the effective field, Eq. (4.12a), each (r(~+»'(r, x) is
within a. summation over n from zero to infinity. Hence, we should consider the sum

2g c"o("'')(r, (() =(2n)oe'"' ' l~ [5(7)(-(1)+()()(+q)]+c ~
l [5((( 2q) —+25((() +()(x+2(1)]

2 2)
3

+c' ~l [5( -)(3q) 3+5(7-(q) 3+6( ((q+) (+)( ((3+q)] +
2)

~ ~ + ~ t ~

(5.4b)

Note that the coefficients of the power series in Eq. (5.4b) may be obtained by using the vertical columns
of Pascal s triangle moving out from the center. Writing the power series in a general form, Eq. (5.4b)
reduces to

(5.5a)

where

~ (2l +n)!
E! r+n J

(5.5b)

(V (2I)!
o( (~o 2(l!)2 2

(5.5c)

Note that so(x) is small for small x; that is,

limso(x) =x'.
x~o

(5.5d)

Special attention must be paid to so because the Fourier transform of n, (r ) is not required; that is, in Eq.
(5.4a), ()((() does not appear by itself, but rather first appears in the n+1 = 2 binomial expansion.

We may now use Eq. (5.5a) in Eq. (4.12a) to write an expression for the mth-order contribution to the
effective field when the fluctuation has a single-cosine Fourier component. After making use of all the &

functions, we have
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)) (n, (+ ~ ~ ~ +(n

c n n 7tl

C y C y ](ft)+ ~ ~ ~ + f1~) q r
l ny] 2 Inm

where the summations over n,

(';)"'
75 ~

~ ~

x (y[k„„+(n,+ ~ ~ .

x[y(k„„+(n,+ +n )q) y(k„„+n~) .e],
~ n are all from -~ to+~. If we define the vector e as

(cz e&( + + ) &t.
~m k2

+n )q]. ~ y(k„„+n q) ~ e),

(5.6)

(5.V)

then, using Eqs. (5.V) and (5.6) in Eq. (4.12b), the
effective field may be written

OQ sj

E'(r;q) =[1-cz,(r)] ' e+ g '
em E„'„e'"~~''.

m=g

+nq ('
(k +nq (' —k'

+-,'isk„„6((k„„+nq (- k„„) (5.1la)

(5.8)

Because the effective field depends upon a,(r )
in a nonlinear fashiori, the expressions of Eqs.
(5.6)-(5.8) involve the wave vector q only as a
parameter. If a,(r }had more than one Fourier
component, then transforms of powers of a,(r)"
would involve cross products of these components.
Such terms would describe scattering involving
more than one Fourier wave vector. Hence, the
effective field of Eq. (5.8) may not be summed in
g space to give the complete field at r; that is,

E'(r) +f d'e'R (F (I). ' (5.9)

This summation is incomplete. This point bears
upon the nature of the components of the tensor
y that appear in Eqs. (5.6) and (5.7) and from Eqs.
(3.12b) and (3.8c), have the form

y, &(k„„+nq) = y, &(«„)=[- —,'+ r)(«„)]6,~ .

—r).(«„)(«„)«( «„}~, (5.10a)

where

2

'g(«„) =d' "
2 + ~aisle„„6(«„—k„„), (5.10b)
un

and where we have let «„=k„„+nq. In Eq. (5.10a),
the term that is independent of IT„produces back-
ground contributions to the field in that it contains
no z„-dependent weighting function. The other
terms contain the function 6(«„) which discrimi-
nates in favor of wave vectors of magnitude sim-
ilar to k„„. Hence we have referred to these terms
as Bragg-like. However, note that in Eqs. (5.6)-
(5.8) the tensors y are not contained within an
integral over ~„space; i.e., over q space. This
means thai the weighting function 6(«„) approp-
riate for a single-fluctuati. on wave vector, has
the form

(k„„/nq)+2k„„q +(nq/k„„)
(2&„.'q+nq/k„„)

+-,'i~k„„5((k„„+~(-k„„)

=1+)„(q,k„„)+~ink 5I((k +nq(-k„„),

(5.11b)

where we have defined-

(k„„/q)'
n[n+2(k„„/q)k„„q) ' (5.11c)

A. Bragg condition fulfilled

The Bragg condition is expressed as

(k„„+nq (=k„„, (5.13)

Note that q may never be zero. If it were, then
by Eq. (5.2), o.,(r ) would be a constant in coordi-
nate space with a nonzero mean, which is not
possible. In rewriting g as in Eq. (5.11b), another
wave-vector-independent term has emerged. It
will thus be useful to rewrite Eq. (5.10a) as

y; &«.) =(k +4', )~i, -( 1+4', )(«.)i(«.)„(5.12a)

where

& =-C„(q, k„„)+-,'ink ((k„„+nq (- k„„). (5.12b)

We recognize the consequence of fulfilling the
exact Bragg condition, «„= (k„„+nq(=k„„. The
weighting function +, Eq. (5.12b), becomes in-
finite.

When Eqs. (5.12), (5.5), and (5.V) are used in
Eq. (5.8), one may calculate the effective field
in the medium which fluctuates with the single-
cosine Fourier wave vector q. Thi.s i8 the princi-
pal result of the present section. In the majority
of cases, Eq. (5.8) would be treated termwise
with the effective field approximated by the trun-
cated series. However, there are a few special
cases which we will now investigate.



EFFECTIVE ELECTRIC FIELD IN AN INHOMOGENKOUS MEDIUM

where n is any integer. In the context of the
present discussion, whenever the Bragg condition
is satisfied, the weighting function Q, Eq. (5.12b),
becomes infinite. This is because we have as-
sumed an infinite beam in an infinite medium,
a medium which fluctuates with a single-cosine
courier wave vector. The infinity is due to a
naked one-dimensional & function times k„„. In a
real medium, one would have a function that scales
like the size of the medium and/or the beam
times k„„; hence, at the exact fulfillment of the
Bragg condition, the weighting function becomes
large, not infinite.

The easiest way that Eq. (5.13) may be obeyed
is for n to be zero. This state must be considered
because even powers of a,(r) -cos(q .r) result
in spatially constant terms over the infinite med-
ium. Primary among such contributions will be
the case when all n's in Eq. (5.V) are zero. We
then may write

(5.14a)

1 (e„„-1)'(eu„+2)
~

n~

(5.1Vc)

One may regard the contribution to the effective
field of Eq. (5.1Vb) as involving a large-scale
depolarization factor, in that the magnitude of this
contribution depends upon the dimensions of the
sample and or the beam, and does not involve
the establishment of a standing wave due to the
periodicity of the medium itself. This is true of
all n = 0 contributions. The detailed consideration
of such contributions would require 'a theoretical
development that does not assume an infinite med-
ium from the beginning. Realizing this we will

. henceforth ignore the singularities associated with
y(k„„+nq) when n =0.

For some q, there may be a nonzero integer n~
such that Eq. (5.13) is satisfied. For the sake of
determining how the effective field scales in this
situation, we %ill make the following approxima-
tions (all quite reasonable in a variety of real
situations):

where we have assumed that the uniform field is
transverse with the E field in the e direction and
have recognized that here the tensor y takes the
form

(5.14b)

(~e~,) && 1,
hence

(5.18a}

(5.18b)

(5.18c)
Furthermore, using Eqs. (2.3), (2.Vb), and (2.10b),
we find that

u Col =
9 [(~uu } ~~uuÃO'l~™uu) ~ (5.15)

E (ry q) luuu=u —E u (r }[1—co'z(r ))

(5.1Va)

Ruu(r )
[1-ea,(r)](1—sc,co, ', au)

(5.1Vb)

Remembering that a, equals the polarizability
fluctuation amplitude, by Eq. (5.15), it will often
be the case that —,'o. ,«1. Hence, we will use
Eq. (5.5d) to approximate s,(-,'cu, ) and write

(5.16)

In the present discussion, we are regarding 4,'
as a large dimensionless number that scales like
the ratio of the length of the medium with the
wavelength. Using Eq. (5.16) in Eq. (5.8), we find
that the primary contribution to the effective field
due to the constant components of the even powers
of a,(r) is

Thus, from Eq. (5.V), the dominant contribution
to e will occur when one n is equal to n~ and all
the others are +1'; that is, e scales like

(5.19}

All of the terms raised to the mth power in Eq.
(5.19) will combine with the mth-power term in the
summation in Eq. (5.8}, and the summation will
produce a constant factor not much different than
unity. However, the other factors of Eq. (5.19)
will factor out of the summation of Eq. (5.8) and
will determine the scaling of the effective field
when the Bragg condition is exactly obeyed; that
lsq

E'
~

„-(-'co.,)"& 'k„„5(~k„„+n q ~

—k„„), (5.20)

where as before, we read 0'„„ times the & function
as merely a large number. Equation (5.20) reveals
the value of fulfilling the Bragg condition with as
few factors of q as possible in weakly varying
media.

B. Background effective field

If the only coherence length is small enough rela-
tive to the wavelength, then q &2k„„and the Bragg
condition may never be satisfied. If q»k„„, then
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by Eqs. (5.11c) and (5.12b}, the weighting function
6'„may be ignored relative to the constant terms
remembering that we are ignoring the singularities
associated with n =0. That is, we may rewrite
Eq. (5.12a) as

(5.21a)

where

(5.21b}

In order to sum the series in Eq. (5.'7) we will
make the reasonable assumption that 2&ay«j. , so
that s„(2co,,) = 1 for n &0 and so( —,'ca, ) = (2co.,)'.
Using these approximations and Eqs. (5.21) in

(5.7), the vector e takes the form

- n&=].

+ Q '8 "'&& +( 'I. (—& [e+g&q&.»

(5.22a)

where 6 is given by the recursion relation

=-2b, —3, (5.22b)

with t, =0. In order to obtain the relation in Eq. (5.22a) we have again assumed that the uniform-medium
field is transverse with the E field in the e direction and we have used Eq. (5.2) to obtain the spatially
varying fluctuation function o.,(r }. Note that the only depolarized component of e„is the p direction and

includes the factor (p),. Equation (5.22a) may be used in Eq. (5.8) to obtain the effective field in the limit
of q»4„„and small fluctuations; that is,

Nt~

&+«, ~,(r) - - -,~,vc. o'.(r)& I '&„„.r
E'(r;q) l,»&,

—— e[1-co.,(r)] '~
l 1

' ' - +&(tf) [1-c&i(r)] 'm bml~l c ( )) Eune
78= g

where

= [A(r }e +B(r )q]E„'„e'"»' ', (5.28a)

(5.23b)

N2

~(r ) =(@.[1—c~l(r )] ' Z ~.l

"' ' '
"&L-ca, r (5.23c)

Rewriting the constants of A(r ) required Eqs.
(2.3), (2.7b), and (2.10b). Also note that A

=I+0(o.,/o. „„);whereas, B=O+G(n, /a„„). The
field given by Eqs. (5.28) is the background ef-
fective field. That is, we have ignored all Bragg-
like contributions; this field is completely in-
sensitive to how the fluctuation wave numbers
compare with 0„„. Finally, if we ignore E(r), or
if (g), =0, then the background field becomes

Eb k g
' A(I )R (r)

Qne might regard this field as the most basic non-
depolarized background field to which all de-
polarized, g dependent, and Bragg-like contribu-

tiong are added. It provides a far better approxi-
mation for the local field than the incident or uni-
form medium fields. The ensemble average of
this field is presumably a good approximation of
the macroscopic field. Note that the evaluation
of the modulating function A(r ) only requires
knowledge of the uniform-medium dielectric con-
stant and the ratio of the local polarizability with
the uniform-medium polarizability.

VI. DISCUSSION

This paper has considered the effective electric
field in an infinite polarizable and inhomogeneous
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~ incident (6.1)

Here, the medium is made of scatterers situated
in free space. This approximation is useful in
situations of small scattering cross section (e.g.,
x-ray diffraction from core electrons). The scat-
tered field from any one site must only occasion-
ally interact with any other site. The next ap-
proximation would be to let the effective field be
the uniform medium field,

I ~ I
QIl (6.2s,)

This is the effective field if the pola, rizability is
assumed to be homogeneous. .To this approxima-
tion, the incident field is extinguished and re-
placed with the uniform medium field that propa-
gates with the wave vector

k„„=(e„„)'~'ko, (6.2b)

where the uniform medium dielectric constant is
reIated to the homogeneous polarizability by the
Lorentz-Lorenz relation

~~ so.„„=(e„„—1)/( e„„+2). (6.2c)

This approximation is commonly used when the
wavelength is much greater than the range over
which the polarizability varies (e.g. , optical fields
in molecular substances).

We know that the effective field must be modu-
lated by local variations in the polarizability. As
outlined above, the nature of this modulation de-
termines how macroscopic parameters depend
upon the inhomogeneities. In general there are
two approaches to dealing with effective fields in
inhomogeneous media, multiple scattering, and
perturbative treatments. There exists a large
literature in both areas; the rea, der is referred
to Refs. 9-11 for a review of the multiple-scat-
tering approach and Refs. 12-14 for a review of
the perturbative approach. In Ref. 4 our per-

medium. We should now review the possible ap-
proximations for the effective field. It is assumed
that the coherent, forward propagating field is the
ensemble average (spatial and/or temporal aver-
age, depending on the nature of the fluctuations)
of the effective field. This is the macroscopic
field that propagates through the medium. Macro-
scopic parameters, such as the dielectric con-
stant and attenuation length due to elastic scatter-
ing, describe the behavior of this field and funda-
mentally must depend upon the nature of the in-
homogeneities. A related consideration is that
knowledge of the effective field allows the straight-
forward determination of the macroscopic scattered
field.

The first approximation for the effective field
would be the Born approximation,

turbative approach is compared to that of others.
The present paper represents an extension and
generalization of that approach. In particular,
we wrote a general expression for the effective
field, Eqs. (4.12), considering all orders of scat-
tering, that only assumed that the fluctuations
could be Fourier analyzed. Truncating this series
results in our next approximation for the effective
field

E'=(1 —c&y,) ' (E„'„+E,' + . . +E„'), (6.3)

where E' is given by Eq. (4.12a). This approxima-
tion has the definite virtue relative to other re-
sults, ' "of honestly including all multiple-scat-
tering contributions to the vector field to the
mth order. A proposed way of utilizing this result
would be to simulate the inhomogeneous medium,
starting with only statistical information about the
inhomogeneities. One could then compute all of
the required Fourier components and approximate
the effective field using Eq. (6.3). This could be
repeated at various points in the medium or in a
tine-dependent situation, at various times. The
ensemble average of these fields would be the
macroscopic field of the medium. And, the varia-
tion in the field itself would show how the effec-
tive field is modulated by the inhomogeneities.
A less general but more tractable approximation
results when the inhomogeneities have a single-
cosine Fourier component. In this case R'
-E„'(r;q), which is given by Eq. (5.6). One would

'

then consider multiple scatterings to the mth
order involving a single component of the in-
homogeneity distribution.

Finally, we should consider what we have called
the background field as an approximation to the
effective field,

-1

Ee(&) = 1 — ""
~

' -~ E'.(r). (6.4)
&un j

This field includes all wavelength-independent
corrections to the uniform medium field due to the
inhomogeneities. It thus provides the most basic
description of how the effective field i.s modulated
by the inhomogeneities. Other authors4'" "con-
sider corrections of this type. Relative to these
treatments, Eq. (6.4) is distinguished by the facts
that: (i) it is an explicit expression resulting from
consideration of all orders of corrections and not
a correction that results from consideration of
only the lowest-order multiple scattering and (ii)
it results from a careful treatment of the self-
field singularities of contributions to the in-
homogeneous vector field.

We may use the background field to write new
expressions for the effective macroscopic pa-
rameters of an inhomogeneous medium in the limit
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p (r ) = o'(r )E() (r )

and thus the polarization is

1P= — pd r
V

(6.5a)

of long wavelengths. The dipole moment of a
macroscopically small volume at r is

distances comparable to a wavelength. Note that
this expression has the following characteristics:
(i) of course, e'- e„„as o., -0, (ii) for all )I &0,
e' & e„„, (iii) the inhomogeneities are characterized
by the relative fluctuation (c(,/o(„„) multiplied by
the scaling factor —,'(e„„—1), and (iv) if the magni-
tude of the fluctuations is small enough so that
only the mean-squared term is significant and
e„„=1, then Eq. (6.10) may be approximated as

e' = 1 +3 ((+v n, )'& . (6.11)

EP &un+ &1

(~-- ))(O' /~-)) (6.5b)

In Eq. (6.5b) we have assumed that the wavelength
is large enough so that the uniform-medium field
is constant over the volume t/' which is only large
enough to include many inhomogeneities (i.e.,
(o(,&), = 0). Equation (6.5b) may be rewritten to
find the effective polarizability, that is defined
to be the ratio of the polarization to the uniform-
medium field

~' =P/E„'„= o(„„+(3/4n) g,

where

(6.6a)

(6.6b)

=P 1+g
u „„+(3/4 w}g }' (6.8)

Equation (6.8) may be solved for the polarization
which is used to write an expression for the ef-
fective dielectric constant

This polarizability is perturbed from the uniform
polarizability by accounting for averages of all
powers of the fluctuation. We can now derive a
macroscopic dielectric constant for the inhomog-
eneous medium. The average effective field should
be related to the macroscopic E and P fields in
the standard way; that is,

(6.7)

If we use the background field for the effective
field, Eq. (6.4), then Eq. (6.7) may be rewritten

4n- p 1E+ P= —,
3 a' 1 ——,'(e„.-l)(u, /n„„))

E„- d xe"&'' r, , (6.14a)
sc Yoi

and the scattered irradiance is proportional to the
Fourier transform of the two-point correlation
function of f; that is,

J„- d'p e'~' 'S p,
sc vol

where

S(p) =(f(r )f(r +p)&.

(6.14b)

(6.14c)

In Eqs. (6.14a) and (6.14b) the scattering vector s
is

Point (ii) is of some significance. It says that the
coherent wave propagates faster in a homogeneous
medium than in an inhomogeneous medium that
has an average polarizability equal to that of the
homogeneous medium. Some authors"" who treat
only second-order scattering do not conform to
this physical requirement.

As the above discussion demonstrates, knowing
the effective field allows one to determine how the
coherent wave propagates through the medium.
Correspondingly, it also allows the straightforward
determination of the scattered field; that is,

iA,'0 gW&l
E„(r)= V„x V„x, , e(r, )E'(r, ) (f'r, .

(6.12)

If the approximation for the effective field takes
the form

(6.13)

[such as in the case of the background field, Eq.
(6.4)] then when r is in the far field of the scatter-
ing volume

e' = I +4nP/E; (6.9) s =k„„—A "n, (6.14d)

after some algebra,

e = e~ +(E„„+2))7, (6.10)

where )I is given by Eq. (6.6b).
Equation (6.10) gives the exact macroscopic di-

electric constant for a medium in which the in-
homogeneities are completely uncorrelated over

where m gi.ves the propagation direction of the
scattered field. Finally, it must be noted that
throughout this paper we have assumed an infinite
medium, irradiated with an infinite incident beam.
Whereas, the integrals of Eqs. (6.14a) and (6.14b)
are over a real, finite volume. The differences
between infinite and finite integrals will cause the
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scattered field to be modulated. The finite size
of the medium and/or the incident beam introduces
an additional length to the fluctuation distribution,
from which coherent scattering will occur. This
effect becomes significant as the size of the med-
ium and/or the beam becomes comparable to a
wavelength.

APPENDIX

positive. We will let p, -0+ at the end of the
calculation. Now, as p-~, G„„goes to zero fast
enough so that there will be no contribution to
I;, from a surfac. e at infinity. Next, we note the
following about the terms in the integrand of Eq.
(Ala):

„(p) "'/p=(v, .v,.-~ v') " '/p
= V,V.(6 „5„, 5,—.5,,)e'"'0 jp,

In this appendix we will evaluate the following
integral:

I„(~)= lim d'pg(, (p)(e"""'/p)e'"', (Ala)
6 ~p p)6

where

and

for all p&0, (A2a)

K ~ P ~ ~ I
P ~~

~ 2 ~ k I2
~ I

~
d'pe'" 0e" ' jp=, ~„ if Im(k') &0.

(A2b)

(„,(p) =(0„'.+ —(ik„.—1/p)) Il„
P

p pq ~ 3ik„„3
p" p p' (Alb)

First, we will replace k with k'=k„„+i@,, in both
G„„(p)=e'&+/p and in g(,(p), where p, is real and

With Eq. (A2a), Eq. (Ala) may be rewritten

I,,(Tc) =lim(&„.&,--5, &;~)

x d'p e'" p V, V e'"'p p .
p&q

%e now integrate by parts; that is,

(AS)

where

t'.- .
&, &&) d'p V~ e'"' V (e'0'0lp)

~

ice'"' V~(e' /p)
p&q )

(ip/e'0'&
&,„&,,) d'p V, e'"'0(p)„l —

~
-i~, V )

&i K ~ p cia'p-
KtKm d P

p&g P (A4a)

«, =l ~ P7 and (p) =m

We will use the generalized Stoke's theorem,

(A4b)

d3pV p =- 4Q~& p + p dQp& p
p&g p)c P ~0O

(A5)

to rewrite the first term of Eq. (A4a), where there are surface integrals over the small surface at e as
well as a large surface at infinity. However, because of the decaying nature of the Green s function,
e'0 0/p, always present in f(p) in Eq. (A5), the latter integral will contribute nothing. Thus, we obtain

iK ~ p iy'p

I;q =lim(5„&„q —5,~&(q) ~- dg(p), (p)„e" 0e' 0(ik'p-1) +is, p' dg
~ -0 ( p=E p

KgK~ d P
p)Q p ] (A6)

The only term from the surface integrals that does
not vanish as c-0 is

write

dg(p), (p) e" 0e"'i

~~P» = 3~r ~ A'7

Then using Eqs. (A2b) and (AV) in Eq. (A6), we may

j
I 3 m 2 k12 ~

(A8)

Remembering to sum over repeated indices, we
obtain
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4n'
~ij= T[~ g-~(g(1+1+1)]

~,2 [K(Kg —c(g(K g + K~+ K„)]

8n e2~cg —&c&g= ——6]q+4m, '
~)2' (A9)

' f(K) d»
"

f(K) d»=lim
2 2 +

6~0+ ~ 0 K —kgn y +& & ~un
un

(A11)
Now we must make the substitution, k'=4„„+ip,,
and take the limit p, -0+; that is,

Finally, since» is never negative, in Eq. (A10)
we can make the substitution

1 1
K —0 IC —k'„~ + p. —2'Ek„„p,

&(»' —k„'„)=(1/2k„„}&(»-k„„). (A 12)

and
Then, using Eqs. (A10) and (A12}, we rewrite
E(l. (A9) to obtain our result,

. 1

I
™

(K —(! + II ) - RI)l„„jl)

=(P~, &, +in&(K' —k'„„), (A10)

I, ~(K) =-~sv5;~+4K(K'5;~ K, -K~)

x (P, , ~+ 6(K —k,„}
in

K' —k'„„2k„„ (A13)

where we assumed that k'„„can never be negative
(i.e., only forward propagation occurs). Also (P

stands for the Cauchy principal value; that is,
within an integral over ~, we have
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