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Cooperative behavior among three-level systems: Transient effects of coherent optical pumping
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The dynamical evolution of an excited-state population in a macroscopic volume of three-level molecules is
considered where the population is driven optically between the initial ground state and the excited states by
an externally applied (c-number) coherent pump. The intermediate and ground states are taken as
nonradiatively coupled whereas the excited-to-intermediate-state transition is coupled to the radiation field

which is treated quantum mechanically. It is found that'stimulated Raman processes can significantly
influence the dynamical evolution of population inversion and macroscopic polarization by producing
coherence effects among the populations. We examine the evolution of collective relaxation between the
excited and intermediate levels in the time regime of the pump pulse duration. It is shown, using the mean-

field approximation, that for uniform pumping and conditions such that the pump Rabi rate co„, the
characteristic collective radiation time v„, and the pump pulse duration v~ satisfy the inequalities,

co» 1/v» y and rI & r„(y is a characteristic internal dephasing rate for the molecules), the system is left

in a state with classical transverse polarization when the pump pulse terminates. The system can evolve

collectively from such a state only as superradiant (classical) evolution. For superfluorescent evolution which

requires a state of preparation of complete inversion (zero transverse polarization), it is shown that the pump

pulse must be effectively of area m and that 7& & v&. Our results show that when the former conditions are
satisfied the delay time r~ for collective free pulse evolution is a function of both 7.z and r„. It is shown

further that the pump pulse shape as well as temporal duration significantly affect the final state of
preparation. The results of this work are interpreted in connection with recent reported results of
experiments in superfluorescence and superradiance.

I. INTRODUCTION

Since Dicke's initial work' in which he showed
that under certain conditions, a collection of two-
level atoms, coupled only via their mutual radia-
tion field, can evolve collectively from an initial
state of inversion, there have been many theoreti-
cal treatments of various aspects and ramifications
of the process which has come to be commonly
known as Dicke superradiance. ' ' Of particular
note is the more recent work of Bonifacio and
Lugiato in which they draw the distinction be-
tween two kinds of cooperative relaxation proces-
ses in a macroscopic volume of two-level atoms.
These two processes derive their distinction from
the different initial conditions from which a sys-
tem of two-level atoms can evolve collectively. In
one case the system evolves from an initial state
of complete inversion, i.e. , zero initial macro-
scopic transverse dipole moment; in the other case
the initial state is one of nonzero, though possibly
small, macroscopic dipole moment. The first case
exhibits the distinctly quantum-mechanical aspects
of collective spontaneous relaxation and is predic-
ted to manifest large quantum temporal fluctuations'
and collective as well as individual-atom radiation

reaction and frequency shifts." This process has
come to be known as superfluoreseence. The sec-
ond case can be adequately described in semiclas-
sical terms and quantum fluctuations in the collec-
tive evolution are entirely negligible. The latter
process is widely termed superradiance as dis-
tinct from super fluorescence.

The details of the dynamics of the free relaxa-
tion of a collection of excited atoms obviously
strongly depend upon the initial state from which
it evolves. Therefore, the preparation of the ini-
tial state, i.e. , the pumping process itself, is an
important aspect in any physical situation. An in-
coherent pump can invert the Boltzmann distribu-
tion in a collection of two-level atoms, but due to
extremely small relative dispersion in the inver-
sion, leave the system effectively completely in-
verted as far as subsequent collective evolution is
concerned. ' Qn the other hand, a m. pulse may be
applied to also leave the system of atoms in a
state of complete inversion from which it under-
goes free evolution. The first case is an example
of incoherent pumping and the second is an exam-
ple of coherent pumping on a collection of two-
level atoms to induce an effective state of com-
plete inversion. In either case, the system can
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undergo individual-atom spontaneous relaxation
(fluorescence) stimulated spontaneous decay, or
collective spontaneous relaxation (superfluores-
cence), depending upon other conditions. "' '0

If the pumping is with respect to-three levels
rather than two, the effects can be quite different.
For instance, an incoherent pump between the
ground and third level of sufficient intensity can
produce an effective state of complete inversion if
the ambient temperature is sufficiently low and if
the pump duration is not too long. ' A coherent
pump on the other hand can induce a coherent
superposition of the original eigenstates of the
three-level system and thus produce correlation
in the population among the various levels. In par-
ticular, when a coherent pumping field is tuned to
resonance between the ground and third levels,
Raman transitions can transfer population coher-
ently back and forth between the intermediate and
ground states, even if they are not radiatively
coupled. The time-dependent gain will in this case
show oscillatory behavior at the Rabi frequency of
the pump and coherence effects will be evident in
the preparation of the system. One such effect of
coherent pumping is to leave the system in a state
of macroscopic, albeit small, transverse polari-
zation, from which it evolves freely in a purely
classical manner. It can be anticipated that co-
herence effects in the evolution of gain imparted
by a coherent pumping field will be important when
the pump Rabi frequency ~„ is large compared to
some internal atomic decay rate y, i.e. , when

+R/y» 1, and when the pump pulse duration 7~
satisfies the condition Yp & ~ ~'.

Predominantly, the experiments which have
been reported to date which have been interpreted
on the basis of superradiance of superfluorescence
have used coherent pumping schemes. " ' In par-
ticular, with regard to the experiments of Gibbs"
and Vrehen, "a dye laser was used to excite Cs
vapor and the results have been interpreted on
the basis of single-pulse and oscillatory super-
fluorescence" using analysis' based upon the
two-level mean-field model for super fluorescence
of Bonifacio and Lugiato. ' In these cases an initial
state of incoherent preparation, i.e. , complete in-
version, is assumed. Thisassumptionleads to the
determination of an. initial value of the tipping angle
of the Blochvector in the mean-fieldmodel which is
absolutely crucial to the analysis and comparison
with experimental results. This assumption is
commensurate with that of an incoherent pump
preparation. However, there is ample evidence of
coherence effects induced by coherent pumping in
the same system"" in the form of quantum beats"
which indicate correlation in the population dis-
tribution among the various energy levels of the

atoms.
This leaves open the question as to whether the

assumption of incoherent preparation within an
equivalent two-level manifold is valid at all in
analysis of such experiments. It is the purpose of
this paper to examine in detail some of the aspects
of coherent optical pumping on multilevel systems
and the effects on subsequent collective atomic re-
laxation and radiation pulse generation.

In Sec. II, we develop the Hamiltonian formula-
tion of the problem for coherent optical pumping
of a collection of three-level atoms in a macro-
scopic volume. Section III will be devoted to a
discussion of collective- and individual-atom re-
normalizations, including Raman contributions
which arise under a perturbative analysis of the
dynamical evolution of the system. Then, in Sec.
IV, we develop mean-field results based upon the
model of Sec. II and compare our results with the
two-level-atom model of Bonifacio and Lugiato' and
with results of recent experiments. "" The last
section will be concernedwith a summary of the
work reported in thispaper and the implications to
previous theoretical work and recent experiments.

II. MODEL HAMILTONIAN

The model we use is that of a collection of N
three-level atoms uniformly distributed in a
macroscopic volume 'JJ. The energy-level scheme
is shown in Fig. 1. The frequency vo is that of an
externally applied coherent (classical) pumping
field which we shall treat as a g-number and
specify aPxiori. The transition from the third to
the intermediate level is coupled to the radiation
field treated quantum mechanically, whereas

FIG. 1. Energy-level scheme for the three-level
system. Here, +0 is the carrier frequency of the laser
which couples levels 1 and 3. The transitions between
levels 3 and 2 are coupled to the radiation field in the
dipole approximation, whereas the transition between
levels 2 and 1 is not directly radiatively coupled.
Spontaneous relaxation between levels 3 and 1 is neg-
lected.
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levels 2 and 1 are not radiatively coupled. This
level scheme is consistent, for instance, with re-
quirements for rotational selection rules for pump
induced V- Vtransitions with subsequent radiative
transitions between rotational levels in the excited
vibrational band for an optically pumped molecular
species. ' '3' For the treatment here we ignore
spontaneous relaxation between the third level and
the ground state.

The Hamiltonian 3.'which describes this system
is the following:

x = gge„F(j,) + g(o, b, b,
k=i f=1 $ =1

N ~ (
+ ~~ g(j) IE(j)+E(j)

~
b e'"1' "1 +b+e 'k1' "j

~j ( 22 2S) l 1

j=I& =1

(y) g(g) -$({dpt-kp ~ x~)

j=l ~

(j) g(f) ei(+t-kp xy)++ R 13 p
(2.1)

where we have used units where 5 =1, c =1.
The first and second terms in Eq. (1) describe

the collection of free atoms and the free electro-
magnetic field, respectively. The third term gives
the interaction between the atoms and the electro-
magnetic field, in the dipole approximation, coupled
to the transition between the upper pair of levels,
Pig. 1. The last term gives the interaction be-
tween the externaDy applied classical electromag-
netic field and the atoms. Here vR represents
the electromagnetic field envelope of carrier fre-
quency and wave vector v9 and k, respectively, at
the jth atomic site [see (2.5)]. For convenience,
we take each atom as located at a lattice site of a

cubic lattice. This restriction will be relaxed
later on and our results do not depend upon this
requirement. The field operators obey Bose com-
mutation relations,

[b1 bk]=5i, k ~ (2 2)

g(m) (m) f (m)—a g a

[ (m) g(n) t]
1

(2.6)

(2.7)

With the substitution of (2.6) into (2.1), the Hamil-
tonian K takes the form

The complete set of atomic operators describing
transitions between states j and A, the F. &„'

(j, %=1,2, 3)(m =1,2, . . . , N) obey commutation re-
lations isomorphic to those of the Lie algebra
g(3) 19-21

(2.3)

The coupling coefficients g, are given by

~( j) g( j)n) (22/~ lj)1/2 (2.4)

where V is the volume of quantization for the elec-
tromagnetic field and u3'2" is the dipole-moment
matrix element of the transition. We shall take V
much larger than the volume occupied by the atoms
and eventually take this volume to infinity. The c-
number factor ~(R~) is the Rabi frequency for the
externally applied pump field envelope E(j)(f) at
the atomic site located at x&, where

~(» =u",,' z(j)(f) . (2, 5)

For simplicity of discussion, we have limited the
model to only one degree of polarization.

It is very simple to show that the Lie algebra
u(3), Eq. (2.3}has the realization in terms of bi-
linear combinations of Bose creation and annihila-
tion operators'p"

N I) (
g j tg & +W&d b~b +pQ~ j

~
g j tg(j)+g(j)t (j)

~ Ib ~jk) ~ j ~b -1k1 ~

k~l )=i l=l J ~i l~$

„~(')a(&)~a& )e-&( P
t-& xy) +~(d) a(s) ta (y)ek( pt-kp- x~)+2 ~ vR a, al e R 1 3=1'

For simplicity, we take the energy-level struc-
ture of the individual atoms as identical in the ab-
sence of any fields; and, without loss of generality,
we take e» =0 (j =1,2, . . . , N). Furthermore, it is
useful to define collective operators,

(&) g(j)tg (j)ejn xj
1

(j)tg (j)e&n ~ xja2 a1
=1

(2.9b)

(2.9c)

g(j)tg (j) &jn ~ xj
3 2 (2.9a) a(i)1'a (/)

3$ 3 3
J=l

(2.9d}
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N
~g(i)&g (i)

g2
—~Q g Qg

g=l
(2.98) kj

l 0. (X)-X))

N (2.10b)

+(i)l& (f)
11 1 1

/=1
(2.8f) the reciprocal relations are obtained,

wher e n,. = (2 m/1. ,)1l;,1i, =0, 1,2, .. . , N 1,—i = x, y, z,
and V IIf g$ o Making use of the or thogonality re-
lations,

1(y)tg (s) g (~)cia x; p)qg ~ 0'0 (2.11)

N
~ ( CX

- tX ) ' X ~
& the substitutions indicated by (2.8) Rnd (2.11)

»8 made in (2.8), the result, is

+, & +33 + ~l l+& +~23 & ~ * )+Q +2 A3 of jp' -~, ] g "b +8~3 cy g
n

(2.12)

If the pump field is uniform throughout the volume
containing the molecules, i.e., for uniform trans-
verse pumping on a pencil-like medium, then
&e'R11(t) is independent of location of the jth mole-
cule. In such case

(2.15)

where f(q) is the product of diffraction functions
in each of the three dimensions. ' If, on the other
ha, nd, the pumping pulse propagates along the ma-
jor axis of symmetry of a long rectangular medi-
um, to be precise, we would have to couple the
present model to Maxwell's equations for the exci-
tation pulse. However, if we assume that the
pumping pulse is either sustained externally or is
saturating in the medium such that negligible per-
centage of the pump pulse energy is actually ab-
sorbed by the molecules, then as far as the dynam-
ics of the system are concerned, the pump is
specified apH oui.

If we take the origin of coordinates at the center
of a long rectangular volume containing the active
material a,nd if we assume a pla, ne wave for the
pump pulse, (2.14) becomes'

f' 8f
(J)(t)ef qzzz) +R t dZr &i 'rlzz' (2.18)

This factor when used in (2.12) and (2.14) has the
argument 1i, = k, —o, The terms of the form (2.16}
with (2.18) give maximum contribution to the sum-

X(~~g (t}Z1 "zzz}

where. I.„, I„and L, are the linear dimensions of
ma, terial volume.

Qualltatlve resul tscR11 be obta1ned 1f we Rssunle
a, step-function envelope for the pumping pulse and
neglect transient effects arising from the pulse en-
try and exit from the active volume. This confines
the analysis to pulses much shorter than the length
of the medium and ones that are much longer. If
we take the direction of propagation x, =z, and a
plane-wave pump pulse specified by

(u„(f) =0, Z&Z,

(dR(f) = (dg, Z; ~ Z ~ Zy
(2.17)

MR(f) =0, Z& Zg

I
CTP —zf —gf j

where c T~ is the length of the pulse of amplitude
given by ~a~ in the medium; then the last factor in
(2.16) becomes
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F$0 —o, f) (dstpc/Lg ~ (2.19)

If the pump pulse is longer than the medium, and
remembering that cv.

~ is the length of the pulse in
the medium, (2.19) becomes

F$, o. ,—t) = &u„, r, & f.„/c. (2.20)

As expected, this is equivalent to the result for
uniform (transverse) pumping, (2.15) (for f(k,

n) =-1, o =k„and zero otherwise).
If, instead, the pump pulse duration is short

compared to the length of the medium, and again,
neglecting transient effects, (2.19) can be written
as

P(%0 —n, f) = Oqy~, Yp & I,,/c (2.21)

mation in the last term in (2.12) for q„, q„q, -0.
Then, neglecting transient effects, (2.18) can be
evaluated explicitly to give

than (2.20). However, both have the same physical
interpretation as the rate at which energy is ex-
changed back and forth between the collective me-
dium and the pumping field.

~ +(R33+R22) t (3.1)

Using the commutation relations, derived from
(2.7) and (2.9),

III. DRESSED REPRESENTATION:

COLLECTIVE- ANB SINGLE-ATOM RENORMALIZATIONS

It is useful to transform the Hamiltonian (2.12)
by a unitary transformation which eliminates the
explicit rapidly time-varying part which appears
in the exponential factors in the l.ast term. The
transformation 7" which does this is

is the pump pulse area, and

(2.22)

[Z„(n),Z,.(~')] =a,.(A)5„-f~„(J~)5...
where A is given by

A =eS(f, q) +~'8(u, m),

(3.2)

(3.3)

(2.23)

is the transit time for the pump field in the medi-
um. Equation (2.21) is quite different in appearance

S0' w)=
(

the transformed Hamiltonian X' =T 'XT is

(3.4)

(3.5)

(3.6)

The set of states corresponding to the basis in
which

3C =QB + cog +~(d)5) 5) (3.'7)

is diagonal, we call the bare states of (3.5). The
renormalizations which come about through the
dynamical evolution of the system described by
(3.5) can be obtained by transforming R' to the
unitary representation for which the original bare
states are the eigenstates of the time-independent
transformed Hamiltonian. ' For the case here. , in
connection with (3.5), the Hamiltonian is explicitly
time dependent through the factors E(t). The per-
turbation procedure developed by Coulter ' for the

transformation to the dressed representation is
for a Hamiltonian explicitly independent of the
time. In order to apply Coulter's method to our
case here we have modified his procedure to ac-
count for the explicit time dependence of the Ham-
iltonian to be transformed, and the development
is given in the Appendix.

As shown in the Appendix, the dressed Hamil-
tonian K" which is unitarily equivalent to K'
through second order in the atom-field coupling is
given by the sum of five terms,

3C "(f) = X, +a, (f) +D, (f) —[a,(f) + u, (f)]

—-',f[ e,(t), u, (f)] . (3.8)

Some simpliciation in the calculation is obtained
by choosing 0 =0 in (3.5) and (3.7), i.e., the pump-
ing field is taken to be precisely tuned to the pump
transition.

From the Appendix, and for 0 = 0, we have
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Di«) =Kg-, f(&r - n) IR»(n) t r +R»(n)&&1+ k Z[R.,(n)&g - n, t)+R,.(n)&*(4-n, &)1, (3 9)

D (t) =-Q Q g ' ' Ib~b, [R (n-n')-R„(n -n')] +R„(n)R„(n')
t a, a' 3

(3.10)

and

k, =0, (3.11)

g f(R, —n)E*(k, —n', f) — -„. g f(%, —n)E(R, n', f)—

g ~, ~' S+ ~
—32) (~ (

—&»)

~ Zif@~+n)&(4-n' ~) -, — af(ki+n)&*%, -n', f) g
a &Barn -n +& ' ' .g(&r +&») (&o, +co»)

l &l 1 &l

(3.12)

Here l e b, restricts the first summation in (3.9)
within a thin shell in 0 space centered at l k l

=~»/c and within b. = 5&v» jc.
The first term in (3.9) describes the exchange

of energy back and forth between the atoms and
the field. The second term is the pump driving
term and drives the population between the first
and third levels. It is to be noted that the effect
of the pumping pulse in developing gain in the me-
dium is limited by defraction through the function
I', i.e. , the material geometry, as.well as the
propagation and electromagnetic properties of the
pump pulse in the atomic medium. A simple man-
ifestation of this is given by comparing (2.20) and
(2.21}. These are the first order-contributions.
The second-order contributions are given by D,
and k2.

The first terms within the two curley brackets in
(3.10) are easily recognized as ac Stark contribu-
tions with associated frequency renormalizations
The second terms in these brackets do not depend
upon photon number and together give rise to
single-atom and collective-frequency renormali-
zation contributions. " These have already been
discussed elsewhere [see Eqs. (4)-(8) of Ref. 7].
If I' is set equal to zero, D, and D, are identical
with the terms obtained earlier for the system
comprised of a collection of two-level atoms evol-
ving from an excited state. '

The last term of the Hamiltonian, k given in
(3.12), contains only pump-induced Raman terms
which transfer population directly between the
ground state and the intermediate level. These

terms depend upon the time derivative of the slow-
ly varying envelope of the electromagnetic field
of the pump, i.e., I and I'*. There exists also
rapidly varying contributions to the Raman tran-
sitions at the rate ~0, but the contributions do not
appear here because of the transformation to the
slowly varying operator representation, (3.1).
The first two terms in (3.12} represent resonant,
stimulated Raman transitions with associated fre-
quency renormalization. Due to the difference de-
nominators of these terms, their contributions can
be at least as important as the collective frequency
shifts which arise from (3.10). The appearance of
the time derivative of the pump "diffraction func.-
tion" E in these terms indicates that the shape of
the pump pulse envelope can cause significant con-
tributions to the Raman transitions, and hence, to
population transfer from the ground to the inter-
mediate level, even though they are not radiatively
coupled. It is to be noted further that since the
functions F carry the coherence of the pumping
field, the process described by the terms in (3.12)
are coherent, stimulated Raman transitions. The
last two terms in (3.12) have nonresonant denomin-
ators and are therefore less significant than the
first two terms. These terms describe nonenergy
conserving Raman processes.

IV. MEAN-FIELD EQUATIONS:
DYNAMICAL EVOLUTION OF GAIN

This section will be used to develop some im-
portant qualitative results of the dynamical evolu-
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tion of gain induced by coherent pumping. We shall
use the mean-field approach and assume uniform
pumping or its equivalent, i.e. , conditions (2.15)
or (2.20).

To obtain the appropriate set of Heisenberg' s
equations of motion, we consider again the Hamil-
tonian (2.12}and transform to the interaction rep-
resentation,

OC' (-) ()
Xz(t) =+5.g, [R»(a)b, e" ' 'f $., —a) +R,~(a)b, e "' 'f *(%., —a)]

t=x5

00 (+3 (+)

+P+g, [R»(a)b, e") 'f $, +a) +Ra, (a)b, e ") 'f *(%, +a)]
/=1 n

+2+[R„(a)Fp,-a, t)e'"' +R„(a)F*(%,-Z, t)e '"']. (4.1)

Here

0' =(d +(d, Q =(d l-(d&) (4.2)

tion for the collective atomic and field operators
are the following:

In a manner similar to that of Ref. 5, it is con-
venient to define collective operators for the quan-
tized internal radiation field,

(-)
A, (a)-=g),e'" 'f(li, —a),

(-)
At(a) =Qb, e ") 'f*(& -a) ~

(4.3)

The collective operators (4.3) satisfy the commu-
tation relations,

(4.4)

8„=-i g-A, o. B» n — e A, n

—,—'Q[R„(a)6:(R,—a, t) —R„(a)$*(R,—a, t)],

(4.8a)

R„=ting-[A, (a)R»(a}—A~(a)R23(a)], (4.8b)

R„=,—g[R„(a)6'(%, —a, t) -R„(a)6:*$,—a, t)],
(4.8c)

R„(a') =iong-„A (a)[R„(a' -Z) -R„(a' —a)]

where we have used (2.2) and
3

f(k, a) =II —sine[-,'(%, —a),L,], (4.5)

+2+ A» ~' —a F*,—n, t, (4.8d)

gf(k, —a)f*(%, —a ') = 5-„-„. (4.6)

R„(a') = -ting-A, (a)R,2(a' —a)
5

+ 2-'Q6:$, —a, t)[R„(a a') -R„—(a —a')],
If we drop the counterrotating terms in (4.1) and

note that g, —g- in the first summation since f(%,
-a), (4.5}, becomes 5-function-like in the neigh-
borhood of %, = a, then (4.1) becomes, using (4.3),

K,(t) =Qg-[R»(a)A, (Z) +R„(a)A~(a)]

R»(a') =-ting-„A, (a)R„(a+a')

+,—' QR„(Z —a') 6:(k, —a, t),

(4.8e}

(4.8f}

+ pg[R„(a)6:(k,-Z, t) +R„(a)r*(k,-Z, t)],
and

A, (a') = -ig-„.R„(a')—~A(a') . (4 8g)

where we have used

P(R, —a, t) =F(k —a, t)e'—"'

(4. 'I) In the last equation, (4.8g), we have added a
phenomenological damping term to account for lin-
ear losses from the radiation field, and also we
have taken [see (4.3) and (4.2)],

in (4.7).
If we use (4.7) the Heisenberg equations of mo-

sA, (a')
8$
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It is to be noted from (4.8) that the conservation
relation

R33+R22+R„=o (4.9)

is satisfied identically.
If now we restrict to just two modes for the

emission field, o. and -a, and the pump carrier
mode k„and let 0 = 0 in (4.2) for simplicity, then
for either ease (2.15) or (2.20), the equations of
motion (4.8) reduce to

R33 = -Rqa —R~~,

R„=ig[A (n)R„(n) +A, (-o.)R„(-n)
(4.Ioa}

-A,'(n)R„(n) —A'(-n)R„(- n)],
(4.10b)

R„=i((o~/2)[R„(% ) -R„(%)], (4.10c)

R»(+ n', =igA (an}[R33(+n —n) —R»(+ n —n)]

-igAo (wn} [R33(an+ n) —R33(+ n —n)]

+3 (4ls/2)Ri3 $3T n ) q (4.10d)

R»(k, v n) =-igA3t(n)R„(R, +n v n)

-igA~(-n)R„(k, —n w n}

+i((o„/2)R33(a n), (4. 10e)

R„$,) =igA, (n}R»(%,—n) —igA, (-n)R»(%, +n)

and

+i(~,/2)[R..-R„l, (4.10f}

A, (+ n) = -igR33(~ n) —aA, (~ n),
where we have set

(4.10g)

The Eqs. (4.10a}-(4.10g) are not closed because of
the mode dependence of the arguments of the oper-
ators.

It is of interest to examine the dynamical buildup
of population inversion between the upper two lev-
els, Fig. 1, within a time for which negligible ra-
diation, due to transitions between levels three
and two, has evolved. We shall describe the evo-
lution of transverse polarization between the up-
per pair of energy levels in terms of the usual
tipping angle 8, and consider the small-tipping-
angle regime. We are interested in the determin-
ation of the state of the system for short, intense
pump pulses immediately after the pump pulse has
terminated in the medium.

The time duration of the pump pulse in the me-
dium 7.

~ is assumed to be small compared to T,
for the radiative transition of interest, i.e. ,

7~&( g2 ~

En this case, the atom-field coupling g in the above

R„=R„=O
in (4.10).

If, in addition, we assume that

(4.11)

(4.12}

neglect double-frequency terms compared to simi-
lar terms of single-frequency variation, and make
the substitutions,

Ar =A (n) +A,(-n),
R» =R33(n) +R„(-n),

(4.18)

=R„(k,+n)+R (R, -n),
we arrive at the following set of equations:

R33 =-Ru (4.14a)

R„=i(~,/2) [R.,(k.) -R,.(k.)1, (4.14b)

R„(k ) =-i(g/2)A+ +i(v /2)(R -R,),
(4.14c)

and

R» =-23gA +3 +3((us/2)R»

R„r=-2igArR„(ko) +i((us/2)R3

(4.14d)

(4.14e)

A~ - -&gR» —&A~.

Here, we have made the substitution

R,=,(R,3 —R„).

(4.14f)

(4.15)

Ail variables in (4.14} are taken as expectation
values, and we imply the decoupling

and

&ArR3& =&Ar&(R3&

(A,R„&=(A,&(R &,

(AT R13& (AT& &R13& '

The equations (4.14) now comprise a closed set.
These equations can be reduced to an even simp-

ler set by neglecting the reaction on the pump
transition of the coupled emission field Raman
transitions, i.e. , the first term on the right-hand
side of (4.14e). In the small-tipping-angle limit,

equations is independent of the time and we may
neglect dephasing in the population buildup. Fur-
thermore, consistent with the assumption that 7,
is short compared to the time it takes for appreci-
able radiation to evolve, the average population in
the intermediate level remains negligible on the
average, compared to that in the third level, i.e. ,

(R„&» (R„&.

Thus we set
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(4.16b)

the absolute value of this term is expected to be
small on the average compared to that of the sec-
ond term. With this additional approximation, and
in the mean-field limit, qualitative analytical re-
sults are easily obtained.

Thus, neglecting the first term on the right-hand
side of (4.14c), the pump equations are decoupled
and are given by,

R, = -( /4) (R„(k ) —R„(k )) (4.16a)

R„(k,) =i((uR/2)(2R2 -R„)
R~~ = -2R3. (4. 16c)

Equation (4.23) describes the temporal evolution
of the tipping angle 8, in the small-angle regime,
through the identification

R„=--,'zN sine =--,'zNH. (4.25)

The appearan e of the time derivative of the
pulse envelope in (4.23) is a direct result of the
presence of the Raman terms in (4.20a) and (4.20b).
This is, in fact, to be anticipated from the appear-
ance of the slowly varying renormalized Raman
contributions in the "dressed" Hamiltonian (3.12).

With the identification (4.25), Eq. (4.23) becomes

With the initial condition

R„(O)=N,

where N is the effective total population, Eqs.
(4.16) are easily solved to give

~ ~8-
4

sin' —,P ~&a+
a

I
&uR sing

Tg (a)R

~ 21 2Sill 2$ (d R

4

R, = —,'N sin2-2'p,

R» = --2'iN sing,

where

(4.18a)

(4.18b)
For

cog =0,

(4.26)

(4.2 t)

(4.20c)

to form a closed set of equations. It is useful to
write the derivative of (4.20a) in the form

y(t) = (uR(t')dt' (4.19)

is the pump pulse area, &oR(t) is the Rabi frequency
of the pumping pulse, and N is the effective total
number of atoms being pumped. We have dropped
the mode-dependent notation in these equations and
in those whfch follow. Equations (4.14a)-(4.14f)
are now reduced to (4.18), together with

2zgA T R3+ ~zezR» (4.20a)

Ru —2z~R32 -»g ArRx3~ (4.20b)

Ap = zgR32T KAz

~Tg o 1. (4.29)

This allows us to neglect the last term in the co-
efficient of 8 in (4.28) relative to unity. Thus,
using (4.29), (4.28) has the solution

1 1., sin(&uRg, )'('="=
(N/2) I""P 4. — 4. ,

i.e., a rectangular-pump-pulse envelope, (4.26)
becomes

sin2 —'
8 — '~ 8+ " 1- ~ 8 =0. (4.28)

~a 4 ~z~z

To be consistent with the small-tipping-angle
approximation (4.25), we require the pump pulse
intensity to be such that

d R32 + 2zgB,SA z, (4.21) X 81112 ((dRT2 ), (4.30)

We make the mean-field approximation,

A~~«KA~, (4.22)

4 ~

R32—
Sill 2Q ~(d+ R327z

4

tdR Sing (OR Sill 2$ (dR Sln&fl &dR+ 32 0,

where

7R =R/g N

(4.23)

(4.24)

is the characteristic "superradiance" time. "

then using (4.20b) and (4.20c) in (4.21), and using
(4.19), we have

where v~ is the pump-pulse time duration. The
initial conditions have been chosen so that 0~ =0
at f =0 [see the initial condition (4.17)] and reduces
to the value 8, =1/(N/2)' ' for impulae excitation
in the limit of vanishingly small pump pulse width

v~ and fixed pump-pulse area, i.e.,

0
1

(N/2)1/2 P R
7p/7R o

(4.31)

where N is the effective population inversion.
Equation (4.30) is the most important result of
this section.

Expression (4.30) shows that the envelope of the
transverse polarization grows as an exponential in
the pump-pulse duration 7 ~. However, the envelope
is also modulated at the pump Rabi rate which is a
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CORNO' (4.33)

we can still draw some qualitative conclusions. If
we replace (4.27) by

I ./, I»I/„
and (4.29) by

+z ~ z ~~~z7a

then (4.26) becomes

(4.34)

(4.35)

8- (&us/u&s)8 +(uPs/4)8 =0. (4.36)

This is just the form for an oscillator equation
with positive or negative damping depending upon
the sign of ~„. Thus, a positive slope in the
pump-pulse envelope tends to drive the tipping
angle to larger values, whereas a negative slope
tends to retard the increase of the angle. The ef-
fects on the evolution of the tipping angle 8 of the
time derivative of the pump-pulse envelope is
another manifestation of the Raman contributions
in (4.20), and is not surprising in the 'light of
(3.12).

direct manifestation of the presence of the Raman
terms in (4.20). Furthermore, the scaling of the
pump-pulse duration r~ with v„ in the argument of
the exponential is also affected significantly by the
Raman contributions. If, for instance, we neglect
the Raman terms in (4.20), i.e. , for arbitrarily
setting R» =0, (4.30) becomes

1 ~, sin(u)~~, )
(N/2)' 2r 2&@ 7

(4.32)

which, when compared with (4.30), is seen to be
far from a correct result. Therefore, the Raman
contribution must be included.

The modulation which appears in (4.30) is a di-
rect result of the fact that the coherent, external
pump drives the system into a coherent linear
superposition of its original eigenstates. A con-
sequence of (4.30) for a pump pulse containing
many Rabi cycles is that after a time 7~, the sys-
tem is left in a, state of macroscopic (classical)
dipole moment and will evolve collectively as
superradiant' evolution as opposed to superfluores-
cent" evolution which demands that the initial
state of free pulse evolution be a state of zero
(quantum-mechanical) macroscopic transverse di-
pole moment. It is to be noted further that from
(4.30), the effect of the pump in preparing the ini-
tial state of free pulse evolution scales as 7.„
ra,ther tha, n yD,

'~ the free pulse delay time.
If

V. CONCLUSIONS AND SUMMARY OF RESULTS

In this pa,per we have shown the essential. quali-
tative aspects of coherent optical pumping on a
three-level system in the small-tipping-angle
limit for subsequent free-pulse evolution. The re-
sults presented have significance for general laser
theory as well as for distinguishing characteristics
between observed superradianee and superfluores-
cence. The Hamiltonian (2.12) is the working Ham-
iltoniari for a collection of three-level atoms in
terms of collective operators (2.9) and includes
the radiation field modes, pump-pulse excitation,
and propagation.

The essential characteristics of the effective
coupling between a traveling plane-wave pump
pulse and the collective active medium are com-
pared for a pump pulse which is long compared to
the excitation volume (2.20) and one which is much
shorter than that volume (2.21). As far as the ex-
citation is concerned, there is no difference be-
tween a long pulse traveling along the major axis
of a pencil-like medium (2.20) and a transverse
pump pulse of the same amplitude and duration,
(2.15). If, however, the pulse is short compared
to the longitudinal material axis, the pump-pulse
area divided by the photon transit time in the
medium, rather than the Rabi rate, determines
the effective coupling between the pump and ma-
terial medium. The Rabi frequency is effectively
reduced by the ratio of the pump time duration 7.

~
to the photon transit time vs, (2.21)-(2.23).

The "dressed" Hamiltonian in the slowly vary-
ing operator representation, (3.1), (3.8)-(3.12),
exhibits all of the single-atom and collective re-
normalizations and frequency shifts present in the
two-level model for superfluoreseence" obtained
earlier using the "dressed" representation. ' How-
ever, slowly varying Raman terms appear with
corresponding single-atom frequency shifts dis-
played in (3.12). These Raman terms, as well as
having difference denominators, are proportional
to the time derivative of the pump-pulse envelope
and can be expected to make relatively strong con-
tributions in the dynamical evolution of the system.
This is borne out by the appearance of the time
derivative of the pump-pulse envelope in the equa, -
tion for the evolution of the tipping angle in the
small-angle limit (4.26) and (4.36). So, the pump-
pulse shape as well as pu'se area and temporal
duration ean have significant effects on the evolu-
tion of the tipping angle.

The main results of this paper are presented in
Sec. IV where the Heisenberg equations of motion
(4.8)- are developed and applied for the restriction
to two counterpropagating modes of the radiation
field for the radiated pulse, (4.10)-(4.15) in the
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2vR ln8q, (5.1}

mean-field limit (4.22). In the small-tipping-angle
limit for the radiating pulse evolution, the equa-
tions of motion reduce to the set (4.18)-(4.20).
These equations combine under the mean-field
approximation (4.22) to give a second-order differ-
ential equation for the tipping angle &, (4.26). For
a step-function pump pulse, (4.27) and (4.28), the
tipping angle at the termination of the pump pulse
is given by (4.30). The initial conditions have been
adjusted so that (4.30) gives the value consistent
with the uncertainty principle for an impulse exci-
tation and an excitation pulse area of m.

The modulation of the exponential envelope in
(4.30) is a direct result of the Raman contributions
and is an essential difference between the coherent
preparation of a multilevel system as compared to
a two-level system. The effect of "dropping" the
Raman terms in (4.20} is given by (4.32). The main
effect, on comparing with (4.30), other than the
absence of the modulation, is a difference of a
factor of 2 in the argument of the exponent. This,
in general, is an important discrepancy, and
therefore it is a significant error to ignore the
Raman contributions. Furthermore, the temporal
evolution of the tipping-angle scales as ~„rather
than v D,

'4 where v D is the delay time between an
excitation "impulse" and the peak of the superra-
diant or superfluorescent pulse which evolves.
These are coherent effects and are manifestations
of the fact that a coherent pump drives the system
into a coherent linear superposition of its original
eigenstates. Other manifestations of effects pro-
duced by coherent pumping on multilevel systems
are the observations of multiple wave mixing'
and quantum beats. "

A conclusion from these results is that for co-
herent pumping on a multilevel system where the
pump duration 7~ is less than the atomic dephasing
time T, and either on the order of, or larger than,
the characteristic superradiance time 7 R,

""or
such that the pump contains many Rabi cycles, or
both, the system is always left in a state of macro-
scopic transverse polarization after the pump-
pulse termination. Subsequent collective radiative
pulse evolution is then purely classical with polar-
ization determined by the pump polarization. In
order to ensure evolution of the free radiated
pulse as a quantum-mechanical dipole moment,
the pump pulse must be much shorter than v„and
it must be effectively a m pulse. Typically, v„ is
on the order of nanoseconds to tens of nanoseconds.
Subnanosecond pump m pulses may be practically
difficult to achieve.

Another observational effect of (4.30}is in connec-
tion with the free pulse delay time r~. If we take'

for an active volume with large Fresnel number,
then using (4.30) and suppressing the fluctuations
suggested by the sine factor,

7.~ =2r~ ln(N/2)' ' —7~/2. (5.2)

Equation (5.2) predicts an almost linear dependen-
cy of v. ~ with inverse pressure, but with negative
intercept. Such a linear dependency with pressure
and with negative intercept has been observed. "
A test of this model would be to adjust the pump-
pulse duration ~~ while maintaining the pump-pulse
area constant over the same range of data.

The appearance of the sine factor in (4.30) leads
to the possibility for wide fluctuations in radiated
pulse amplitude and width as well as delay time.
For a many-m pump pulse, it may be experimen-
tally difficult to ensure the same identical value
for the total pulse area from one "shot" to the
next. Then, from "shot" to "shot" temporal fluc-
tuations can be anticipated which are purely of
classical origin. Such large "fluctuations" have
their origin entirely in coherent-pump-induced
cycling, rather than quantum fluctuations which
are anticipated from superfluorescent evolution. '

The effects of the shape of the pump-pulse en-
velope on the evolution of the tipping angle are
suggested by (3.12), (4.26), and (4.36). Generally,
a positive slope to the time derivative of the
pump-pulse envelope causes an exponential in-
crease in the evolution of the tipping angle in the
small-angle regime, whereas a negative slope
tends to inhibit the evolution to larger tipping
angles. Due to the importance of the pump-pulse
shape in preparing the system for collective free
radiation pulse evolution, experiments on the
same material and otherwise same experimental
conditions could be quite different when different
pump sources are used. These are matters to be
considered in any experimental design.

It is concluded that when multilevel systems are
pumped with coherent sources, the dynamics of
radiative pulse evolution cannot be separated from
the dynamics of the pumping process. Consequent-
ly, in the light of coherent pump effects, extreme
care must be taken in the analysis and interpreta-
tion of experimental results which exhibit coopera-
tive effects.

APPENDIX

We closely parallel the procedures developed by
Coulter, "based upon Heitler's method, "to derive
the unitary transformation to the "dressed repre-
sentation" to the second order of the perturbation.
Whereas Coulter's method treats an explicitly
time-independent Hamiltonian, we treat the case
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here for a Hamiltonian explicitly dependent upon
the time t.

It is assumed that the Hamiltonian X(t) can be
written in the form

x(t) =x, +~H, (t),
where Kp is explicitly time independent, X is a
perturbation parameter and the eigenstates in, )
and associated eigenvalues ep for Kp are known,

Xo I no& = &o l
n &o~ (A2)

If we make the identification

I("(&))=$~.(&)l~.),

IS(t)&
= U-'(t) ls.(t)&.

Using (A12} in (A9),

i~—„U-'(t) ls.(t)& =x(t)v '(t) lt. (t)& .

(All)

(A12)

(A13)

We call the set of states i n, & the "bare" states.
i,et us assume that X(t} has eigenstates in(t))

such that

x(t) l.(t)& = (t) l.(t)&,

and suppose a unitary transformation U(t) exists
such that

U(t) in(t)& = ln, &. (A4)

Multiplying both sides of (A13) by U(t), and using
(A6), leads to

t&—„lt. (t)& =[x'(t) —i«(t) —„U '(t)] lc.(t)&.

Thus, the Hamiltonian X"(t) in the transformed
I'ep1'eseI1'ta'tloI1 caIlonlcally equlvaleI1't to (Al) Is)
from (A14}

x(t) U '(t) ln.&
= ~(t) v '(t) ln.&,

v(t)x(t) v-'(t) in, ) = ~(t) in, ) .

x'(t) -=v(t)x(t) v '(t)

(A5)

(A6)

(A16)

or, equivalently

—„[v(t)v '(t)] =o.

x"{t)=x'(t) -i«(t) —v '(t).
Bt

(Al

Furthermore, if X"(t) is to be Hermition, it is
required that

v(t) v-'(t) =-v(t)v '(t),

x'(t) in, &
= ~(t) in, ) . (A V)

Thus, if we can find U(t), then X'(t) has eigen-
states which are the original "bare" states. In
other words, in the "dressed" state representa-
tion, the original, known "bare" states are the
"dressed" states. In parallel with Coulter, we let

So, in the transformed representation, we have
for the canonical Hamiltonian, from (A15) and
(AV),

x"(t) in, &
=.x'(t) in, & + trav-I(t) in, &

= [~(t) + t«(t)U-'(t)] in, ) . (A16)

Now, returning to (A2) and (A7}, we have that
v(t)= '"", a(t)=a'(t) (AB) [x„x'(t)]=o.

and set about to calculate U(t) through the desired
order in perturbation. But first we determine the
canonical form of the Hamiltonian in'the trans-
formed representation.

We look for the Hamiltonian X"(t) in the trans-
formed representation (A6) which is canonically
equivalent to (Al). Thus consider the Schrodinger
equation,

x'(t) =x, +D(t)

D(t) =pa"D„(t) (A21)

t@—„IP(t)& =x(t) 1(t(t)&.

From (A3) and (A4) we have

))(&))=g~.(o~l~(&))

c„t U t gp

=& '(op~. (0l .).

(A9)

(Alo)

)I(t) = Q X")I„(t)= '(t))(.

[x„D„(t)]=o. (A23)

We proceed to calculate 3C'(t) and iiI U(t)U '(t)
through second order in the parameter A.. Thus,

It 18 to be not, ed that lf the condition Gf unltarlty in
(A22) is satisfied, (A16) is automatically satisfied.

From (A20), (A19), and (A21) we have
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using (A1), (A2), (A21), (A6), (A8), and (A22), we
arrive at the relations

(ir(t)v '(t)) = t (~, (t) + ~,(t))

——,'[g, (t), i,(t)] (A27)

D,(t) = z[~,(t), x,]++,(t)

D, (t) = z [v,(t), K, ] +—[v, (t), [v, (t),Bc,]]

+ i [~,(t),x,(t)],

and in addition,

(A24)

(A25)

(A26) x"(t) =x, +D, (t) +D, (t)

-h(~, (t)+ ~,(t)) —gttt[~, (t), ~,(t)]. (A28)

through second order. Thus, the canonical Hamil-
ionian (A15) is, through second order, in the per-
turbation,
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