
PHYSICAL REVIEW A VOLUME 18, NUMBER 4 OCTOBER 1978

General theory of laser-induced tluantum beats. I. Saturation effects of single laser excitation
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A general theory of quantum beats induced by pulsed-laser excitation is presented. The theory 'accounts for
laser saturation effects such as stimulated einission from the excited atomic state during passage of the. light
pulse and light-induced atomic-level displacements. Under certain experimental conditions saturation may
result in a modification, sometimes even in a regeneration, of the beat amplitudes.

I. INTRODUCTION

The application of tunable dye lasers to high-
resolution atomic and molecular spectroscopy has
led to new spectroscopic techniques that substan-
tially reduce or entirely avoid the Doppler broad-
ening of spectral lines. Laser-induced quantum-
beat spectroscopy' is one of these techniques that
is particularly promising for the study of highly
excited atomic and molecular systems (Rydberg
systems).

Succinctly described, the quantum-beat effect is
an amplitude modulation of the resonance fluores-
cence of an atom or molecule suddenly prepared
in a coherent superposition of excited states. The
beats are a consequence of the interference be-
tween the different quantum-mechanical transition
amplitudes governing' the decay of the system from
the excited superposition state to some final lower
state(s). A single atom or molecule is therefore
capable of manifesting this interference phenome-
non. Under suitable experimental conditions fluo-
rescence from an ensemble of such systems will
also exhibit these modulations; i.e., there will be
no averaging out in time of the single-system beat
pattern. This effect has been produced by a wide
variety of excitation mechanisms (pulsed optical
excitation, electron bombardment, collisional ex-
citation with a thin foil, etc.) and has been ob-
served in decays from a variety of excited states
(fine-structure beats, hyperfine-structure beats,
Zeeman beats, etc.).'

The quantum-beat frequencies correspond to the
energy intervals (i.e., the classical Bohr preces-
sion frequencies) of the excited states comprising
the superposition state, and therein lie the advant-
ages of the quantum-beat effect for high-resolution
spectroscopy. (i) The technique is conceptually
simple and versatile; once excited, an atom
"rings" out its characteristic spectrum, ' no scan-
ning of static or rf fields is necessary. (ii) The

observed quantum-beat signal is that of a freely.
decaying system; however intense the excitation
may be it does not affect the atomic evolution dur-
ing the measurement time; the measured frequen-
cies therefore need no correction for signal broad-
ening or shifting.

With the addition of high-power pulsed-dye las-
ers as the source of excitation, other experiment-
al advantages become immediately apparent. (iii)
The wide range over which such lasers can be
tuned makes possible the excitation of a very large
number of uv, visible, and ir transitions. (iv) The
high power of pulsed lasers makes it possible to
saturate even weakly allowed transitions. (v) Two
or more lasers used sequentially can reach by a
stepwise process excited states of the same parity
as the ground state.

The last three advantages make it possible for an
experimenter to select virtually any Hydberg state
of interest or study with facility an entire series
of Rydberg states.

There is also the theoretical advantage that the
quantum-beat signal from a system prepared by
optical excitation can be completely determined by
mathematical analysis (in contrast, for example,
with the beam-foil quantum-beat signal for which
details of the collisional interaction, still unknown,
would need to be furnished). This complete theo-
retical description is necessary for both optimum
experiment design and signal interpretation.

Since there is a close analogy between the phe-
nomenon of quantum beats and other manifestations
of atomic resonance fluorescence, the theoretical
methods applied in the past to the treatment of
double-resonance or level-crossing experiments
are applicable to the description of quantum beats. -

In fact, the theory of quantum beats is implicitly
contained in the classic work on dispersion theory
by Breit. ' Specific calculations of the quantum-
beat signal have subsequently been performed for
optical excitation of atomic and molecular systems
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under different experimental conditions. ' In all
these calculations it was assumed that the optical
excitation was too weak to saturate the atomic
transition during the pulse duration. This is called
the weak-pumping approximation. - Looked at from
a different perspective, these are all first-order
perturbation theories in the sense that the atomic
system interacts at most once with the exciting
radiation, i.e., the atom absorbs a single photon
during the passage of the optical pulse. Thus it is
also known as the linear absorption approximation.

While valid for classical light sources, the linear
absorption approximation is no longer a priori
justified when high-power pulsed lasers are used
as the light source. In the latter case the intensity
can be sufficient to saturate completely the atomic
transition during the very brief pulse duration,
thereby giving rise to higher-order effects. First,
during the passage of the light pulse the atom will
be driven back and forth between the ground and
excited states by processes of photon absorption
followed by stimulated emission. Second, if the
exciting light beam has an asymmetric spectral
profile or is not centered exactly on the transition
of interest, it will displace the atomic energy lev-
els. These processes can modify the amplitude
and phase of the ensuing quantum beats.

In this article and the following one we present
a general theory of laser-induced quantum beats
including the effects of laser saturation, echelon
excitation by several lasers, and simultaneous
application of external static fields.

This theory is valid within tQe relatively nonre-
strictive limitation of a broad-band pulse excita-
tion. This latter condition is realized in most
quantum-beat experiments. It permits the theory
to be formulated within the framework of the clas-
sical optical pumping cycle first developed by Bar-
rat and Cohen-Tannoudji' for weak-light sources
and subsequently generalized by others' for con-
tinuous lasers.

In this first article, which is divided into two
main parts, we consider the theory of quantum
beats induced by a single-laser excitation in the
absence of external static fields. The first part is
devoted to a description of the time evolution of the
excited atomic systems and a derivation of the
quantum-beat signal. To make the physical inter-
pretation of this calculation more apparent we ex-
amine in the second part the effects specifically
tied to saturation for the simple case of a three-
level atom.

In the following article the theory is generalized
to include echelon excitation by more than one las-
er and the addition of external fields. These more
complex quantum-beat experiments whose results
are completely contained in the theory to be pre-

FIG. 1. Representative three-level atomic system
with sublevels. Laser excitation induces transitions
from g to e. Modulated fluorescence occurs in spon-
taneous decay from e tof. Beat frequencies are deter-
mined by energy level separations within the e multi-
plicity.

sented permit one to infer not only energy-level
separations, but other important parameters char-
acterizing Rydberg states such as g factors, po-
larizabilities, and the magnitude and sign of in-
ternal interaction parameters.

II. GENERAL THEORY OF SINGLE LASER-INDUCED
QUANTUM BEATS

A. Determination of signal in terms
of the excited-state density matrix

ii
I-luoreecent

T=1/I e 2T

I'IG. 2. The laser-pulse duration is short in com-
parison to the excited-state lifetime. Thus the detected
signal is well separated in time from the exciting radia-
tion.

Consider an atomic system composed of three
groups of states ~g), ~e), and

~ f) (see Fig. l),
and let P„P„and P& be the respective projec-
tion operators onto these states. In a quantum-
beat experiment the atoms are excited from

~ g) to
~e) by means of a light pulse; after the passage of
the pulse one observes the fluorescence emitted
with a given polarization e, in the transition ~e) to

~ f). The duration of the light impulse T must be
small in comparison with the excited-state lifetime
1/I', in order that the preparation of the excited
states and the detection of the decay radiation be
well separated in time (see Fig. 2).

The existence of a multiplicity in the levels of
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the state ~e) is essential to the experiment since
the observed beats result from interference of the
quantum-mechanical transition amplitudes for
spontaneous emission out of the sublevels of the
excited state. The existence of structure in the
lower states

~ g) and
~ f) is not essential to the ap-

pearance of single-atom quantum beats. ' To be
complete, we mention that with the framework of
@ED there is the possibility of quantum beats orig-
inating from lower-state splitting if there is an in-
terference of decay amplitudes from two or more
atoms. ' This is to be contrasted with the phenom-
enon under discussion manifested by individual
atoms.

Although not essential to the appearance of quan-
turn beats, the orientation or alignment of the low-
er-state multiplicities can affect the phase and
amplitude of the beats. The energy resolution of
the detected radiation, and hence the number of
final states entering into the decay process, may
also affect the beat signal. For these reasons we
treat the most general case of three states de-
composed into sublevels.

The signal observed in a quantum-beat experi-
ment is the intensity I(e~) of the light spontaneous-
ly emitted in a given direction with polarization ~„.
This intensity can be simply expressed in terms of
the density matrix of the atomic system o (f) and a
detection operator 0d«(c„) as follows:

I (e,) =KTr[(r(t)e~„, (c,)], (l)

with

8 de)(Eg) =P,c„~DP/cg DP, .

The constant K depends on the solid angle of ac-
ceptance of the detector, the distance of the detec-
tor from the decaying atoms, and other geometric
factors. As a scalirig factor it does not affect the
form of the quantum-beat signal and will hence-
forth be disregarded. D is the angular component
of the electric dipole operator 6 of which D„ is the
radial part:

S=D„D.

~g+e+ ~~0 / e eee e o ee e (4)

and leads to an optical signa1.

1(p~) = Tr(P, e '~o' o+e' O' "P,Og„(e~)) e ". (5)

From the mathematical form of Eq. (5) one clearly
sees that superposed on the exponential decay are
modulations of the fluorescence at the various
Bohr-precession frequencies of the excited state.
The amplitude of each Fourier component of the
beat signal depends on the elements of the matrices
ader and 0 '. The elements of 8~«are easily deter-
mined once one has decided upon the spectral con-
tent and polarization of the detected radiation. The
elements of a', however, must be obtained by sol-
ution of the optical-pumping equations generalized
to include pulsed-laser excitation. We consider
these equations in Sec. II B.

matrix

(r =(7(- ),
which depends on the initial conditions such as ini-
tialorientationor alignment in the state

~ g). After
the optical excitation the system is characterized
by the density matrix

o
+ = g (+ oo) .

The effect of the laser pulse is entirely known if
one can determine the time evolution of cr into
O'. This will be discussed in Sec. II B.

A useful expression for the quantum-beat signal
is obtained by substituting for v(t) its equivalent
in terms of v(t) The. finite lifetime of the excited
states can be adequately accounted for phenomeno-
logically by a factor e &', where 1', is a diagonal
matrix whose elements are the inverse lifetimes
(decay rates) of the levels in the excited manifold.
This procedure is justified by @ED"and is applic-
able even if the atomic system is subjected to ex-
ternal fields. " The time evolution of the density
matrix (projected onto the manifold of excited
states) is therefore given by

In determining the time evolution of the atomic
system, it is convenient to eliminate from the
equations of motion the explicit appearance of the
field-free Hamiltonian K, by means of a trans-
formation into the interaction representation. The
transformed density matrix is

g(f) e+iOCPtlh (f)e gÃpt/0

8(t) is independent of t before and after the pass-
age of the light pulse. Before the optical excita-
tion the system is characterized by the density

B. Equations of optical pumping for an atomic system excited
by a pulsed laser

The equations of optical pumping were originally
established by Barrat and Cohen- Tannoudji for the'
case of excitation by a weak broad-band continuous
light source. ' Other authors have subsequently
generalized these equations to include continuous
pumping by intense laser excitation. ' In all these
theories the different parameters characterizing
the excitation rate (pumping time) are constants.
It is nevertheless possible to describe within the
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framework of the optical-pumping equations the ef-
fects onan atomic system of pulsed-laser excita-
tion. The various pumping times then become
functions of time and are inversely proportional to
the instantaneous intensity of the light pulse eval-
uated at the frequency Q, =~„(the Bohr-preces-
sion frequency characterizing the ground-state-
excited-state separation).

In what follows we present the optical pumping
equations generalized to puLsed-laser excitation
and discuss the physical significance of the result-
ing terms.

Let o, and p, be the partial-density matrices ob-
tained by projecting 0 onto the manifold of excited
and ground states, respectively,

&e PeaPe ~

The system of equations coupling 0, and o, can be
written as

[Ko, o,],, P,e DP~(r~P~e ~ DP,

T»I/a-=~, ,

Tp » 1/6,
(8a)

(8b)

T = 10 'sec&T~(t) = 10 "sec&7= 10 "sec.

where 6 is the spectral width of the pulse and T
is the pulse duration. The inverse of the spectral
width is the correlation time of the field, a mea-
sure of the time interval over which the field phase
is well defined. The physical significance of Eq.
(8b) is that the phase of the incident optical pulse
undergoes many random fluctuations over the peri-
od of time required to pump the atom out of its
ground state. Equation (8b) also places an upper
limit on the pulse intensity beyond which the Eqs.
(6) may no longer be valid. The above conditions
are not too restrictive and are generally satisfied
in standard quantum-beat experiments. If, for ex-
ample, one uses a N, laser-pumped dye laser of
a few hundred watts peak power, the various time
parameters are, for a.well allowed pumping tran-
sition, of the order

, )
[P,e DP, c* DP„o,],

2&p(t

—i aE(t) [P,e ~ DP, e*~ DP„o,], (6a)

'= --[X„~,]—,
)

[P,~ DP.~ DP„o„],

+it E(t)[~,~+ DP,~.D~„o,]

with

&ac+,
)

Pge *.DP, o, P,c DPg,
Tp(t

(6b)

T (t)
=

~., F(t, QO)l(D„) gl

AE(t)= l(D ) ):I tf
& dv

1 , " 6'(t, (u)

0) —00

(6' signifies the Cauchy principal value),

P)ta)) = f(g(t))) "(t,—v)) e' 'dv,

where

(Va)

(vb)

(D,).g = &elD, I g),
$(t) = 8(t)e is the electric field of the exciting ra-
diation, and ( ) signifies a time average.

T~(t) is the excitation rate or pumping time and

is a measure of the ground-state lifetime.
dE(t) is a laser-induced energy-level displace-
ment. The function 6(t, ~) is the spectral) density
of the electric field, i.e., the Fourier transform
of the electric field autocorrelation function.

The equations governing the time evolution of the
density matrix, Eqs. (6a) and (6b), are valid as
long as

In deriving the density-matrix equations, Eq. (6),
we have also made the assumption that the Bohr
precession frequencies in the states le) and l g)
are small in comparison to A. This assumption is
not essential; it simplifies the analysis, however,
by leading to a unique pumping time and level shift
for all the sublevels of a given manifold. The
added complication of T~ and AE varying with the
sublevels, can be easily incorporated into the theo-
ry.

The physical significance of the terms appearing
in Eqs. (6a) and (6b) is clear. The first term of
the equations represents the free evolution in time
of the two states concerned. The terms depending
only on the elements of ground-state density ma-
trix a represent the effects of optical absorption.
This process populates the excited state at. a rate
proportional to I/T~(t) with an angular anisotropy
given by the product of operators

P,eo ~ Pg g~P~e*o ~ P, .

It also serves to depopulate the ground state at a
rate proportional to -I/2T~(t) and displace the dif-
ferent sublevels of lg) by an amount AE(t). The
terms depending only on the elements of the ex-
cited-state density matrix 0, represent the effects
of stimulated emission. This process is symmet-
ric to that of absorption; it serves to populate the
ground states and to depopulate and displace the
excited states.

No partial-density-matrix elements of the form
o„or o„appear in Eq. (6). These optical coher-
ence terms which represent a macroscopic dipole-
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moment precessing at optical frequencies vanish
when averaged over a time interval long in com-
parison to the correlation time of the field 7,.
Prom Eq (.8) we see that all relevant time param-
eters are much longer than 7, for broad-band ex-
citation.

We consider next the application of the general-
ized density-matrix equations to a simple atomic
system in order to see clearly the effects of laser
saturation on the quantum-beat signal.

III. EFFECTS OF LASER SATURATION
ON THE QUANTUM-BEAT SIGNAL

OF A THREE-LEVEL ATOMIC SYSTEM

before the laser excitation are

x =x(-~)=l,
ya =ye =z

(9b)

The quantum-beat signal, Eq. (5), is a function
of the density-matrix elements y,', y,', z', z*' which
characterize the state of the atom after passage
of the pulse and takes the form

f =[n'y', +P'yt, +nP(z'+z'*)costs, ~t] e ". (10)

To calculate I explicitly we must first solve Eqs.
6(a) and 6(b) to determine the time evolution of the
density-matrix elements. For the system under
discussion the equations reduce to

The system under consideration consists of three
states, a nondegenerate ground state I g& and two
excited states Ie, &, Ie, & separated by an energy in-
terval h&u, r, . (See Pig. 3.) Both excited states have
a lifetime 1/1;. The matrix elements for optical
excitation with polarization e are given by

a —= &eel& ' DI g&, tr —= &er, le ' 5I g& .

gy 1, ~ abz abz*
dt Tq(t) ' 2 2

—ibE(t)ab(s* —z),

dy, 1 , , abz abz*
dt T~(t) ~ 2 2

—ihE(t)ab(e —z*), (11b)
Likewise, the matrix elements for spontaneous
radiation with polarization e„are given by

n= &e lee'Dlg& r p= &er If''Dlg&.

To simplify the analysis we let a, b, n, and P be
real.

The detection operator, Eq. (2), expressed in a
matrix representation takes the form

fn
, I

~

InP O' r

The density matrix of the atomic system has four
independent elements which we label as follows:

a'+ b'
2

Qz ab ab
dt Tp(t) 2 ' 2

abx ——y ——y, —

—i&u,~e —ibE(t) [ab(y~ —y,)+(a' —b')z] .

(1lc)
If we assume weak pumping (T/T~«1) and short

pulses (&u,„T«1) we can neglect in the right-hand
side of the above equation all terms involving the
elements of o, . This is the linear-absorption ap-
proximation. The equations can then be immediate-
ly integrated to give a'„ the density matrix after
the pulse passage:

x agg

y, —= &e, lc, le, &; yr,
—= &e, lv, ler&,

~ -=&e.la, ler, &
= &er, l ol e&*

(9a)

+
a' ab

I

=k,(+ )
iz*' y~ i ab O' J

where

(12a)

The initial conditions characterizing the system
dt'

T,(t )
(12b)

ea
eb

I b

II

I

or 3r

The quantum-beat signal in the linear-absorption
approximation is

I, = 0,(+~)[ n'a'+ P'b'+ 2 nP ab cos ts, ~ t ] e

(13a)

The signal shows the appearance of beats at the
frequency u),~ with a modulation depth g, given by

q, =2nP atr/(n'a'+ P'b') . (13b)
FlG. 3. Simple nondegenerate three-level system. The

excited-state density matrix depends on transition-mat-
rix elements a and b. The detection matrix depends on
elements o. and p.

The above equations can be applied to the case
of Zeeman quantum beats for a J=0 to a J=1 tran-
sition when both the excitation and detection radia-
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tion are polarized perpendicular to the external
static magnetic field. Only the sublevels J=1,
m~ = a 1 are excited and the signal in the linear-
absorption approximation is given by Eq. (13) with
a = b and o. = P. This leads to a modulation depth of
100% '~

In what follows we consider the solution to Eqs.
(11a)-(11c)for different experimental conditions
in which the effects of saturation are present
during the passage of the pulse and compare the
true quantum beat signal I to the linear-absorption
signal I, in order to evaluate the importance of
these effects.

I

A. Saturation in the case of a short-pulse excitation

~a'
o,(t}=k(t) '

(ab b' I

where

(14a)

k(t)=
2 b

~1 —e,— &t' ~. (14b)
1 ( ' 2(a'+ b2)

The matrix o", which characterizes the system
after the passage of the pulse is

y+ @+$ a' abb

y, i &ab b2 i
(14c}

Assume the pulse duration T to be very short
compared to the Bohr precession period 1/&o, ~

and the effects of light shifts to be negligible:

&o,~ T «]., (b,E)T«1 .
We can therefore drop from Eqs. (11a)-(11c)
terms in which ~„and &E appear. The resulting
differential equations, with the initial conditions,
Eq. (9b} taken into account, can be solved exactly
to yield

be described as a sequence of absorption and
stimulated emission processes taking place on
the average every T~ seconds. In the weak-
pumping approximation T«T~ (S «1), one con-
siders only the first absorption process which,
starting from the ground state ~g), creates the
excited-state populations y, and y, and the co-
herence z proportional to a', b', and ab, re-
spectively. For an intense pulse T»T~ (S»l),
many such sequences of absorption and stimulated
emission can occur during the passage of one
pulse. Stimulated emission destroys y„y„and
s in the same proportions as absorption creates
them, and therefore cannot change the relative
proportions of the excited-state populations and
coherence. The modulation depth of the beat
signal is therefore unaltered. Only the overall
efficiency of excited-state preparation, contained
in the factor k(+~), depends on the pulse intensity.

For a system with a more complex level struc-
ture than that of the three-level atom envisioned
above, the effects of saturation can change the
form of the quantum-beat signal. As an example,
consider an atomic system with a pair of ground
states, each one coupled by the polarization t
and c~ to a distinct pair of excited states (Fig. 4).
That is, ~g) is coupled to ~e,) and ~e,) by c and

c„with excitation matrix elements a and b and
detection matrix elements n and P, respectively.
I.ikewise, ~g') is coupled to ~e,') and ~e~) by the
excitation and detection matrix. elements a', b'
and n', p', respectively.

Each of the two subsy-stems envisioned is anal-
ogous to the three-level system originally treated.
Since these subsystems are uncoupled, the ex-
pression for the quantum-beat signal is obtained
by adding the contributions corresponding to each
subsystem:

I=k(+~)(e'a'+ p'b'+2npab costa, ~t) e r"

and leads to the quantum-beat signal

I= k(+ ~)(a'n'+ b'|3'+ 2 cPab costs, ~t) e "~' . (15)

+ k'(+ ~)(n "a~+P ~b"
+2n'P'a'b' cosurz~t)e re', (16}

If the pumping is weak, k(+~) is equal to k, (+~)
as is easily verified by expanding- to first order
the exponential in Eq. (14b). If the pumping is very
strong, k(+~} reduces to —,'(a +b') ' and is in-
dependent of T~(t). From Eqs. (15) and (13) we
see, however, that, regardless of the pumping
strength, the signals I and I, are proportional.
In particular, the modulation depth is totally in-
dependent of the saturation parameter

ea
I

ez et,
'

The physical significance of this result is easy
to understand. The evolution of the system can

FlQ. 4. Complex six-level system composed of two
uncoupled three-level systems. If corresponding transi-
tion-matrix elements in each three-level system are
unequal, the quantum-beat line shape depends on the
saturation $= T/T&.
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where k(+ ~) is given by Eq. (14b) and k'(+ ~) by a
similar expression involving a', b' instead of a, b.

In the weak-pumping limit both k(+ ~) and k'(+ ~)
are equal to k,(+ ~). For strong pumping they are,
respectively, equal to —,'(a'+ b') ' and —,'(a" + b'2)-".
If a'+b'g a'2+b", then the ratio k(+~)/k'(+~), and
therefore the modulation depth of the two compo-
nents at frequencies ~„and ~,„„depend on the
saturation parameter T/T&.

In general, this saturation effect is,very small.
For many atomic systems the exact calculation
of the modulation depth of each spectral compo-
@.ent differs by only a few percent from the results
of the weak-pumping approximation. Figure 5
illustrates this point in the case of quantum beats
observed from sodium Hydberg states where the
following parameters are applicable:

a' = & = 2 && 10 a"= a. '2 =,0.222 x 10

P2 8 x 10-~ bi2 Pr2 12 && 10-a
gb g0 bt ~

the excited-state Bohr precession periods
(~„T~ 1) then Eq. (11c)for the coherence z in
the weak-pumping limit becomes

dz ab
dt T~(t)

This can be directly integrated to give

'f (4gb (t t )
z(t) = sb dt '

Oo

which leads' to
+ ~ ~-icogbt'z' =z(~) =ab dt'

T (t')

The populations y', , y', are, in the weak-pumping
limit, independent of ~„and are therefore still
given by Eq. (14c). The quantum-beat signal in
the linear approximation has the form

The two signals I and Io, given by

I, =(1+0.1760 cos&o„t)e r~' (no saturation),

I= (1+0.1956 cos ~,I t)e r e' (with saturation),

and shown, respectively, on Figs. 5(a) and 5(b),
are barely distinguishable.

I,(ur„) = [k,(+ ~)(n'a'+ p 'b')

+2k„(+~)nP ab cos(u„t j e rs',

with

+ ~ ~-i~qbt'
k~ (+ +&) = dt

T (tP)

(18a)

(18b)

8. Saturation in the case of a long-pulse excitation

L Weak-pumping limit

We consider first the results of the weak-
pumping approximation as a basis for comparison
with the somewhat surprising results of saturation
predicted by the general theory. . If the length of
the pulse is no longer negligible in comparison to

which is the Fourier transform of the pulse pro-
file at the beat frequency &o,~. [Note: 1/T~(t) is
proportional to the pulse intensity P(t, Q,).] For
the time-independent or "dc" component of the
beat signal, we see that k,(+~) is the Fourier
transform at frequency 0.

The modulation depth, now a function of ~,» is

FIG. 5. Theoretical
quantuxn-beat signal for the
six-level system of Fig.
4: (a) in the limit of weak
pumping; (b) in the limit of
strong pumping. Matrix
elements are chosen to be
g2 (y2 2 pg ]p 2 Q2 p2
= 8.p& 1p -2, a'2 =e' 2 = p.2p2
~ yp-2 Q'2=p'2= $2.pX gp-2

withe b =~,tb .
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given by

'„.,(+~)
k,(+-) (18c)

From the form of Eq. (18b) we see that k„(+~},
and therefore the modulated component of the
signal, decreases as ~„becomes of the same
order or larger than 1/T. The contributions to
the signal from each differential time interval dt'
destructively interfere when spread over a total
interval T greater than that of the period of the
beats one is trying to observe. This property is
well known and imposes an upper limit of -1/T
to the frequency of beats that can be observed.

In the case of intense pulse excitation this con-
clusion is no longer necessarily true.

2. Strong-pumping limit

If the linear approximation is no longer valid and
the pulse duration no longer negligible, the entire
set of coupled equations (11a}-(11c)must be solved
as they stand. Let us disregard for the moment the
light shifts and therefore set 4E =0. This is al-
ways possible if one consider a symmetric excita-
tion profile centered on the optical-transition fre-
quency. This simplification still does not permit
the eigenvalues of the determinant associated with
the system of e iuations (1.'; to be cast into a sim-
ple, physically interpretable analytic form. For
this case we have assumed a Gaussian pulse pro-
file

(ny}'= ((u„T»}2(T/Tp) =(o2» T~ T. (19)

In order for the pulse to generate a substantial
coherence in the excited state the following con-
dition must be satisfied:

(np)'= sP, » T»T ~1. (2o)

This effect can be understood qualitatively in
terms of a random-walk problem. We have pre-
viously described the time evolution of the atomic
system as a succession of absorption and stimu-
lated emission processes each occurring on the
average every T~ seconds. When the atom is in the
excited state, the coherence z precesses at the
frequency co,, This precession is interrupted by
a stimulated emission-process coupling z to the
ground-state population x. When a subsequent
absorption process occurs it renews the excited
state (both population and coherence) and the
precession of the coherence can now take place
either in the original sense (x coupled to z) or in
the opposite sense (x coupled to z*). During the
passage of the pulse the number of elementary
absorption and emission processes is of the order
T/T». During each of these processes the varia-
tion of the coherence phase (i e. , the rotation
angle of the analogous classically precessing di-
pole) is of the order &u„T». (We assume the satu-
ration is sufficiently large that ~„T~«1.) The
phase dispersion during the passage of the pulse is
the root mean square of these individual phase vari-
ations:

1 t'In2)
T,(f) ' (T/2)'i '

and determined the solution to E'Is. (11}by com-
puter. The parameter ~, determines the saturation
parameter

LF

P fI)fl
(s=eooo

The excitation and detection-matrix elements are
a=h=n=P =1and an energy-level separation was
chosen for which ~,»T = 5. Figure 6 (lower trace)
shows the signal. I(t) for a saturation parameter

dt
T,(f)

For this case of weak pumping the modulation
depth is small as predicted by the analytical so-
lution of Sec. III B 1. Figure 6 (upper trace) shows
the signal I(t) for the very substantial saturation
parameter S =40oo. The result is surprising in
that the modulation depth of the beats is important
even though the pulse duration is large in compar-
ison to. the period of the beats.

S=0.1

I I I I I I I I IJ
O 2 C 6 8

FIG. 6. The quantum-beat signal as a function of the
saturation $= T/T& for a simple three-level system in
the limit of long-pulse duration. Theoretical para-
meters are a = b = 0.= p= 1; (d~g, T= 5; I e = 0.
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This is equivalent to

8= T/Tp ~ ((o~~T) (21)

Hence even if the pulse duration is long (&o,~ T» 1),
as long as Eq. (21) is satisfied it is possible to ob-
serve quantum beats in the fluorescence signal.

Looking at this from a different perspective, the
effect of saturation is to slow down the coherence
precession rate, and thereby prevent the des-
tructive interference from washing out the beats
during the passage of the pulse. After the passage
of the pulse the precession resumes its normal
rate, and the modulation of the fluorescence oc-
curs at the frequencies characterizing the energy-
level structure of the field-free atom.

To our knowledge no experimental observation
of saturation regeneration of quantum beats has
yet been observed because of the high value of the
saturation parameter 8 required (S&100). How-
ever, the effect of saturation-induced slackening
of the coherence precession has been observed
in other types of optical-pumping experiments
as, for example, in the Hanle effect. '~

C. The effect of light shifts

We consider as a final case the effects on the
quantum-beat signal which may be produced by
light-induced energy-level displacements during
the optical excitation. In order to isolate this
effect from the previously studied saturation ef-
fects tied to pulse length, we assume at first that
the free precession of the atom during the pulse
passage is negligible (&u„T«1).

It may seem plausible that if the light shifts are
large and different for each sublevel of the excited
state, the dephasing of the atomic coherence during
the passage of the pulse would lead to the disap-
pearance of the quantum beats. This reasoning is
deceptive, however. One can show rigorously that
regardless of the magnitude of the displacement,
and even if (nE)T»1, there is no effect of the
light shifts on the signal for the assumed experi-
mental conditions. This result follows from in-
tegrating the density matrix equations, Eqs. (lla)-
(llc) in which &u,~=0. The solution y'„y,', z ob-
tained for I;=+ ~ is independent of ~.

The above result can be understood from a con-
sideration of the symmetry of the original density
matrix equation (6a). The light shifts in the ex-
cited state are described by an effective Hamil-
tonian

LEPER DP Z+ ' D P~,

which has exactly the same structure as the pro-
duct of operators

(1/Tq)P, e 'DP~agPg i* 5P,

that govern the preparation of the excited state by the
light pulse if Ns ground state is isotropic (i.e. , o
proportional to P ). The atomic system is there-
fore prepared by absorption of an optical photon
in an eigenstate of the effective Hamiltonian gov-
erning level displacement. In other words, the
optical excitation can only effect a longitudinal
pumping (i.e., create a population) in the basis
of eigenstates of the displacement operator. In
no case can it prepare atomic coherences which
evolve in time at frequencies of the order of ~/h
during the passage of the pulse, even if (~)T is
large. Therefore saturation effects tied to light
shifts are in this case rigorously null.

The above reasoning is no longer valid if (d, ~T
~ 1. It is then necessary to consider the contri-
butions of both the atomic Hamiltonian and the
effective light-shift HamQtonian to the evoluti. on
of the excited state during the pulse passage. The
effective Hamiltonian no longer imposes its direc-
tion of quantization. The quantization axis for
energy eigenstates depends on the relative mag-
nitudes of ~„and bS' and, in addition, varies in
time. Jf the atomi. c system is more complex than
the one studied here and is characterized by a non-
diagonal ground-state density matrix, then the
pumping operator P,& ~ DP o~P i~ ~ DP, need no
longer have the same symmetry as the effective
light-shift Hamiltonian. The optical excitation
could then effect a transverse pumping (i.e., cre-
ate coherence terms) during the passage of the
pulse even for +„=O.

Those cases for which light shifts play a role
in the determination of the quantum-beat signal
are generally complicated situations in which
other saturation effects are involved as weQ. The
manifestation of these effects generally requires
particular experimental conditions (such as light
pulses with strong nonresoQant spectral compon-
ents) not likely to be realized in an actual quantum-
beat experiment.

IV. CONCLVSION

We have presented a general theory of laser-
induced quantum beats that takes into account
nonlinear atom-field interactions such as stimu-
lated emission from the excited state or light-
induced level shifts. Detailed examination of these
saturation effects has shown them to be in general
very small. Two effects in particular were pointed
out: (a) A short excitation (v,~ T«1) by an intense
pulse (T/T~» 1) can modify the amplitudes of the
beat components; and (b) a long excitation (&o,~T» 1) by a very intense pulse (T/T~» ur', ~

T~) can
restore the beats which would be averaged out
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under weak pumping. The latter effect has not
yet been observed. For most quantum-beat ex-
periments the effects of saturation are negligible
and the preparation of the excited atomic states
can be adequatley determined within the weak

pumping or linear approximation.
In the following article we generalize our cal-

culation to include the preparation of excited atoms
by sequential laser excitation and the effects of
external static fields.
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