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A general theory of laser-induced quantum beats introduced in paper I is extended to include the effects of
sequential laser excitation by several lasers for atomic systems either free or subjected to external static
fields. A detailed study is made of the dependence of the quantum beat signal on the polarizations of the
exciting laser pulses and detected spontaneous emission. The theory is applied to the echelon excitation of
sodium nD Rydberg states. An analysis of the Zeeman beats produced by excitation in an external magnetic
field suggests new ways to measure the fine-structure interaction constant of the Rydberg levels.

I. INTRODUCTION

In paper I' we considered the dynamical aspects
of atomic excitation by a single-pulsed laser and
the variations of the quantum-beat signal as a func-
tion of laser intensity. Specific saturation effects
resulting from stimulated emission from the exci-
ted atomic states during passage of the laser pulse
and light-induced level shifts were studied in de-
tail. There still remain to be discussed those
geometrical aspects of the laser-induced quantum-
beat effect concerned with the polarizations of the
exciting light pulses and the detected fluorescence.
It is well known that the modulation depth and phase
of the beats are strongly dependent on the direc-
tions of these polarizations.

In this article we discuss the polarization de-
pendence of the quantum-beat signal for the gene-
ral case of laser excitation in echelon (i.e. , se-
quential excitation by more than one laser) starting
from a nonoriented atomic ground state. The ex-
perimental significance of this stepwise excitation
process is that it permits one to reach highly en-
ergetic atomic states lying close to the ionization
limit (Rydberg states). Depending on the number
of sequential excitations, states of either odd or
even parity can be populated regardless of the
ground-state parity. In order to bring out clearly
the physical principles involved, we will discuss
in detail the simplest case of two-laser excitation.
Our theory, however, is expressed in a formalism
easily generalized to include more complex cases.

This article is divided into two main parts. In
the first part we derive general expressions for
the angular dependence of the quantum-beat signal
in the absence of external static electric or
magnetic fields. In order to separate clearly the geo-
metric problems associated with the polarizations

of the laser and fluorescent light from the com-
plicating features of laser saturation, we will con-
sider first the linear or weak-pumping approxima-
tion. W'e have shown in paper I that this approxi-
mation is generally quite satisfactory. The gene-
ral theory that we develop will be applied to the
specific case of sodium atoms sequentially excited
into the nD levels via the intermediate 3P, &, level.
This example is of particular experimental interest
because of the inverted ordering of the D fine
structure and has been recently studied in much
detail by laser-induced quantum-beat spectro-
scopy. ' We will also analyze this experiment using
the full rigor of the general theory to show what
modifications in the weak-pumping approximation
result from laser saturation.

In the second part we extend the theory to in-
clude the effects of external static fields on the
quantum-beat signal. The results of this calcula-
tion suggest new experimental methods for mea-
suring internal interaction constants of Rydberg
states.

II. SEQUENTIAL LASER EXCITATION IN THE ABSENCE

OF EXTERNAL FIELDS

A. Determination of the quantum-beat signa1 in the

weak-pumping approximation

In Fig. 1 is shown a general level diagram of a
four-level atom illustrating the echelon excitation
and quantum-beat detection processes. Two time-
delayed laser pulses of polarization q, and p„re-
spectively, bring the atom from the ground state
0 to the excited state 2 via the intermediate state
1. As a consequence of th@ coherent population of
the sublevels of 2, the intensity of the light (de-
tected with polarization ee) resulting from the sub-
sequent transition from 2 to fwill be modulated.
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Flo. 1. Schematic diagram for two-laser echelon
excitation. e"-& and q2 characterize the polarization of
the laser pulses. Quantum beats are observed on the
J2-Jy transition with a polarization gg .

The atom is not subjected to any external fields.
The energy-level structure, therefore, depends
only on the angular momenta of the different sub-
states. In what follows we consider only internal
interactions of the type L S in order to calculate
the fine- structure quantum-beat signal. Hyperf inc
structure is assumed to be negligible. Each level
i (i =0, 1,2, f) is labeled by the orbital angular
momentum L, ;, the total electron angular momen-
tum Ji, and the projection m» of the total momen-
tum on some arbitrary axis to be specified later.
8 is the spin angular momentum common to all the
states. The results derived in this section can be
easily generalized to include hyperfine structure
by substituting I;—J;, 8 -I. We will not consider
in this article the more complex case where fine
and hyperfine structures are of the same order of
magnitude.

The notation describing the partial-density ma-
trix of each electronic manifold is a simple ex-
tension of that introduced in paper I. o',. is the
partial-density matrix of level i immediately fol-
lowing laser excitation from level i —1. For the
nonoriented ground state we write

o o=&o

where Po is the projection operator onto the ground
state. We further assume that the duration and
spacing of the successive optical pulses are very
short in comparison to the Bohr precession. periods
within the various levels. Each excitation is there-
fore essentially instantaneous and all excitations
occur essentially at the same instant. No signifi-
cant evolution of the quantum states takes place
during the excitation processes.

Given the above eircumstanees, the density-
matrix equations (I6a) and (I6b)' of paper I solved
in the weak-pumping approximation can be used to
give the partial-density matrix o ',. in terms of the
partial-density matrix of the previous level o', ,:

c';=koi'i(+ ~)Pig; DP; i&'; i P; iaaf DPi, (Ia)

where

(lb)
p

7

Equation (1) allows one to deduce 0,' from o,' and
o,' from o,'. Knowledge of cr,' yields the quantum-
beat signal through use of Eq. (Il).

For even a relatively simple atomic system such
as that of an alkali atom, there is a multiplicity
of sublevels all of which may contribute to the
quantum-beat signal. The explicit determination
of this signal would be a rather formidable task
were it not possible to circumvent tedious series
summations through use of irreducible tensor
operators. 4 The simple rotational properties of
these operators allow one to write the signal as a
sum of a small number of terms each having the
angular dependence of a spherical harmonic or of
a product of two spherical harmonics. We there-
fore introduce for each level i a base of irreducible
tensor operators

~i~iT&i = Q (2' + 1) i (-l)~i iii
m» m»

(2)

Each of these operators acts only within the ith
manifold of states and only between J, and J,'.
This leads to the following expression for the time
evolution of Ji J i Tk»:

Ci

exp( iX,t/fi) ~i~i-T",iexp(+i@,t/tt)

=exp(-i(o .„t)~'~'T', i.

The tensor operators obey the following orthogon-
ality relation

I JJ'' k J"J"' k'tlTr $ T T I I 5J JII5 Jl Jgggl5kki5 I

and transform under rotation according to the
characteristic equation

(4)

6t(&t, 8, y) «T'iS. '(g, 8, y) = gA", i& i~iT'i. (5)
i

g+ — g J»Jj~ J» J
i ki~» q» t

where

n~i~'= Tr(&' z',i'Taii)k.e. C» (6b)

For the nonoriented ground state we have

A compact expression for the quantum-beat sig-
nal which clearly exhibits its geometric properties
is obtained by expanding the partial density matrices
and the detection operator [Eq. (I2)] in the base of
irreducible tensor operators. e consider first
the partial density matrix o',. representable as
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+ 1 Jo Jodo
0 (2g + I)1/2 0 ' (6c}

I =k"'(+ )k' '(+ )

Equation (1), which expresses o'; in terms of
leads to a linear relation between the coef-

ficients a of leveli and those of leveli -1 &&[(2Zf+1)(2J +1)] ' 8 2 2~8 (14)

&2~&~'t=k&t&(+~) ~t~'tg~t 1&-& 1&&-)&2~&-1 j'1-1.
kyoto 0

The explicit expression for the transformation co-
efficients A will be given and discussed shortly.
A derivation of this expression can be found in Ref.
5. These coefficients obey the selection rule ~k,.
—k, , ~

~ 2 and the symmetry relation

(/i J'tg ZjPj( }}g Ij J'jg Jt P& (j2)kfOf kgb ~ kfQg kfq$ ~ (8)

por the case of two-laser excitations the n coef-
ficients of the state 2 are obtained from the re-
cursion relation (V) and the ground-state density
matrix (Gc):

&2
~2 ~2 = k &»(+ 00)k &»(+ oo)
keq2 0 0

2 2g 1 1l 5 1 1A 0 0~ (2g + 1)1/2 k222 ktkt (k2}ktqt 00 (kl) '

(9)

We now consider the expansion of the detection
operator 80„($2) given in paper I as

Hd, t P2q„' DP~q„* ' DP2

in the base of irreducible tensor operators:

(10)

8 —~ P
2 +2 j'2 j2'yk&2

PP. ,2'= (2Z + I)-1/»f j2 Q'/f ~f (g )2~2 ~ ~2~2 (12)

The quantum-beat signal I(k2) adopted from Eq.
(I5) can be written as

I( ) —Tr(I0 g- i200t/kc. + e+ix t/28t )g-r t
2 2 det (13)

By combining the tensor expansions of 80„[Eqs.
(ll) and (12)] and of o', [Eqs. (Ga}, (6b), and (9)],
the symmetry relation [Eq. (8)], the orthogonality
relation [Eq. (4)], and the field-free time develop-
ment of the irreducible tensors [Eq. (3)], one ob-
tains the following multipolar form for the quan-
tum-beat signal:

Examination of Eq. (la) and (11) shows that 8„„is
related to P&, the projection operator onto the final
state f, by a linear relation of identical mathe-
matical form to the one connecting o,' to o,'. The
expression for the P coefficients is therefore im-
mediately deducible in terms of the known A co-
efficients:

The mathematical structure of this expression is
actually quite simple. There is a, sum over prod-
ucts of three A coefficients which, from right to
left, characterize the three successive transitions
undergone by the atoms during the course of the
experiment: excitation from level 0 to level 1,
excitation from level 1 to level 2, and decay. from
level 2 to level f. Each A coefficient contai. ns the
entire angular dependence of the corresponding
transition.

The amplitude of the modulation at each fre-
quency eJ J is obtained by summing over the re-J2 J2
peated indices in Eq. (14). The sum over the ten-
sor orders k, and k, is restricted by the selection
rule M,. ~2 to include only the values 0, 1, and 2.
The sum over the component index q, ranges from
-k,. to +k, in integral steps. The sum over the
angular momenta J„J„J,', and J& is determined
by each experimental situation. In the case that
the first laser pulse has a spectral bandwidth 4,
greater than the fine structure of levels 0 and 1,
one induces transitions from all the levels J, to
all the possible levels J, of the intermediate state.
If the fine structure in the state 0 or 1 is greater
than a„ then only certain of the JO-J, transitions
are induced and the summation is accordingly re-
stricted. Likewise, only those quantum numbers
J& a,re included for which the appropriate radiative
decay transitions are detected.

B. Angular dependence of the signal

In this section we discuss the polarization de-
pendence of the A coefficients in order to obtain
an explicit expression for the angular dependence
of the beat signal. We restrict our study to linear
and circular polarizations. The polarization of an
electric field can be completely characterized by
the Euler angles 8, Q of the unit vector which
specifies the direction of field oscillation (for
linear polarization) or the axis of field rotation
(for circular polarization). (See Fig. 2.) If 8=/
=0 we refer to the polarization as one of three
"principal polarizations": m if 0 is linear along
the OZ axis, and o, or o if 0 rotates in the XOF
plane counterclockwise or clockwise, respective-
ly.

In the case of a principal polarization the A co-
efficients, derived in Ref. 5, take the following
form:
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) &( 2(Q ) ( 1)2(I (+2)+)( 1)(d(+J'()('1)2(+2(+Qig
kfq4 kg 1 ef 1

x[(2k + 1)(2k, , + 1)(2Z, + 1)(2J', + 1)(2J, ,+ 1)(2J,', + 1)]'~'

1 1 1

(Q( -Q, Op (0 —q, , q,.) I J,. J',. k,.

The index Q,. is equal to 0, + 1, or —1 if the excita-
tion polarization is respectively m, a„or 0 .

, the Kronecker ~ symbol, expresses the
0)Cg

fact that the excitation is rotationally invariant
about the GZ axis and therefore cannot couple
tensor operators Tk with different q. The various
3J and 6J symbols impose certain selection rules.
In particular the 3J,

is nonzero only if x =0, 1, 2. This restriction, ap-
plied to the other 3J,

the Euler angles 8,, p,. is easily deduced from the
A coefficients for the principal polarizatioris by
making use of the rotational properties of the irre-
ducible tensors. This is accomplished by carry-
ing out two rotations. A first rotation 6t '($„8,, 0)
on the operator T '-' brings e,. into the direction of
OZ thereby making it a principal polarization. %e
can now define the polarization component Q,. and
use the known coefficients A(Q, ) to characterize
the passage from T,&-j. to T,'. A second rotation

ki
(R((I),, 8,, 0) on the T22( returns the polarization i,.
to its initial position. The final expression for
A(e, ) obtained by these rotational transformations
xs

leads to the previously mentioned selection rule
~k, , —k,

~

~ 2 characteristic of electric dipole
transitions. Finally, utilization of the symmetry
properties of the 3J, 6J, and 9J symbols leads to
the following symmetry property of the A. coeffi-
cients:

The above relation is recognized as a special case
. of Eq. (8) since A is real for a principal polariza-
tion.

The expression for the A coefficients in the gen-
eral case of arbitrary polarization i,. defined by

x[ft ' ' (y 8 0)]&-» (1q)

To illustrate angular dependence explicitly, we
replaced the notation A((:.,) by A(Q„8„$,.).

A general expression for the quantum-beat
signal is obtained by combining Eqs. (14) and (17).
The signal is independent of the choice of the OZ

axis although a judicious choice could simplify
the mathematical form. %e take, for the moment„
OZ parallel to e„ i.e., 82=$2=0. This leads to

I -k"'(+-)k"'(+-) g[(2Z +1)(2Z +1)] ''e *"""'e-" '~'~A""( Q )

X [g(22)(y 8 0)]( 2) ~2~2A')1~1
(Q ) ~(21)(y 8 0) +1~1A+0+0(Q )

Q„Q„and Q~ are equal to 0, +1 depending on
whether the corresponding polarization is linear
or circular. The angular dependence of the signal
is entirely contained in the rotation matrix ele-
ments 8„,,' which are proportional to spherical
harmonics.

C. Application to sodium nD Rydberm, states

The general expression, Eq. (18), for the quan-
tum-beat signal issued by an atom subjected to a
two-step laser excitation process is algebraically
complex and its geometrical properties not easily
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P 3/2

0 6/2

FIG. 2, A unit polarization vector is specified by
the Euler angles of the axis of (a) electric field oscilla;
tion {for linear polarization) or {b) rotation {for cir-
cular polarization). The sense of rotation about an
axis is given by the right-hand rule.

inferred. To illustrate some of the physical ideas
contained in this expression we use it to discuss
a recently performed experiment on the n& Ryd-
berg states of the sodium atom. 2

In Fig. 3 are shown the specific excitation and
detection processes under consideration. Two-
laser pulses excite the atom from the 3S», ground
state to the nD, /, ,,/, excited states via the in-
termediate 3P,/, state. Since the fine-structure
interval in the 3P level (17 cm ') is much larger
than the spectral bandwidth of the lasers ( 1 cm '),
it is possible to select only one of the P-level
fine-structure components. The fluorescent radi-
ation upon which are superposed the quantum beats
is detected for the nD to 3P transition. The de-
tection is made without a monochromator and
therefore transitions to both the P,/, and Py/2
states are detected. In summary, we must there-
fore employ in Eq. (18) the following angular-mo-
mentum quantum numbers:

1
~Jo= 2', 4y —~y & F72 'J2 2 and & ~f

In the case of linear excitation and detection
polarization, evaluation of Eil. (18) leads to the
signal (in arbitrary units)

I -Io+I cosrs t
where

I, = 148.148

(19a)

—26.666 [-', (3 cos'8, —1)][-',(3 cos'8, —1)]
-38.666 sin28, sin2g„cos(Q, —p~)

-8.666 sin'g, sin'g„cos2(P, —{I)~}. (19c}

+ 66.369 [-,'(3 cos'8, —1)]+14.814 [-,
' (3 cos'8, —1)]

+ 63.703 [-,' (3 cos'g, —1)j [-,' (3 cos'g, —1)]
+ 105.333 sin28, sin28~ cos(p, —Q„)

+ 67.333 sill 8~ Bill 8~ cos2($~ —Q~},

and

I„=37.333 [-,'(3 cos'8, —1)]

0 S )ra

FIG. 3. Level diagram for the echelon excitation of
sodium gD Rydberg states from the 3S&/2 ground state
via the 3P3/2 intermediate state.

I„(I)+2I (II)=0,
I (III)+I„(IV)+I,„(V)=0,

(20)

which express simply that the quantum beats van-
ish when, for each excitation configuration, sig-
nals of three orthogonal polarizations are detected
simultaneously. This result is characteristic of
all experiments in which the signal is sensitive to
nondiagonal elements of the atomic density matrix
(the coherence terms). To observe these coheren-
ces there must be a privileged detection polari-
zation. The detection of all polarizations gives a
signal sensitive only to the populations of the ex-
cited states. Neither quantum beats nor level
crossings would be detected under such condi-
tions.

In order that the sum rule, Eq. (20), be satisfied
it is necessary that the quantum beats undergo a
180' shift in phase when one passes from configu-
ration I to II, or from configuration III to IV or 7.
This is a very useful experimental property in that
it allows one to verify that observed modulations
are indeed of atomic origin. Moreover, the mea-
surement of the difference of two signals in phase
opposition enhances the beat contrast by eliminat-

The frequency w» characterizes the fine-structure
splitting in the nD level.

Table I summarizes the values obtained for Io,I, and the modulation depth i), =I /Io for different
polarization configurations. We disregard for the
time being the last column of the table. The first
two lines and last three lines in the table corre-
spond, respectively, to the cases of parallel and
perpendicular laser polarizations. For each of
these two excitation configurations there are va-
rious simple configurations of detection polariza-
tion.

An examination of Table I immediately reveals
several important facts. First is a verification of
the relations
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TABLE I. Coefficients Io, I, of the signal- and beat-modulation depth g for various polar-
ization configurations, in the case of fine-structure quantum beats of the nD states of Na in-
duced by stepwise laser excitation. Two values of p are given. qo corresponds to the weak-
purnping case; ps corresponds to the strong-pumping limit. Io and I values given in the
table result from the weak-pumping limit calculation.

Polarization
configuration Value of O, Q Io 9s

IV
E'

g

I dg
E2

O~= P~= 0

Og
——(t)g = 0

O~=x/2, (t)~
——0

Og
——7t'/2, Qg

——0
O~= &u=o

Og
——O~

——7('/2

O, = O„= x/2

Pg
——0, Q~

——x/2

293.035

97.926

175.259

190.815

56.148

10.666

-5.333

50.666

-42.666

-8.00

3.64%

-5.44%

28.90%

-22.36%

-14.24%

3.64%

-5.44%

30.98%

-22.65%

-16.19%

ing a major part of the nonmodulated portion of the
signal as well as experimental noise.

A second point demonstrated in Table I is that the
quantum-beat modulation depth is very sensitive
to the polarization configuration of the exciting
pulses. The configuration with (.", perpendicular
to p, leads to greater beat contrast than with fg
parallel to p, . Given the complexity of this exam-
ple, resulting in part from the large angular mo-
menta involved, the physical interpretation of this
result is not evident. One can, however, find a
similar correlation between the polarizations of
successive pulses by studying a, much simpler-
system. In Fig. 4 are schematic diagrams for the
sequential laser excitation of an atom from a J= 0
ground state through a J=1 intermediate state to
a J=1 final state. The application of a magnetic
field would lift the degeneracy of the J=1 magnetic
substates and lead to Zeeman quantum beats in the
emission from the final state. For this system we
consider the results of different laser polarization
configurations.

We suppose initially that q, and q, are parallel.
There are two possibilities of interest: q, and q,
parallel to the axis of quantization specified by the
magnetic field (w polarization) or q, and j, perpen-.
dicular to the quantization axis (o' polarization). As
shown in Figs. 4(a) and 4(b) the selection rules
4m =0 for m polarization and Am =+1 for 0' polari-
zation lead after two-laser excitations to popula-
tion of a single final substate (J= 1, m =0) and con-
sequently to no quantum beats.

We next suppose that g, and q, are mutually or-
thogonal. There are again two cases of interest:
q, or q, parallel to the quantization axis. As shown

in Figs. 4(c) and (4d) the appropriate selection
rules lead in both cases to a coherent population
of two final substates (J= 1, m =+1) and conse-
quently to quantum beats. For this example the
beats are in fact 100% modulated if one detects

J=O

(b)

~ J-1 ~ ( ~ ~ J=1
y& 1|

geo

~ J=1

J=O

(c)

FIG. 4. Qlustration of correlation between the genera-
tion of quantum beats and the polarization configuration
.of the exciting laser pulses for a simple atomic system.
(a) dill d pll». (h) (d& 11 d2»», (o) (dg dt); dill», (d) (dgi d 2); d 211», where d, and d 2 are the laser polarizations
and s is the axis of quantization.
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the signal with o polarization [see Eq. (I13b)].
This simple example shows clearly that the rela-

tive orientation of the two excitation polarizations
is very important and that greater beat contrast
occurs for crossed polarizations. Although the
experimental example of the sodium nD levels is
more complex, this same conclusion remains qual-
itatively valid.

D. Effects of laser saturation in some simple cases

Vfe now consider how laser saturation affects
the results of Sec. Dt . To do this we will deter-
mine as an example the exact quantum-beat sig-
nal of the sodium nD levels for the polarization
configuration III (see Table I). This configuration
corresponds to the greatest modulation depth cal-
culated within the framework of the weak pumping
approximation.

In Fig. 5 is a diagram of all the levels involved
in the excitation and decay processes with the cor-
responding transition matrix elements labeled.
The polarization of the first laser pulse is per-
pendicular to the quantization axis OZ (polariza-
tion c); the selection rule n. m~= a 1 is therefore
applicable. From each sublevel of the SSy/2
ground state there are two sublevels of the SP,y~

intermediate-state excited:

Sg,g, (m~ =+—,')- SP,(,(m~ = ——'„+—'),
1 3 1SS,g2(m~ = - -, )- SP2)2(m~ = —2, + 2) .

Each of these two pairs of P,~, sublevels is com-
pletely uncoupled from the other. The total sys-
tem, at this point, can be regarded as a combina-
tion of two independent three-level systems such
as treated in paper I, Sec. IIIA. As the sum of
the transition probabilities a', +b', is the same for
the two three-level systems, the density matrix
of the system in the intermediate SP,~, state is in-
dependent of the saturation parameter of the first

pulse [see Eq. I16) and the discussion following].
The second laser pulse is polarized parallel to

the quantization axis (polarization v); therefore
the selection rule ~mJ =0 is applicable. From
each sublevel of the SP,~, intermediate state one
excites one sublevel (of the same m~) in each of
the two nD fine-structure components:

3P2)2 (m~) - nD2(2 (m~ ), nD, h(mJ ) .
For this excitation the resulting atomic system
can be regarded as four independent three-level
systems. ' From symmetry considerations it is
evident that the transition matrix elements are the
same for excitation out of SP2~2(m~=+ 2,) likewise,
for excitation out of SP2~2(m~ =+ —,').

We have, therefore, only two distinct and inde-
pendent three-level systems. The signal is ob-
tained by doubling the contribution determined for
these two systems. As shown in Fig. 5 the corre-
sponding excitation matrix elements are a„b, for
the first system and a'2, b,' for the second.

To obtain the signal we must consider the transi-
tion matrix elements for spontaneous emission to
the SP levels. [See Figs. 5(b) and 5(c).] Transi-
tions to the level SP,~, can originate from the
mJ=+ ~ sublevels of mD, ~, and nD, ~, with respect-
ive amplitudes a, and b„or from the ~J + p sub-
levels of nD», and nD», with respective ampli-
tudes a,', b2. Transitions to the level SP,&, can
originate only from the m J = +& sublevels of nD, &,.
This amplitude is designated c,.

The exact quantum-beat signal follows from the
analysis given in paper I, Sec. IIIA:

I =2a'I(' ( +~ k)'(+~)(a~ +b +a2'b'c ops& t)e "'
+ 2b2b(1) ( +~ )y z (2) ( +~ )

x (a2'4+b2'~+2a2"b2" cos+„2t +a2" c', )e ', (2la)

where

-5/2 -3v2 -V2 V2 V2 5/2 -l/2 1/2 3/2

(b)

-1/2 1/2

Cg Cg

n 0 ~/2

3P V2

3P 1/2

3SM2

Flo. 5. Detailed level
diagram, showing excita-
tion and decay transition-
matrix elements, for the
two-laser echelon excita-
tion of sodium na Hdyberg
states. (a) The first ex-
citation leads to two un-
coupled three-level sys-
tems. The second excita-
tion leads to four uncoupled
three-level systems. (b)
Decay to the SP3g2 level
leads to four uncoupled
three-level systems. (c)
Decay to the 3P&g2 leads
to two uncoupled two-level
systems.
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exp dtl 1 1

1k(2) (+-)=

, 2(a2+t),2)
x 1 —exp — dt' —

(,2)

kP (2) (+~}
1

0 2 ((2
P2 + fP

P2 }

+~ 2(gP2+bP2
x 1 —exp — dt' —(,') (,}'

~OO P

(21b)

ical electric dipole moment) leading to the appear-
ance of quantum beats in the decay radiation. We
now generalize our theory to include the inter-
action of the atom with an external static electric
or magnetic field. The external field lifts the
degeneracy of the different magnetic sublevels of
a given fine-structure or hyperfine-structure com-
ponent thereby giving rise to new beat frequencies.
The beats observed under these conditions permit
one to measure important atomic parameters such
as Landb g factors of polarizabilities.

To determine the time evolution of the atomic
system we add to the field-free Hamiltonian Xo,
the Hamiltonian of the external interaction X,„
whose specific form differs according to whether
an electric or magnetic field is involved. In the
case of coupling to a magnetic field Bo X in the
absence of hyperfine structure can be written for
a basis of states

~
nLS) as

with a2=3b'=0 75 b'=4a =8 X10 c =5'
I 1 ' ~ 2 2 2

= 11.11 && 10; b' = 12 && 10 The ratio [k( (+00)]/
fk0P(2)(+~)] depends on the saturation parameter.
If 8=—T/T2«I, then

k(2) (+~)0
kP(2) (+~)

If T/T2»1, then

k(2) (+ ) nP2 + h 2P
kP(2)(+~} p(2+$2

0 2 2

We see in this case that the beat signal depends on
the saturation parameter of the second laser ex-
citation. The numerical evaluation of the signal
in the limit of strong pumping, leads in this case
to an amplitude modulation of 30.997p. This is to
be compared with 28.90//0 predicted by the theory
in the weak-pumping approximation. The effect
of laser saturation in this case is seen to be prac-
tically negligible. The last column of Table I
gives, for the five polarization configurations, the
value .g, of the beat-modulation depth in the ease
of strong pumping. Comparison with the weak-pump-
ing parameter g, tabulated in the adjacent column
shows that in all cases the effects of saturation
are either null or extremely small.

K. = —&s 0(L+28) (22)

where p, ~ is the Bohr magneton. In the case of
coupling to an electric field E, X., can be written
as an effective Stark Hamiltonian:

I) ~n'L'J'm')(n'L J'm'~ E S
Kex

n'S 'Z'm' En~ —E.i ~

(23)

To simplify the following analysis we let the di-
rection of the external field and not the polarization
e, determine the quantization axis OZ. VYe assume
that the external field is switched on adiabatically.
The eigenstates of the Hamiltonian Ko+X,„, de-
signated

~
Jm .),„, evolve continuously from the eigen-

states
~ Jm~) of the field-free Hamiltonian. The

time evolution of an atomic system can be deter-
mined once one knows the eigenvalues E~"
the Hamiltonian Ko+Ke, and the projections
( Jm~ ~IJ'm~, )„ofthe perturbed eigenvectors on
the base of field-free eigenvectors. If, as is as-
sumed here, the electric or magnetic interaction is
invariant under rotation about 0Z, the following
relation is applicable:

III. QUANTUM BEATS PRODUCED BY SEQUENTIAL

LASER EXCITATION IN THE PRESENCE OF AN

EXTERNAL FIELD

A. General expression for the beat signal

In the preceding sections only couplings internal
to the atom (e.g. , fine or hyperfine structure)
were responsible for the time evolution of off-
diagonal elements of the excited-state density ma-
trix (i.e. , the precession of the analogous class-

We suppose that the diagonalization of Ko+K,x

has already been effected by standard techniques,
and now consider how one uses these results to
generalize the quantum-beat signal, Eq. (18).
We reconsider the analysis leading tothe multi-
polar expansion of the signal and record below the
step at which the hypothesis of no external fields
was employed to obtain explicitly the beat fre-
quencies
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Jy JyAgg Jf'( ~)00 ' kga2

x Tr( 2 2T 'e 2' " 2~2T 2 8""o' "}
ag a2

x 22A i i(g")~&~IA~o~o( e)l202 klal
' 2 kl al 00 1 ~ (24)

I =k,"1(+~)kio"(+~)[(2j,+1)(2j/+I)] ' 'e r' [Vse of Eq. (3) for the time evolution of the irre-
ducible tensor operators in the above equations
leads immediately to Eq. (14).] To include the
external field we now replace K0 by K0+Ke& in
Eq. (24) and employ the definition of T2 to evaluate
explicitly the trace Tr:

J ll yl jill i j I

Tr g f(2k + 1)(2k I + 1 )]1/2( 1)Jg'-tn+72-m' f 2 2 . 2 ) t 2 2 2

I, -m q,
' m —q2') (-m' q, m'-q, i

x&j,"m
i e 0+ ~ ' "Ij,m')& j2'm' —q2 le"& 0"«» ' "

I
j2"m —q', & .

(26)

Sincem~ remains a good quantum number, we have m =m', and q, = q2'. By introducing the closure relations
of the

i jm z&„base and recognizing i jm~)„ to be an eigenvector of 3.'2+K,„we obtain the following
compact form for the quantum-beat signal:

I =k~'~(+ )ki2) (+ )[(2J', + I)(2j/+1)] ' 'exp[ t(e~-* a&z —„,)t] exP(- I' t}
x //A 3 2 (j»')2 2 T 2 2 (j,j,m) 2 2A 1 f(j ) 1 IA~2 0(j ),k2a2 kg 2 klal 00

2a2 2a2 k2a2
where

Z2Z2 (j ji m)
k 2a2 k2a2

[(2k +1,)(2k' + 1, )] / (-1)J2ii+z2 ~ t 2 2

i,-m q, m —q2] (-m q, m- q2j

x (j,"m
i jm&.„.„(jmij,m&(j,'m q, i

j'm -q,).„.„(j'm -q, i j,"m -q,) .

(26a)

(26b)

There now appear in the signal terms modulated
at frequencies corresponding to energy intervals
between the different sublevels i jmz&,„.

The mathematical form of Eq. (26a) can be given
a simple physical interpretation. The A coeffi--
cients describe from right to left the different ex-
citation and detection processes. The T coefficients
describe the processes of evolution within the
excited state. These coefficients appear only be-
tween A(82) and A(e, ) because only state 2 has the
time to evolve and it is this evolution that leads to
the observed quantum beats. If the laser pulses
do not follow each other in a time shot't compared
with the time evolution of state 1 (as we have as-
sumed throughout this analysis), the above form-
alism allows one to take this into account in a sim-
ple manner. One inserts betweenA(e2) and A(C, )
coefficients of the form Te'~~', where 4t repre-
sents the time interval between the two pulses.

B. Application to a particular case: Zeeman beats in the
nD levels of sodium

We reconsider now the echelon excitation of
sodium nD Rydberg states in order to examine the
effect of a magnetic field on the quantum-beat
signal. For the sodium atom, S=-,', therefore
J=I + —,

' = —,
' or 2 for the D states. The matrix

col i » P (g+ 1)=

»ALE�

(d2(L+ 1 )

with

(28a)

gaB2/k .
For immi- L ——,

' one must diagonalize a 2x 2
matrix for each value of m~. Introducing the
angles g (~0).defined by

iA i
[L(L+1)-(m+-,' )(m- —,')]'"

Q)0 +A PÃ

(28b)

(29)

effecting the transition from the field-free eigen-
states i jm~& to the perturbed eigenstates

i
jm ~)„

decomposes into submatrices of order 1x 1 or
2x2.

For im~ i
=L+—,',

i jmz)„ is an eigenvector of
K0+Kex and one has without any further calcula-
tion

iL+ ,', L+ .')., = iL-+l, L-+-')

= tL, S, mi =L, m, =-,')

IL+-.', -L- —.')..= IL+-', -L -!&
= iL, S, mi =-L, m2 =-2) . (27)

The eigenvalues follow immediately from the ex-
pression for X,„, Eq. (22) and from Eq. (27)
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with

0 &8„(e,) & r

we can express
~ Jmz)„ in the base ~LSm~m~)

by means of a simple rotation:

(L+-2, m)„=cos[-,'8~((u, )] (m ——,', —,')

Q)p . = 0 we have imme di ate ly

fL+-,', m)„=cos—', [8 (coo) —8 (0)] /L+ —,m)

+ sm —,
' [8 (&go) —8 (0)] ( L —~,m),

(31a)

~I. ——,', m)„= —sin —,'[8„((o,) —8~(0)] ~I. + —,', m)
+sin[-,'8 (v, )] (m+ —,', ——,')

f L —2, m ),„=—sin [-,'8 (co,)] f m —2, 2)

(30a) +cos-,'[8„(~,)- 8„(0)]~L ——,', m),
(31b')

+cos[!8.((g.)] )m+-,', --,') . (30b)

In the above equation it is understood that I =2,
S =-,', and only m~, m~ are therefore explicitly
shown in each vector (LSm~m~) .

Since
~
Jm~) is'obtained in the same manner for

with

The eigenvalues corresponding to the basis vec-
tors IJm~)„are easily shown to be

~I +1/2, m -~ A + &uo m a —,
'

[(Am + &so) +A'(L(L + 1 ) —(m + —,')(m —2 )) ] (32)

Figure 6 shows the variation of the energy levels
as a function of the applied magnetic field Bp.

Since the perturbed eigenvectors and eigen-
values are now known, the quantum beat signal,
Eq. (26), can be completely determined. We per-
formed this calculation numerically for the dif-
ferent Bohr precession frequencies of the system;
the results are summarized graphically in Fig-
ures 7-9 for the respective experimental con-
ditions of zero field, weak field (&uo «A. ), and
strong field (coo»A). The polarization configura-
tion is one for which e„c„and e„are parallel to
each other and perpendicular to Bp.

For the case of zero field (Fig. I), one obtains
a beat frequency corresponding to the fine-struc-
ture level separation Fs =-,'A with a very weak
modulation depth as expected. (See Table I, case
I.)

In the case of a weak magnetic field (Fig. 6), the
fluorescence is modulated primarily at the fre-
quency 2.4 p, ~Bp which corresponds to twice the
Larmor frequency of the D, ~, level. (The Lande
factor is g~ =1.2. ) The calculation shows that in
this case the signal is particularly sensitive to the
6m& =2 coherence in the D, ~2 level. [See arrows in
the low-field region of Fig. 6.] The contributions
of other coherence terms (either within the D, ~,
level or between the D,~, and D, ~, levels) evolving
at different frequencies are very weak.

The measurement of Z eeman beats in a weak
magnetic fieM therefore provides directly the
Lande g factor of the D, ~, level. In the case of a
strong magnetic field (Fig. 9), the analytic form
of the signal is

-z/pA

pIQ. 6. Energy variation of the nD sublevels as a
function of the external magnetic field. arrows indicate
the expected quantum-beat frequencies in the regions
of low field and high field.
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m=2. 5 A2w

LF . cu LF

FIG. 7. Theoretical zero-field quantum-beat signal.

f =198.15+105.55 cos(At) cos(2~at ) . (33)

The signal therefore consists of a carrier wave
at the frequency 2&, =2tl. ~B,/5 modulated at the
frequency A corresponding to the fine-structure
interaction parameter. The two frequencies ap-
pearing in the signal are indicated by arrows on the
high-field region of Fig. 6. A simple interpretation
can be given to this result in terms of the class-.
ical vector model. For a high magnetic field the
angular momenta L and 8 are decoupled and one
observes essentially the free precession of the
orbital angular momentum about the magnetic
field. This expIains the appearance of the Larmor
frequency 2tI sBJK in place of 2 4ti, sBJ R. . One must
also take into account, however, the contribution
of the diagonal part A. nz~m~ of the fine-structure
Hamiltonian AX ~ 5. This acts as a perturbation
adding to the applied field the small internal
field B'= mA~/p swhich may be positive or nega-
tive according to the sign of ~. There are there-
fore two Larmor frequencies 2p sBgh = (2p s/K)[Bo
+(A/2 p, ~)]. The sum of two cosinusoidal terms at

FIG. 8. Theoretical weak-field (ct)p «A) quantum-beat
signal.

these frequencies gives the frequency dependence
of Eq. (33):
cos [(2p s/ft)(B, +A/2 p s)t]

+ cos[(2p, s/S)(BO A/2p, s-)t]

= 2 cos(At) cos (2 pslft)BQ, ) .

The above quantum-beat experiment suggests a
new way to measure the fine-structure interaction
constant. Instead of measuring the beats in zero
field, one applies a strong field to decouple L and
8 and measures the frequency of the envelope of the
Zeeman beats (Fig. 9). As seen from the par-
ticular case treated here, there is a marked en-
hancement in the signal-to-noise ratio.

IV. CONCLUSION

The theory of laser-induced quantum beats in-
troduced in paper I has been further developed to
include the effects of echelon excitation by several
lasers for field-free atomic systems as well as for
atoms subjected to external static fields. A de-
tailed study was made of the dependence of the

LF

2x/A
FIG. 9. Theoretical

strong-field (+p»A) quan-
tum-beat signal.
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quantum-beat signal on the polarization configura-
tion of the exciting light and the detected Quo-
rescence. The use of spherical tensor operators
permitted one to show the explicit angular de-
pendences of different multipolar contributions to
the signal. When evaluated within the framework
of the linear or weak-pumping approximation,
the signal was expressible in a mathematical form
easily interpreted in terms of the different excita-
tion and detection processes involved and easily
generalized to include any number of laser excita-
tions. Application of the theory to systems of ex-
perimental interest showed in the case of two-

laser excitation that greatest amplitude modula-
tion of the fluorescence occurred for orthogonal
laser polarizations. A reexamination using the
rigorous results of the general theory showed that
laser saturation effects modified the weak pump-
ing calculation to a very small extent. The analy-
sis of Zeeman beats produced by echelon excita-
tion of sodium zDRydberg states in the presence
of a magnetic field led to a new experimental idea:
the measurement in high magnetic field of the
frequency of the envelope of the quantum-beat sig-
nal as a means of determining the fine-structure
interaction parameter.
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