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Retardation effects on high Rydberg states: A retarded R polarization potential
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The finiteness of the speed of light is known to change the long-range interaction of atomic systems.
Stimulated by recent advances in precision measurements of high Rydberg states, we consider these
"retardation effects, " not on the interaction of two separate systems, but on the energy eigenvalues of the
high Rydberg. states of an isolated heliumlike ion, where the outer electron has quantum numbers n & 1 & 1,
and where the core—the nucleus and the inner electron —is in its (spherically symmetric} ground state. We
analyze the time-ordered Feynman-like graphs that contain one or two instantaneous or transverse photons,
and find a retardation correction, 11e gaia&/(4m mcus '} to the leading (—e 'ad/2R }polarization potential;
ad is the static electric dipole polarizability of the ion core, and R is the nuclear —outer-electron separation.
The correction is also applicable to scattering problems, to high Rydberg states of atoms and ions with more
than two electrons, and, with m~m„, to a muon bound to a nucleus. Very recently, Bernabeu and
Tarrach used dispersion theory to obtain an identical term as the retardation correction for the interaction of
a charged particle with a neutral polarizable system; their procedure is not applicable, as it stands, to the
present situation.

I. INTRODUCTION

The study of long-range electromagnetic inter-
actions in atomic and molecular systems hps had
a long and noble history. " In addition to the
Coulomb 1/R potential itself, there are other long-
range potentials which have their origin in Coulomb
and transverse photon interactions. In the nine-
teenth century, Van der %aals' asserted that the
experimentally observed deviations from the ideal
gas 1am indicate that there should be an attractive
force at large distances between neutral atoms.
In 1930, London4 gave a quantum-mechanical basis
to this interaction. Considering only the electro-
static interactions, he showed that the interaction
between two hydrogen atoms, each in its ground
state, behaved as 1/Re for distances large com-
pared to the Bohr radius ao.

In a classic paper in 1948, Casimir and Polder'
demonstrated that the inclusion in the formalism
of retardation, that is, of the finiteness of the
speed of light, , changed the very large R depen-
dence of the potential to R '. The theoretical
work' ' which followed, using a variety of different
approaches, extended and confirmed the A ' de-
pendence predicted by Casimir and Polder. This
fascinating prediction has not yet been detected in
experiments involving a pair of atoms, but there
is experimental evidence indicating that similar
retardation effects are present in bulk matter. '
The Casimir-Polder result states that the interac-
tion between two neutral hydrogen atoms each in
its ground state behaves as"

V„(R)- —(23ac/4~)o, ,(1)o,„(2)/R' (l.l)
as R-~, where n~(i) is the static electric dipole

V„.,~(R) 3ao P „„~Q~/R', (1.3)

where P„„dwill be defined later.
In addition, there mill be corrections originating

in retardation effects if the motion of the point
particle is taken into account, (There is no retar-
dation effect if the point particle is at rest, even
though the particles in the polarizable system are
in motion; the relativistic interaction of two
charged particles reduces to the Coulomb interac-
tion if either particle is at rest. ) For very large

polarizability of the ith atom. This is not an ad-
ditive correction to the Van der %aals interaction,
V«„(R), but a basic change in the interaction.
Note that t.- appears in the numerator in Vcp."

There are also well-known long-range potentials
between a charged system and a neutral polarizable
system, and between charged systems one or' both
of which are polarizable. If, for example, we have
a point particle with a charge Q, and a system with
charge Q, and static electric dipole and quadrupole
polarizabilities o.,(2) and n, (2), respectively, the
asymptotic intera, ction, in the adiabatic approxi-
mation, includes not only the Coulomb potential
Q, Q, /R but also

V~iab(R) --' &u(2)QVR' - a ~q(2)QPR' (1 2)

This result is obtained within the context of non-
relativistic theory. Still within the nonrelativistic
context, we drop the adiabatic approximation, that
is, we allow for the motion of the particle. The
inability of the polarizable system to instantane-
ously adapt itself, for a given R, to the state it
would be in for that R if R were fixed leads to ad-
ditional potentials, the dominant one of which is,
asymptotically, ""a nonadiabatic term
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R, though perhaps not for arbitrarily large R—we
will comment on this point later —the leading cor-
rection will be shown to be

V„,(R) -11@e'n„/4mm cR', (1.4)

where m is the mass of the electron. Note that
this correction contains c in the denominator and
therefore vanishes in the nonrelativistic approxi-
mation. As opposed to the atom-atom problem,
where the nonrelativistic potential is cancelled on
introducing relativistic theory, the R 4 polarization
potential persists as one introduces relativistic
theory; the retardation correction of Eq. (1.4) is
an addition.

In this paper we depart from the tradition of
looking for evidence of retardation effects on long-
range interactions by studying their effects on
widely separated neutral atoms. Instead, we look
for the effects of these same instantaneous and
transverse photon interactions on the energy levels
of an atom (or ion) which has one electron at a
very great distance from the nucleus. This change
of viewpoint is motivated by recent major advan-
ces" "in the measurement of energy separations
in high Rydberg states and the promise of further
improvements. Qne may contrast the great accu-
racy attainable in these bound-state energy mea-
surements with the immense difficulties in obtain-
ing even moderately accurate scattering data, es-
pecially in the low-energy domain required for the
validity of an approach which takes the adiabatic
approximation as a starting point.

To obtain some idea of the size the orbit of the
outer electron must have if the effects of the finite
speed of light are to be significant, we offer the
following heuristic argument. Consider a helium
atom with an outer electron in essentially a cir-
cular orbit with a large radius R=n'a, ; the princi-
pal quantum number n and the orbital-angular-
momentum quantum number l are both assumed
to be large compared to 1. Let one of the electrons
emit a photon to the other electron and receive a
photon in return; 'at least one of the two photons is
to be transverse, traveling with a speed c. The
time for the round-trip process is of order n'ao/c

(Here and throughout this argument we ignore
possible factors of order unity. ) The periods of
the inner and outer electrons are roughly &, =a,/
(e'/h) and T, = n'ao/(e'/k). Retardation effects can.
be expected to be important if and only if & ~ &, or &„
that-is, if and only if

n A-1~ (1.5)

where n = e'/Kc is the fine structure c'onstant. This
result will be given a proper basis below. For the
moment we simply remark that the imposition of
(1.5) means that we have crossed the nonrelativistic

Rubicon; we cannot return to the nonrelativistic
domain by letting c-~ since (1.5) cannot then be
satisfied.

%e will argue later that the results are valid for
a range of atoms and ions, but we will present the
detailed analysis for the isoelectronic sequence of
He; the core-a nucleus of arbitrary Z and the in-
ner electron-is assumed to be in its (spherically
symmetric) ground state, and the outer electron
has l » 1. This has the advantage of simplifying
the notation and the discussion. Furthermore,
for Z= 2, and especially for 'He which has zero
nuclear spin and therefore no hyperfine structure,
this is far and away the easiest multielectronic
atomic system that can be studied from first prin-
ciples'.

Qur theoretical framework" is akin to that used
by Casimir and Polder. The electrons are as-
sumed to be spinless and nonrelativistic, the elec-
tron-transverse-photon interaction is described
by p ~ A~ and A~ terms, where A~ is the second-
quantized (transverse) photon field, and self-ener-
gy terms are ignored. Spin effects, certain rela-
tivistic effects, and radiative corrections in which
a virtual photon is emitted and absorbed by the
same electron are as large or larger than the re-
tardation effects we calculate, and considerable
theoretical work will be necessary to extrac't the
retardation effects from the experimental energy-
level data when they are available. (We have also
neglected exchange effects. These can be expected
to be small but ultimately should be included for
completeness. ) One should also consider three-
photon exc hange. '

Qur analysis is necessarily more complicated
than that of Casimir and Polder, for they can make
the dipole approximation for a transverse photon
emitted by either system, while we can make the
dipole approximation only for a photon emitted by
the inner electron. Thus, for two hydrogen atoms
at a large separation R, the relevant range of val-
ue s of the wave number k of either photon is from
zero to of order 1/R. For r, and r„ the positions
of the electrons with respect to their own nuclei,
one can then approximate exp(i k r~) by unity for
i = 1 or 2, since the range of the I r, l is roughly a, .
In the present helium-atom case, the range of k is
determined by the radius R [where R =n2ag(Z —1)]
of the orbit of the outer electron to be from zero
to of order 1/R, and exp(ik' r, ) can therefore be
approximated by unity only for the inner electron
whose range is of order aJZ; the range of the
outer electron is, of course, R.

The other major difference between the present
problem and that of Casimir and Polder is that the
outer electron may be treated simply in the deter-
mination of the retardation terms; more precisely,
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energy changes in the intermediate states of the
outer electron may be neglected with respect to
both characteristic photon energies and energy
changes in the inner electron.

Our final result may be written as an effective
potential

-(Z —1)e2 1 e' ll k/mc
R4

This term would be difficult to extract by our ap-
proach since in our problem P, is smaller than n,
by a factor of order o', and its effect could only
appear in higher-order terms of the perturbation
expansion.

II. METHOD OF CALCULATION

1 n, (1)e' - 3a,P, ~(1)e'
+ ~ ~ 0 (1.6)

The Hamiltonian H for this calculation is taken
to be

The retardation correction term like'n4 (1}/4vmcR'
is the principal result of the present paper. It
should be noted that it is likely that there are other
terms in (1.6) proportional to R~, terms which we
have not calculated; these terms are of the same
size as those shown and come from the next to
leading retardation correction. V(R) should be
applicable not only to the two-electron case, but
to a range of problems involving a charged parti-
c1e and a neutral or charged polarizable spherically
symmetric system to which it is bound. (Further,
it should be possible to extend the result so that
it is applicable to a system which is not spherically
symmetric and whose ground state therefore has
multipole moments. ) These include, for example,
an electron bound to a spherically symmetric ion
and a muon bound to a spherically symmetric
nucleus. Still further, the results should be appli-
cable to the scattering of a charged particle moving
with small velocity relative to a neutral or charged
polarizable spherically symmetric system. For the
particular ease of an electron bound to an atom or
ion consisting of a nucleus of charge Z and an
electron in its ground state, we have

n„(1)=—,'a', /Z', n, (1)= 15ao5/g4

Bernabeu and Tarrach" very recently obtained
the same retardation term using a dispersion-re-
lation analysis. Their ~alysis, however, is not
applicable to the problem to which we have ad-
dressed ourselves, the high Rydberg states of He,
for they assumed the polarizable system interac-
ting with the charged particle to be neutral. Their
work is therefore applicable to proton-neutron
scattering, for 'example. (Of course, it may be
possible to extend this dispersion relation analysis
iq. some fashion to include charged polarizable
systems. ) On the other hand, their result is more
general in that it includes a retardation term,
5e'k p, /4vmcR', associated with the static mag-
netic-dipole polarizsbility p, of the system, (Note
that there is no static term proportional to pe/R .)

H=H, + H', + H', -=H, + H',

with, respectively,

(Z —1)e'
f'2

(2.1)

(2.2)

ar = e'/r„e'/-r, . (2.3)

H, is the unperturbed Hamiltonian. The perturba-
tion H& contains the screening correction H~I to
electron 2 (the outer electron} and the second-
quantized transverse photon interaction H&~, given
by

2

Hlr= p, ~ A(r,)+,A(r, ) ~ A(r~) ~,

~=a (me 2mc j (2.4)

with

A(r, )=g cDg [A. .exp(ik ~ r,)
}f.ee

+ A:, , exp(-'i k ~ r,)]. (2.5)

The V is cancelled by two normalization fa.ctors;
the necessity of taking the limit of infinite volume
is avoided.

The wave function 4 of the unperturbed system
is the product of the wave function g, of electron 1
in its ground state, the wave function g„of electron
2 in the state (n, l, m) and the wave function $0~ of

The charge of the electron is -e. The sum over
the polarization-unit vector q is over two direc-
tions perpendicular to each other and k. A, , and
A'- - are, respectively, the photon annihilation and
creation operators of quantum electrodynamics,
and the normalization factor D, equals (2'/ck V}'~',
we have normalized the modes of the radiation
field in a box of volume V which we are to set equal
to infinity eventually. We replace the summation
over k by an integration in k space with the corre-
spondence

(2.6)
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the radiation field in its ground state, that is,
1

~ = 4.(1)4.(2)4.'= +.4 . (2.7)

unperturbed energy is
e' Z' (Z —1)'E= Eo+ E„= — . ~+2a 1 n' (2.8)

Note that (, and P„are associated with nuclear
charges Z and Z- 1, respectively. The associated

H' produces a shift in energy which may be
written as the perturbation series

~1(@IH'I 1)(IIH'I+) g~ g IH'III)(IIIH'I &)(IIH'I+) (,(@ g~ (IIH'I+) '

(+ I H'IIII)(III I H'III)(II I H'II)(I I H'I +) ~ (O'I H' II)(I I
H'

I +) r ' (+ IH'I I) 2
+ Z + ~ ~ (»)

r, rr, rrr (+ @rrr)(E @rr)(@—&r) E,

The prime on the sum denotes the fact that an in-
termediate state identical to the initial state is to
be excluded. The prime can therefore be omitted
if the intermediate state involves one or more pho-
tons.

The perturbation expansion is reorganized in the
form of graphs in Figs. 1 and 2. A dashed line de-
notes what we will refer to for simplicity as an
instantaneous photon; in reality it generates an in-
teraction HI which is the difference of two Cou-
lomb interactions. A wavy line represents a trans-
verse photon. A thick vertical line represents the
nucleus and the inner electron, and the thin verti-
cal line represents the outer electron. Figure 1
contains one-photon graphs, while Fig. 2 contains
two-photon graphs; we ignore higher-order dia-
grams and, as noted above, graphs that contribute
to Lamb shifts. [We willtherefore notbe concerned
with the fourth and last terms of Eq. (2.9). ] Sub-
scripts Iand T refer to instantaneous and transverse
photons, respectively. All diagrams but the two
involving only instantaneous photons, namely, 1(a)
and 2(a), have reflections; the reflection diagram
associated with a given diagram will be denoted
by a prime. (We have not drawn the reflection
diagrams in Fig. 2.) It is important to note that
we must account carefully for the time-order of
the graphs with one or two A' vertices. We count

n 0 n 0 n

0, 0 0 n 0, n
(0) (b) {b')

FIG. 1. One-photon graphs —a dashed line denotes
what we will refer to as an instantaneous photon; it
generates an interaction H~ which is the difference of
two Coulomb interactions. A wavy line represents a
transverse photon. The thick vertical line denotes the
nucleus and the inner electron, and the thin vertical line
represents the outer electron. A prime on a figure
citation denotes a graph in which the photon lines are
reflected with respect to the corresponding unprimed
graph.

both the "crossed" and "uncrossed" graphs. " This
procedure doubles the contribution from Figs.
2(k)—2(n) and their reflections.

Qur method of formulating approximations is
nonrelativistic power counting. " We make power
counting assignments for r;, p;, k, and 0' which
correspond to the regions of largest contribution
in the various integrals which make up the matrix
elements, namely,

P, - Znm c, r, - a, /Z,

P, - (Zn/n)mc, r, -n'ao/Z,

k, k'- Z/n'ao,

where

(2.10)

(2.11)

0 n

0 n
(o)

(e)
o —,n
U ~
0 n

(i)

(rn)

o —n
k

U

0 n
(b)

0 k' ll

V
U~
o k

(&)

o k n

k

(j)

(n)

0 n

U
V

o~kn
(c)

0 k Il

U V

o ) n

~k'
k

'(k)

+ Reflections

~k
0 n

(a)

FIG. 2. Two-photon graphs —the notation is the same
as in Fig. 1. The reflected graphs Fig. 2(b')-2(n~) are
not shown. Figure 2(a) does not have a reflection.

The momentum and coordinate assignments are the
Bohr values, while, as noted above, the k and k''

assignments, are the reciprocals of the radius of
the outer electron.

These assignments are estimates and serve to
determine which parts of the matrix elements we
calculate exactly. To check these power counting
estimates we examine other regions of the integrals
in the matrix element. Beca,use of cancellations
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the nominal values obtained by power counting are
often larger than the final answer. (See appen-
dixes. )

III. CALCULATION

A. One instantaneous photon

B. One transverse photon

The matrix elements corresponding to Fig. 1(b)
and its reflection l(b') each vanish, for in our
formalism a system cannot go from an s state to
an s state and emit a transverse photon, real or
virtual.

The matrix element corresponding to Fig. 1(a),
which involves just one instantaneous photon, is

M, = &+0
I
H'pl eo& = e'&ls, n

I rj2 —r, 'I ls, n.&. (3.1)

We can replace 1/r» by 1/r&, where r& is the
greater of x, and ~„because the initial and final
states of electron 1 are both s states. Mr is .non-
vanishing only when the "outer" electron is inside
the "inner" electron, that is, when ~, &~,. We will
restrict our attention to states with l » 1 so that the
outer particle is almost always far from the nu-
cleus. Approximating g„,„(r,) by its form for r,
& a,/Z, the effective range of the inner electron,
we find

gs g 1 +2
$ (n+ $)!

a2 Z n" (n —l —1)!(2l+1)! '

(3.2)

C. Two instantaneous photons

The contribution M„of the two instantaneous
photon graph of Fig. 2(a) has been computed pre-
viously, "' with results noted in the Introduction. -

We give a brief sketch of the analysis in Appendix
A.

D. One instantaneous and one transverse photon

We are here concerned with the contribution M»
of the graphs of Fig. 2(b)-2(d) and their reflec-
tions. We have

(3.4)

in which

For l=n —1, this reduces to" 9R~r = Q 3R„, (3.5)

zg2 Z 1 112&+&

M, (f=n-l)=-r ao' ' Z nj (3.3)

a contribution which is negligible compared to the
one-transverse- one- instantaneous contribution and
the two-transverse-photon contribution calculated
below.

where the K, 's are associated with the six dif-
ferent graphs. We often use the notation

X,(+k)-=exp(+ik ~ r,.), j=l or 2. (3.6)

u and v are states associated with electrons 1 and

2, respectively. We then have

3R».=p, ~ &X,(k) Iu, n&(u, nlHII ls, v&(ls, vip, cX,(-k) x[(E,„-E,)(E„„—E„)]

5R„=Hg u, v) &u, v
I p, ex,(k ) I

u, n&(u, n
I p, ~ qX, (-k ) x [(E,„+E„„)(E,„-E,)] ',

3!i2e'=Hslu, v&&u~ v le ' &X~(k}
I
ls, v&(ls, v lp2' ex2( k) x[(EO„+E„„)(E„„-E2)]-,

u=p 'eX(")Ils v&&ls;vlpi'~+i( ")Iu~v&-&u vIH', x[(E„„E„}(E,„+E„„)]-',

~X (k) lu n&&u nip. ~X.(-k) lu v&&" vlHIx[(E, „E,}(E,„+E„„)]-,
where

(3.7)

(3.8)

(3.9)

(3.10)

(3.11a}

(3.11b)

(3.12)

E, and E„, the energies of the unperturbed states
of electrons I and 2, respectively, are defined by
Eq. (2,.8).

With P, a Legendre polynomial and a caret de-
noting a unit vector, and making the approxima-
tions described in Sec. I, we obtain as the leading
order term for M

ke Q~

(2w')mc
A

y (2) alvr2 2( 2j
y (2) (3 13)

r2

Some details are provided in Appendix B.
The power-counting estimate of M» is of order
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Z'~'me'/Z4n~' .The leading corrections from
making the dipole approximation for the inner
electron are of orPer Z' o'mc'/Z~n", those from
neglecting

I
E„„/'Eo„l and

I E»„l/E» are of order
Z'n'mc'/ Z'n" and 2'n'mc'/Z'n', respectively,

and those from neglecting E»/I E,„l are of order
Zen'mc'/Z'n" (See Appendix D). Note that we are
neglecting terms of order n ', while the dominant
term goes as n""', this will be valid for yg large
but not too large, since the coefficient of the n '
term is much smaller than the coefficient of the
n term, Clearly, however, the n ' term must
ultimately win (assuming it does not get cancelled)
for n sufficiently large, or equivalently, for B
sufficiently large.

E. Two transverse photons 1

In this section we consider the contribution MI~
of the graphs of Figs. 2(e)-2(n) and their reflec-

tions. '@le have

,~t" ~t" "++&AD,lK„Ie,&, (3.14)

where

K„=gK,q, . (3.15)

q, =1 for Figs. 2(e}-2(j)and their reflections, but,
in line with a remark above on counting certain
figures twice, q,=. 2 for Figs. 2(k)-2(n) and their
reQections.

In arriving at Eqs. (3.16)-(3.20), we recognised
that we can replace k by -k and/or k' by -k' since
we ultimately integrate over k and k'. In labeling
reflected diagrams, the label k' is arbitrarily as-
signed to the second photon to interact with the
outer electron. The K,'s are given by

SIR„+SR„,+%,&+K,z, +%„+SR„.= (1/m') p, ~ &'X,(-k')p, 7'X,(k') lu, v)(u, v lp, eX,(-k) p» ' ZX2(k)

x ( [(E„„-E„)(-E, E„.)(E,„—E,)] '+ [(—E,„-E„)(—E, E„)(E„—„-E,)] '
+[(E —E.)(E +E )(E -E)] +[(E —E)(E +E )(E —Er)]
+ [(E..—E»&(ED.+ E-)(E--E»)] '+ [{Eo.—E»){z»+E-}(ED.—E»)l ']

(3.16)

SR»+%»+SR„.+K„,+SR„.+%„., =(1/m') ~ p, ~ qX(-k)p, ~ q'X2(k'}Iu, v)(u, vip, ~ g'X~(-k')p, ~ qX»(k)

x ( [{E,„-E„,)(—E —Eq)(E„„E,,)] '+ [(-Eo„—E»)( E» E».)-(E„„——E»)] '

+ [(z +z —z.-z )(z —E„)(z —z,,)]'
+ [(Z,„-E,)(Z,„+E„„-Z„-Z„)(E„„-E,) ]

'

+ [(E..—E»}{E,—E»){zo.+ E..—E»- E»)]

+ [{Eo.—E»)(z»+ Enu —E»»')(E»
SR2„+SR„+K, =-.'m 't. ~ ~'X,(-k-k')p2 ~ e'&,(k')I,u )v( iu vl ,p~X»(k)

x([(z„„-Er)(-E» —Eg)] '+ [{E.. E»)(z.,—E»)]—'+ N-E» —E»}{z-—E»&] ']'

SR„,+%„.+%, . =-,' m '
p, ~ g'X (-k')

I
u, v)(u, v

I p, ~ &X(-k) c e'X (k+ k')

x([(E,„-E„,)(-E,—E»)l '+ [(Eo.-z»}(EO.—E»)] '+ [(-E»-z»&(ZO. —E»}]']

%,„+%,„.= —' 2g ~ e'X,(-k —k') lu, v&(u, v Ig ~ g'X, (k+k') x([(-E»-Er)] j,

{3.1V)

(3.18)

(3.19)

(3.20)

(3.21)

where we have used the notation of (3.12). [The appearance of u in Eg. (3.18) is formal and only a matter
of convenience; in substituting (3.18} into (3.15) one uses Z„lu&(u I=1. Similarly, the appearance of v in
Eq. (3.19) and of u and v in Eg. (3.20) is formal. ]

Next we apply the approximations we explained in Sec. I to obtain the leading term for M~+.

d'i J i „, li+(i &')'I~(t.(')l~~ji("+"'~ '*Il&&+&.

The power-counting estimate of M» i.s of order
Z'u'mc'/Z4n'0. The leading corrections from
making the dipole approximation for the inner
electron are of order Z'n"m /c'Z'nOthose from
neglecting IE„„I/E» and IE„„I/E»,, and IE„„/E,„l
are of order Z'n'mc'/n' and ' Z'moc'/Z' ' nre-

I

spectively, and those from neglecting E»/I E,„l and

E„/I E,„I are of order Z»a'mc'/Z'n~'.
In Sec. Ill F we will evaluate M» (3.13) and M»

(3.21) without further approximations. Their sum
gives the leading two-photon retardation contribu-
tion to the high Rydberg states which, judging from
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the estimates of the corrections, is the leading
retardation term for l sufficiently large and n such
that (Z/Z'n)' '«n« l/Zn.

F. Evaluation

We turn now' to the evaluation of the integrals in
and M ~. The integrals in JI/I» and M exist

for the k» 1 case urider consideration as they
stand. We wouM, however, prefer to rewrite M
and Mrr as matrix elements of the form (P„(2)

~

~
g„(2)), with the entity in the center then identi-

fiable as a contribution to the effective potential.
If we do so, however, nonconvergent integrals
arise. %e therefore introduce convergence factors
exp(- p k) and exp(-p 'k') which allow us to inter-
change the k and r, and the k' and r, integrations
without introducing divergent integrals; at the ap-
propriate point we set p and p,

' equal to zero [Th.e
use of this cutoff is purely technical; we could
perform the integration in the original order, and
then seek an effective potential contribution opera-
tor whose diagonal matrix element with respect to
[t)„(r,}gives the same numerical result. All in-
tegrals as originally defined are finite and inde-

Z(2) = —,lim e "~j,(kr, )kdk.
2 v~0 ~0

(3.24)

The integral is a standard one,"and we Obtain

M „=(4ne'n, /7[me)(q„(2)
~
r, '

~
]t„(2)). (3.25)

The two-transverse-photon term M» from (3.2l)
may be written as an expression where the inte-
grals over k and k' are inside the matrix element.
We write

pendent of the order of integration; after making
the various approximations, the integrals are fi-
nite only for a particular order. ]

We rewrite Eq. (3.13) for Mzr as

Mzr= [ke n~/(2w)'mc](P„(2) ~Z(2)
~
P„(2)), (3.22)

where

2 . I d3k
J(2) = —~ lim exp(i k r2 i].k)-P,(k r2) .

+2 ~~0 "
(3.23)

Upon expansion of exp (i k ~ r,), retaining only its
l=2 component, we arrive at

Se2 dk'M„e=- e iim iim (k„(k)] Jk'k f, [1+(k k')']exk[i(kek') ~ k —kk —k'k']) ]k„(k)). (k.kk)

After integrations over directions k and 5', we find
00 OO I

( ] =(4w) k'dk
J

kk2, —,
' [j,(kr, )j,(k'r, )+r~j,(kr, )j,(k'r, )]exp(-i[k - p'k') .

0 0 +

Employing the integral representation

(k+ k') ' = exp[-(k+ k')ri] dpi (3.28)
0

to split the k and k' integrals, and the parametric
representation"

j.(er) =(er) '
—, d, jo(far) ~~=&

1 d
(3.29)

we can now perform the remaining integrations
over k, k', and g." Qur answer for M» is

-5 Ie2(y

2
(3.30)

11 ke2

2
]

(3.3l)

lV. CONCLUSION

The presence of the 1/R' term presents a new
possibility for. detecting retardation potentials in

Finally, the combined two-photon term b,E„„
where one or both of the photons is transverse, is
given by the sum of (3.25) and (3.30). We have

atomic and molecular systems. For Rydberg
states of helium with sufficiently large l and n, it
contributes an order n'mc'/n" energy correction.
Previous discussions '" of the energy levels of
helium have indicated that the two-photon graphs
we corisider give an order ~'mc' contribution,
where, however, powers of n are not counted.
These discussions presume that most of the con-
tribution of the outer electron comes from a region
several Bohr radii from the nucleus. The pertur-
bation expansions are based on this assumption.
For states where the outer electron spends vir-
tually no time around the nucleus, these expan-
sions no longer are valid. We must use the alter-
nate techniques employed in this paper and keep
track of powers of n.

As was discussed previously, Bernabeu and
Tarrach, ' using dispersion relations, recently
calculated the retardation correction to the
--,'(Ze}'(n„/R') leading term for the interaction
potential between a charged (Ze} particle and a
neutral polarizable system. Their answer,
[ll(Ze)'n~k/4~mcA'], while not applicable to
Rydberg states of atoms, is formally the same
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as ours, where ~„ in our case is the dipole polar-
izability of the core ion of the Rydberg state. It is
quite surprising that thirty diagrams and much
analysis, or dispersion relations and much analy-
sis, give such a simple answer depending only on
the polarizability of the inner system, a few funda-
mental constants, and the distance R. Some insight
into the reason for the simple answer has been
given by a recent work" of ours in which, with
no pretense of rigor, we are able to show with
very little work that zero-point energy fluctuations
of the electromagnetic field on the identical classi-
cal problem give rise to an energy change of the
field which goes as (Ze)'n~K/mcR' for R-~. Fur-
ther, a little more care gives the proper coefficient
not only for the electric-polarizability term but
also for the magnetic-polarizability term.

Since we are concerned with a very large value
of l, the electron will therefore spend little time
near the origin. With negligible error, we can as-
sume Eq. (1.4) to be valid for all R, and tabulate
the energy shift by using the known expectation
value of 1/R' for a hydrogenic state.

Note added in proof As o.pposed to the var-
ious energy sh'ifts discussed in the text, the
possibility of transitions from the high Rydberg
state causes the level to have a width. For
a helium atom with the outer electron that
has effective quantum numbers n=15 and i=14,
the radiative width is approximately one hundred
times the R ' shift under consideration, making
it more difficult to isolate the shift; an ex-
perimental check of this term will have to be
performed with very good statistics. One might
choose the value of 'l to be in the range where the
ratio of the width to the shift is near its minimum
value.

Using unitary transformations to simplify the
Hamiltonian, E. A. Power, in an as yet unpub-
lished work, has recently rederived the R ' term.
This effort, as that of Bernabeu and Tarrach, "
does not treat the charged polarizable system-
point charge case under consideration in this pa-
per.

By examining the next terms in the various ex-
pansions considered above, we have obtained the
R ' contribution; the results will be submitted for
publication shortly. Perhaps remarkably and per-
haps not, the nonrelativistic nonadiabatic term is
exactly cancelled t

It has been found that the vacuum fluctuation ap-
proach gives @ rapid and exact result for various
retardation effects, including the 1/R' electron-
electron interaction; in addition, we have found
a new retardation effect, a 1/R~ correction to the
image 1/R potential of a charge interacting with a
perfectly conducting wall.
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APPENDIX A: APPROXIMATIONS IN EVALUATION OF Nil

In this appendix we consider the contribution of
the two-instantaneous-photon graph M„. This term
has been extensively discussed elsewhere so we
merely outline our approach emphasizing an aspect
of the power counting arguments which we found to
be of use in other parts of the calculation.

The matrix element which corresponds to Fig.
2(a) is

We write

with

l(ls, nl HIII u, v) I'

(R E)+(R R)'

, ~( I(1s,nIK(1, 2)Iu, v) P

(z, —z„)+(z„-z„)

(A1)

(A2)

where ~& is the greater of ~, and ~„and ~& the
lesser. We neglect the contribution of the integrals
in (A2) where r, &r, since, as we showed in the
evaluation of M~, the matrix elements are negligi-
ble for n and l sufficiently large. Further, we re-
write the energy denominator in (A2) using the
identity

1-1 1 1
g+g g g g+g7 (A4)

where

e4
I (g,(1) I r, I u) I2

Pno()()(( S g (E @ )2
(A6)

We might expect that Z„—H, in (A5) is to be power
counted as order (Zn)'mc'/n' with both E„daHn,
= p,'/2m Ze'/r, being of that nominal order. How-

with A. =ED- E„and B=E„—E„. The first term
gives rise to the static dipole, quadrupole, etc. ,
polarization potentials; the second term gives the
nonadiabatic corrections.

A question which frequently arises in this calcu-
lation is the size of the nonadiabatic correction
compared to the static term. We obtain as the di-
pole nonadiabatic correction for this case

('„„=—P,, („(2) —,'(E —ll, ) —', („(2))„, (A5)
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ever, we shall see that, in general, it can be
counted as (Zn}'mc'/ns and in this example it is
effectively of higher order. Since (E„—H)p„(2) =0,
we may rewrite (A5) in a form containing com-
mutators as

ie' " d'kl ~ 2e' .l(lslr, lu)l'
(2 w)'m c & k (~ 3 Eo„—E»

2 2

(A7)
The commutator of H, with r, /x3, removes one

p, and one ~, from the matrix element and replaces
them by R. Since (2.10) would suggest that p,r, is
of order n, the effect is to reduce the nominal or-
der of V„,~ by 1/n. This result is applicable in
other matrix elements and throughout this calcu-
lation we power count E„—H, as of order (Zn)'~c'/
n'. At this point the power count of V„„~is of or-
der (Z/Z)6u'mc'/n'~ Fu.rther cancellations re-
move the leading term and simplify (A7) to the
form given in (1.3}. [Indeed, (A7) can be written
as a double commutator. ] There V„,~ is found to
have the actual order of (Z/Z)en' mc'/n". .

APPENDIX 8: APPROXIMATIONS IN EVALUATION OF N,

We outline the derivation of the leading term of
M» given in (3.13}. We begin by observing that
each primed term is the adjoint of some unprimed
term. (For example, 3R„. is the adjoint of 3R,~.)
We can therefore reexpress M» as twice the real
part (Re) of the contributions of the unprimed
terms.

M» is defined by Eqs. (3.4)-(3.11b}. Several
approximations are employed. The first is the di-
pole approximation for the inner electron in which
we replace K,(+k) by unity. We then have, with t
any normalized state of the second electron,

&ls, tip ' flu, t)=(imE, „/k)&lslr ' & lu). (Bl)

We will also use the complex conjugate of (Bl). In
the dipole approximation, the only excited states u
are states with orbital angular momentum / = 1.
We can, therefore without further approximation,
replace H~by its dipole term. If, further, we ne-
glect the possibility of the second electron lying
inside the first, we can replace H~by e'r, r, /r', ~

Since we must ultimately sum over the orbital-
angular-momentum projections +1, 0, and -1 of
the I states, we can make the replacement

(ls
I r, ~ » Iu&&u I r, ~ r, /r',

I
ls}

)I'(~ ")/~l. (

ge now neglect
I
E „I with respect to

I
E,„l and E».

We can then use „Iv)(vI= 1, the unit operator, to
sum over e. At this stage we find

where the commutator T is given by

7'= [p ~ 7, r, ~ 7/r', ]= -ik/r 2+ 3ik( r, ~ & )'/r', .
(B4)

Summing over the polarization vector, we then have

2itfP, (k x,)
3y2

(B5)

If, finally, we neglect E, with respect to E,„, the
quantity in the curly brackets reduces to -n~, and,
observing that only the P, component of e'"'~ sur-
vives and that the matrix element in (83) is there-
fore pure imaginary, we obtain Eq. (3.13). Thus,
the contributions associated with 2(b) —2(d) have
effectively the same numerators and, neglecting
E„„, the denominators are -E„(EO„—E„), E,„(EO„
—E,), and -E,E,„, respectively. Since E, is
smaller than E,„, the 2(c) contribution is smaller
than that associated with 2(b) or 2(d), but the lead-
ing terms of the latter cancel. This behavior is
reflected in the power-counting estimates of the
constituents of M~~. All power-counting estimates
use Eq. (2.10) and the further estimates

I
E,„l-Z'e'/

a, and
I E„„l- Z'e'/n'a, The en.ergy estimates are

obtained by assuming that the major contributions
come from principal quantum numbers for the
case of n from bound states and the near continu-
um, and for v from states near n. It should be
clear that all of the power-counting estimates
quoted could very likely be reduced by virtue of
cancellation and commutation relations (see Ap-
pendix A) not accounted for.

APPENDIX C: APPROXIMATIONS IN EVALUATION OF N~ ~

The power-counting estimates for the errors
generated by making the dipole approximation for
the inner electron, by nxegiecting IE„„/E,„l, IE„„
/E»l a,nd

I
E»~/E»' I

and by neglecting terms of
relative order

I
E»/E~ I

and
I E»/E~ I

are small;
their values are given in Sec. III E. We convert
the matrix elements of the first electron to the
"length" form by using equations (Bl) and (B2) of
Appendix B. After this step the leading contribu-
tion to Mrr from Figs. 2(e)-2(j) and their reflec-
tions is

M„= -(2k'/m)S(e ~ e')

x(~lp»'»+2(k+" )p»'~ In)( E»E)»', (cl.)
where
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e' d'k d'k' ~
m'c2(2v)4 k

e have used the Thomas-Reiche-Kuhn sum rule
3@2

E~ 1srlu
2 (C2)

We note that because of cancellations the leading
correction to M, is smaller than the terms which
we are considering in this calculation.

The sum of the contributions from Figs. 2(k)-
2(m) is denoted by M, . Keeping terms through the
requisite order, we immediately find

M~= =~Mi . (C3)
Next, we use the same set of steps, used on the
matrix elements from Fig. 2(e)-2(g) and their
reflections, to evaluate the sum of the contribu-
tions, denoted by M„ from Figs. 2(k')-2(m'). We
obtain through the requisite order

M, = 3 m~S(t g')'(nlX, (k+ k') ln)

x+E
x (E~+E~) '( 1+E~E~-,/E~) . (C4)

Similarly, through the. necessary order, we find,
the contribution M, from the remaining set of di-
agrams, Figs. 2(n) and 2(n'), namely, to be

M, = --,'I mS(t c')'(nlX, (k+k') ln)(E, +E„,) '. (C5)

We can now write

Mrr=M, + 2(M, +M, +M4)= 2(M, +M4), (C6)

Using (C2) we are left with twice the contribution of
the second term in the integral of M3. Employment
of the definition of 0.„, summation over the polar-
ization -vectors, and a slight rearrangement gives
(3.21) as the leading part of Mrr.

APPENDIX D: AIMITIONAL DISCUSSION
OF APPROXIMATIONS

Qur first comment concerns the power counting
of E~ and E~.. As was noted earlier, the fact that

the contribution to the integrals over k and k'
from k', k»1/R is small, where R is the charac-
terisitic size of r„ is a consequence of the pres-
ence of the exponentials exp(ak ~ r, ) and
exp(ai k r,) in the matrix elements. Contributions
tothe integralfrom regions where k or k' are sig-
nificantly less than 1/R are reduced by the reduction
in the size of the phase space of dk or dk'. (The
argument'can be made more explicit by actually
estimating the integrals in non-nominal regions
of contribution. ) k and k' are therefore power
counted as order 1/R.

Another point that arises throughout the calcula-
tion is that the neglect of terms of relative order
EI,/lE~l and E&/lE~l is performed at a later,
stage than the neglect of Em/IE~I ~ I E~l /Ea, and

l
E /l Ez. The latter three approximations are

performed once the individual matrix elements are
constructed. The relative errors introduced by
their neglect are therefore with respect to rather
large quantities. Nevertheless, as shown in their
power-counting estimates, these omissions give
only small absolute errors to the overall answer.
The neglect of E,/lE~l and E~/ E,„, however, is
performed after a considerable amount of cancel-
lation between parts of the various matrix ele-
ments. In calculating Mlr (3.14) as in Appendix 8,
this procedure was shown explicitly. In construct-
ing the leading part of Mrr (3.21), this process is
far more elaborate. The individual matrix ele-
ments are expanded in a series of powers of E~/

l E,„l and E~/l E~
l

and terms of relative order
E~/l E~ l

and E~ l E~
l

are neglected in the leading
nonvanishing term (3.21). The basis of this ap-

proximationn

(Ea/IEo. l
and Ei /IE~I ~ 1) is the

counterpart in our calculation of the heuristic
argument presented in Sec. I to suggest the condi-
tions (1.5) under which the finiteness of the speed
of light could play a role in the determination of
the interaction of the outer electron with the core
and therefore of the energy eigenvalues of high
Rydberg states of atoms.
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in the numerator of Vcp, which falls off as R 7,
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lim lim R Vcp=~.
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lim Vcp Vv(5v &

Qe CO

lim lim 8 Vcp=limRVV~~=~,
R~oo C woo
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