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A quantum statistical theory of resonant optical phenomena is developed for the case when the fluctuations
of the laser, used for exciting transitions, are important. The general equations describing the dynamics of a
relaxing two-level atom (TLA) are solved exactly for different types of mean values and the two-time
amplitude and intensity correlations. The phase-diffusion model is adopted for laser fluctuations. The exact
results are used to analyze the effect of laser fluctuations on a number of optical effects—optical free-
induction decay, adiabatic following, the spectrum of the scattered light from a relaxing TLA, the energy-
absorption spectrum from a weak field, Hanle resonances, etc. In each case, the laser fluctuations are found
to affect in an important way the characteristics of the above optical-resonance phenomena. For example, the
spectrum of scattered radiation from a TLA has the usual three-peak structure for fields at resonance and
with strengths a above the threshold and for a > y.; however, now the peak heights (widths) are in the ratio
3x 2Bx)x =[y.+(T7'+T5V3)/ [2y. + T3], where v is the correlation time for laser phase
fluctuations. For y, > a, one gets a single-peak spectrum. The laser field is treated as a second-quantized
field with excitation in either a coherent state or a Fock state. The results, obtained by straightforward
perturbation theory, but valid for arbitrary values of the relaxation parameters, detuning, and the laser
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correlation time, are also presented.

I. INTRODUCTION

Atomic systems in the presence of resonant
optical fields are known to exhibit a variety of
phenomena' depending on the interactions of the
atomic system with its surroundings, i.e., the
type of relaxation mechanism, the relations of
different relaxation parameters among themselves
as well as the relaxation of the applied field .
strength to the relaxation parameters. If the in-
cident field is monochromatic (or nearly mono-
chromatic) and if its strength is much smaller
than the atomic energy-level differences (Rabi
frequency << atomic frequency), then one can ob-
tain a number of exact solutions, and these have
been used to predict a number of optical effects
and to analyze the experimental data. The optical
effects most extensively studied, both experi-
mentally and theoretically, include optical nu-
tation, free-induction decay,?® resonance flu-
orescence,*™'% optical double resonance,'® Hanle
resonances,'” photon echoes,!® self-induced trans-
parency,' etc. In the case when the amplitude
of the monochromatic field is a varying function
of time such that its rate of change is much less
than the rate of change of the Bloch vector, then
the adiabatic solutions'®™?? to Bloch equations can
still be obtained. When the field envelope varies
in an arbitrary manner, the solution of the Bloch
equations is far from being known (see, however,
the case of self-induced transparency). The prob-
lem becomes worse if the laser field amplitude is
a fluctuating variable which is indeed the case
in practice. Of course if the laser correlation

time is very large compared to the other char-
acteristic times in the problem, then the known
solutions can still be used. The trouble arises
only when the laser correlation time is of the
order of the characteristic times in the problem.

In this paper we analyze the effects of laser
fluctuations on the outcome of resonance experi-
ments. ‘A number of exact results are presented.
Our exact calculations require the knowledge of
the laser correlations of arbitrary order. Since
the phase-diffusion model?®*'# of the laser is prob-
ably the only one for which all order correlation
functions are known in closed form, we have
naturally used this model in our exact solutions.
This is in contrast to approximate calculations
in which case one needs to know only the second-
order correlation functions of the field and hence
the calculations there are independent of the laser
model. In an earlier note*® we have already de-
scribed how drastically the spectrum of resonance
fluorescence changes due to laser fluctuations.2®27
In the meantime a study of the effect of laser
fluctuations on level-crossing experiments'? has
also appeared.

The calculations presented here have important
bearings on the experimental work on absorption,?®
the emission spectrum of a laser-driven two-
level system, Hanle resonances, etc. In the
development given in the succeeding sections we
give the general formulation and then study a
number of specific effects. From the point of
view of statistical mechanics, the systems studied
in Secs. III-V provide us with some samples of
exactly soluble models. The outline of this paper
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is as follows. InSec.IIweformulate the general
equations describing the dynamics of a relaxing
two-level atom in the presence of a laser field.
The study of the dynamics of an atom in a fluc-
tuating field is essentially a study of stochastic
Liouville operators. Sections II-V are devoted
to exact results. The laser phase fluctuations

are assumed to undergo diffusion. Using the tech-
niques of multiplicative stochastic processes,?
we obtain in Sec. III explicit results for the en-
semble average of one- and two-time expectation
values. The special optical effects we treat in
Sec. III are (i) optical free-induction decay, (ii)
adiabatic following, (iii) antibunching effects in
fluorescence, (iv) the spectrum of the fluores-
cence (scattered light), and (v) the absorption
spectrum. Inall of the above cases analytical results
are presented, these resultsbeing validfor arbitrary
values of the field strengths, laser correlation
time, etc. In Sec. IV we undertake a study of
multilevel systems interacting with a fluctuating
laser field. The case of Hanle resonances for
transitions between J=0 and J=1 is analyzed in
detail. In Sec. V we present a treatment of the
laser field and its fluctuations which makes second
quantization of the laser field quite transparent.
The equivalence with the results of Sec. III is
established. The paper concludes with two ap-
pendixes. In Appendix A the steady-state and
transient spectra are calculated using second-
order perturbation theory and the results valid
for arbitrary values of relaxation parameters,
laser correlation time, and detuning are present-
ed. In Appendix B we discuss some important
results on multiplicative stochastic processes.
The results of this appendix have wide applications
not only in the present context but also in other
fields such as exciton diffusion.3°

II. DYNAMICS OF A TWO-LEVEL ATOM
IN A FLUCTUATING LASER FIELD AND IN THE PRESENCE
OF VARIOUS RELAXATION MECHANISMS

The most general equations describing the
Markovian dynamics of a two-level atom (having
energy separation w) in the presence of an ex-
ternal laser field are given by

Py =—2Typy; + 2T,
+1g8(t)(pye P —c.c.),

Paz = =2T,0,,+ 2T " p,, (2.1)
+128(t)(pe' ) —c.c.), + 2p,

Pra==(E4+ T)p;, —ig8(#) (py, = pyrde ™0,

where 2T'; (2T,) represents the total transition
rate per unit time from level 1 (2); 2T (2r{®)

is the transition rate to level 2 (1) from level
1 (2); 2p is the rate at which the atoms are pumped
to level |2) by some external source. The off-
diagonal decay rate usually also has a contribution
from phase-interrupting collisions. Note that
P11+ Pp#1, since we have allowed external pump-
ing and decay. In deriving (2.1) the usual rotating-
wave approximation has been made and p is in a
frame fotating with the central frequency w, of
the applied field and A is the detuning (A=w — w,).
The complex field amplitude &§(t)e™*‘*’ repre-
sents the laser field. The field may be treated
either as a semiclassical field or a fully quantized
field. In the latter case, one has to assume that
the field is described by a coherent state whose
amplitude is a stochastic function of time.4»4(®
If the initial state of the field is different from a
coherent state, then a similar treatment is still
possible (given in Sec. V).
In special cases, Egs. (2.1) reduce to the usual
equations if we use the following relations among
relaxation parameters. (A) Radiative relaxation:

I,=r®=y, r,=r®=p=0, =y, (2.2)
(B) Collisional relaxation (cf. Ref. 31):
[ =I®=3xk(1-p), I,=TP=x3p, L=k, (2.3)
(C) Torrey’s case:

r- FJ(.O) =r,- rz()O)'_'P’

TP =2(p+ T+ 1), T3'=T, (2.4)

(8% e= =3+ T (p+ T4 1)1

In all of the above three cases, Egs. (2.1) reduce
to Bloch equations:

(8*y= (1A = 1/T,)(S*)+ 2ig (S5 & (t)et*
(2.5)

@)= ~(/T{(S% - (Ve + i) (SM)e P ~c.c.)

When I'{®’ =0, the set of equations (2.1) reduces to
that of Schenzle and Brewer.%?

If the incident field is monochromatic [§(2), ¢(2)
time independent, deterministic objects] then one
can solve (2.1) by straightforward Laplace-trans-
formation techniques. The detailed solutions are
well known in the special cases mentioned above.»32
If 8, ¢ are time independent but fluctuating quan-
tities, then the final results can be obtained by
averaging the Laplace-transformed solutions of
(2.1) over the distribution of &, ¢.

In this paper we study how the temporal fluctua-
tions of the laser beam affect the outcome of the
resonance experiments. In this case 8§, ¢ are
stochastic variables and thus p,,, p,,, p;, also ac-
quire stochastic character. Equations (2.1) can
be cast in the form of Langevin equations® if we
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assume that the laser field amplitude b(¥)
=&(#)e~**‘*) can be considered as undergoing a
Markovian process,'® i.e.,

b=1(b,b%)+F (@), (2.6)

where F(f) is a 6-correlated Gaussian random
process. Most of the laser theories!® and the ex-
periments show that to a good approximation laser
dynamics can be described by (2.6). It is clear
from Egs. (2.1) and (2.6) that the set (py;, Pza5 Pis
Ps, b, b*) has a Markovian behavior and one can
write the corresponding Fokker-Planck equation®
with drift and diffusion coefficients which are
nonlinear functions of (0y;, Pas, Przs Pars 0, D*).

It seems highly unlikely that analytical solutions
of such a Fokker-Planck equation can be obtained
except in special cases.** In the case of the phase-
diffusion model®* 2 of the laser beam, exact re-
sults can be obtained. For this model §(¢) is taken
to be a deterministic variable independent of

time. The phase undergoes diffusion:

o=u@), ¢0)=¢,, 2.7

where ¢, is uniformly distributed between 0 and
27, and u(f) is a 6-correlated Gaussian random
process with

(IJ' (t» = O: <IJ' (tl.)u(tz)) = 27(;5 (tl - tz) ) (2 8)

where the single brackets ( ) denote the ensemble
average with respect to the distribution of the
random process u(f). The next few sections are
devoted to the consideration of these exact re-
sults.

It should be noted that if the field strength is
much less than the saturation field, then the re-
sults for the scattered spectrum can be obtained
by iterating Eqs. (2.1). The approximate results
are then model independent. We present these
approximate results in Appendix A. Some of these
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approximate results in the special cases are
known; however, their discussion is included be-
cause it is interesting from the viewpoint of the
correlation functions and that we present expres-
sions for arbitrary values of vy, T,, T,, A with-
out using any ad hoc assumption, and also the
initial state of the atom can be arbitrary.

III. EXACT SOLUTIONS FOR THE EFFECT
OF LASER PHASE FLUCTUATIONS ON THE DYNAMICS
OF A TWO-LEVEL ATOM

A. Ensemble average of one-time expectation values
Equations (2.1) involve the phase ¢ in a non-
linear fashion. By a redefinition of the variables,

Egs. (2.7) and (2.8) can be cast into a linearized
set of equations. On introducing the variables

- - 2§ ¢ - io
X1 P25 X2=P126" "5, X3=Pp ",

3.1
X4=P22€‘w, X5=eiw’ ( )
we find the equations for
-T+iAa 0 i —ja 0
0 -I'-iA ~ia da O
. —ia  =2I, 2r{ o
X =iu()Dy + v X
—ia +ia 2D\ -2r, 2
0 0 0 0 o
(3.2)

D;;=06;;Dy, Dy = 0,D,,=2,
Dy3=Dy =Dy =1, a=g&,.

This equation has the form of the standard equa-
tion of the multiplicative stochastic processes.
From the theory of the multiplicative stochastic
processes (discussed briefly in Appendix B) it
follows that the average of y over the distribution
of ¢ satisfies

-T+iA 0 o —ia 0
0 -T-iA-4y, -ia ia 0
G = i ~ia -@2r,+y,) 2r® 0 |<(x). (3.3)
—ia +ia 2ri”  —@2L+y,) 2P
0 0 0 0 -V,
The solution of (3.3) yields the mean values useful:
©s1), {Pn1e**), etc. In order to calculate (p,,), _ —io(t)
{p,,) we have to introduce another set of variables vt =x()e ’ (3.4)
for (p,;e**)#(p;;)e?®). The following set is found and hence
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Y=ip(E)D - 1)

-T'+zA 0 ia ~ia 0

0 ~I'-iA —ia da O

+ i -ia  -2T, 2T 0
—ia ia  2r® _2r, 2p

0 0 0 0 0

(3.5)

Using Eq. (B.7) of the appendix, we immediately
find that the ensemble average ¢ satisfies

~T—-vy +iA 0 i@ —ia 017
. 0 -L-y,—-iA -ia ida 0
il PR -ia  -2T, 2T 0 @
-ia ia 2r{® -2r, 2
0 0 0 0 0

(3.6)

Using Egs. (3.3), and (3.6), we can calculate all
the relevant mean values (single time) determin-
ing the dynamics of a two-level atom. We note
that equations for () are identical to the equations
for the old set provided we replace I' by I'+7.,.

7. appears in a more complicated way in the equa-
tions for (x). Using the techniques of Laplace
transforms, one finds that

4
<>zg<z»=§ (2 =AY (x;(0))

+(z+r ) 2p(2 = A)g (x5(0)) 5 3.7)

4
@,(z»:; (z-B) @,(0)+2(z - B);}(2p), (3.8)

with
-T'+iA 0 ia —ia
A= 0 -I-iA-4y, ~ia io
b
ia ~ia -2T, -y, 2r{®
-ia i 2r{er 21, -4,
3.9)
|-T+ia-vy, 0 ia —ia
0 -T'-iA-y, =-ia o
B= ) )
io —ia -2r, 2r
—ia ia 2r{» -2r,

(3.10)

In the steady state one has [provided (z —B);} does
not have a zero at z=0]

Wi(0)~2p(-B)zs,
(x()~0ast—-=,

It is clear from (3.11) that in the steady state
the average value of the dipole moment vanishes
because of the phase fluctuations. The matrices
appearing in (3.7) and (3.8) are easily found to be
(we are quoting only the elements needed in further
calculations)

(3.11)

(z -=A)2=P;*{(z+ T+4y +id)
X [(z+ 7.+ 2T ) (2 + 7+ 2T,) = 4T’ TP]

+20%(z+ 7+ T+ T =T — TN},

(3.12)
(z =A)E=20%P; (z+7,+ T3+ T, = [0 - TYY),
(3.13)
(z =A)=iaP (z+y,+2T, - 2T
X (z+ 4y + T+ id), (3.14)
(2 = A) =—iaP; (z+ T+ 4y, +14)
X (z+7y,+2T, = 2T{), (3.15)

Py(2)=402(z+7,+ T+ T = TO-TY)
X (z2+T+2y)+ (2+ T —ia)(z+ T+ 4y, +14)
X [(z+7,+ 2T )2 +7,+2T,) - 4T0'TL0]
(3.16)
(z-B)E=P*{20%(z+ T+7,)
+(z+2T)[A%+ (z+ T+v )T, (3.17)
(z - B)j:=ia P (z+ 2T, - 2T")

X (z+ T+v,-i4), (3.18)
(¢~ B)=P7 {2a%(e+ T4 7,
+2T80[A% 4 (z+ T+ )L (3.19)

(z-B)=Pi*{2a%(z+T+7,)
+(z+2T)[A%+ (2+ T+7.Pl,  (3.20)
P,(2)=402(z+ T+ T, =T - TN (z+ T+y,)
+[A%4+ (z2+ T+7,)]
X[(z+2T,)(z+2T,) - 4TI ]. (3.21)

It is clear from the above that the dynamics of
the population in each level is governed by the
roots of P,, whereas that of the dipole moment
is governed by the roots of P,. In the absence of
laser fluctuations one, of course, has P,=P,,
Note that in Torrey’s case [Eq. (2.4)], we have (at
resonance A=0)
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P,=(z+y,+2p)[4a%(z+2y,+ 1/T,) + (2+ 1/T,+ 4y,) Py(2)=0 =z=—(T+2y,), —(y,+ I+ T,— IO _TO),
x (z2+1/T,)(z+v,+1/T)], (3.22) 210 = 3(3y,+ T+ T, + Tyt T4 T
P, =(z+2p)(2+7.+1/T,) (3.25)
x [402+ (z+1 /Tl)(z +1 /T2 +Yc)]- (3.23) In Torrey’s case the roots of P, are given

approximately by
It is clear from (3.23) that the threshold of oscil-

lations in the population inversion is determined by ==(2p+7,), —(2y,+1/T)),
1602, = (1/T,+ v, 1/T,)". i — 3y, +1/T, +1/T,), (3.26)
In the limit of strong fields (o > all the damping which amounfs to the replacement in the usual
constants in the problem) and at resonance the Torrey solutions:
roots of P, and P, are 1/T,-~1/T,+2y,, (3.27)
) (0) :
P)(2)=0= z=—(T+y,), —(Iy+T,-T{° -: f'z" 30’) 1/T,~1/T, +v,.
. 1 o
+2{0 = 3(y + T+ T+ T+ T4+ T3)), Note that in the steady state the population dis-
(3.24) tribution in the upper level is given by
(o)) = LT + a2r(a?+ 137 ]
Pu - (T, T, - rio)réo))_-'_ a‘z:r(Az_‘_ rz)-l(rf“ - rio) - réo)) ’ : (3.28)

a2=TH A%+ T3)(T+7,)[A%+ (T +v,)?]2a?,

and that the dipole moment in the steady state is 2. Adiabatic following
zero. Itis seen thata,=a if y,=0. Moreover

it is clear that to achieve a given amount of sat-
uration the fields have to be stronger by the factor

So far we have considered the laser amplitude
to be independent of time. I § is a function of
time, then explicit solutions can be obtained in

r[a%+ (T4 )2 )T +7,) (A% + T2) . the adiabatic limit,'®-%? i.e., when the rate of
i ¢ change of the field is much,lgss than the rate of
It should also be noticed that the state of the change of the Bloch vector (8), as for example

will be the case when the applied field is far off
the resonance. When the applied field is close to
the resonance, then the generalized adiabatic ap-

- proximation of Ref. 21 is to be used. In what
follows we assume that our two-level atom is driv-
en by the “phase fluctuating” laser beam and we
ignore for the sake of simplicity all the relaxation
mechanisms. The ensemble average of

atom at time ¢ is not a coherent state?? even if we
ignore all relaxation and pump mechanisms ex-
cept laser fluctuations. We will now deal with
specific optical effects.

1. Optical induction decay

The usual theory of optical induction®? holds
even in the presence of a fluctuating laser beam B,=1;, B,7y B3(SD =55~ 1bs),
if we make the replacement I'-I'+7v,, showing
that the laser linewidth simply adds to the line-
width associated with the decay of off-diagonal —ye +iA 0 2 (t)
elements. This follows from the fact that the . . X
optical induction signal is determined by the @)= 0 —ve =i —2ia(f) [(2). (3.30)
interference of the laser fields and the scattered ia(t) —ia(t) 0
field. The interference term is proportional to
{pze**) whose approximate value is

satisfies the equation

Onintegrating the equationfor ®, we getin the usual

manner
(pype’* )= <P1zew>|t—o exp[—(T'+v, —ia)] . & 20(t) a
B ; = — T t ). (3.31
(5.2 i (tX®,) Z Ga —y 7T g [ @XesER].  (3.31)
Note that the atoms are shifted out of resonance We now substitute the first two terms of (3.31) in
by the Stark field. The average value appearing the equationfor ®, and obtainthe analytical solution

in (3.29) is given by (3.11) with i =2, for (3 ,):
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(@) =-3(1- i) (t))‘-uz
X eXp[(;}:-?g—z—)f-wdTaz(T)

(- ) .

(3.32)

On substituting (3.32) in (3.31), we obtain the adia-
batic solutions for the dipole moment in the instan-
taneous frame

Re((s*(the™t?)

= e ady) + fy e —(a<I>3>, (3.33)
Z+a?) (y2+a2)

Im{(s*(t) e~1(*)
(“z—fzz*)w@s) %‘:—A—?))s < (ad,). (3.34)

The adiabatic solutions for the dipole moments are
similarly found. We start from the ensemble av-
erage of the equations for f,=y;, f,=X2 fs=3(xs
- X4),

iA 0 ~2ia(t

(=] 0 —4y,—in +2a@®|(F.
ia(t) —ialt) —e

(3.35)

Note that if at ¢ = ~w, the atom is in the ground
state, then y,(—w) =y,(~») =0, fi(—w)
==Xet?9f.(—w) will also be zero if we assume
that ¢, i8 randomly distributed. For such cases
(f.(t) =0. Hence in what follows we leave the dis-
tribution of ¢, arbitrary.

On integrating the (f,) and (f,) equations, we
find

i WA= 268) " (®) L [a (X F,E0],

dat"
3 (3.36)
—ia (O fo(t) = Z 2(=1)" Y4y, +in)=""t
xat) — dt" (a @) 5D . (3.37)
The =0 and n =1 terms of (3.36) and (3.37) when

ingerted in (3.35) lead to
<f3(t)> =f3(—°°)/[1 - zBaz(t)]l/z

(2Aa%(1) =y )
X exp('/ dr (1= 2Ba’()) (3.38)
where A and B are given by
2 _ (7 2
A =4y, (4iny, -2, p=2—lA+dy ) (3.39)

(A +4y,.)%A%
The real and imaginary parts of the ensemble
average of the dipole moment are obtained from
(3.36) and (3.37). Note that since (f,) is not real,
the n =1 term of (3.36) also contributes to the real
part of the dipole moment. In the limity,~ 0, the
adiabatic equations (3.32), (3.38), and (3.36) be-
come the usual ones.

B. General structure of the ensemble average
of the atomic correlation functions

We next discuss various types of correlation
functions associated with a two-level atom. Such
correlation functions describe, among other
things, spectrum of resonance fluorescence, en-
ergy absorption from a weak external field, etc.
Let us define

) (¢ +7,8) =St +7)S™ @M,
A (t +7,8) =(S™()S* (¢t +70),
T (t +7,8) =((S* (B)S* (¢ +7)S~(t +7)S= () ,

where double brackets (( )) indicate the quantum-
mechanical averaging with respect to the density
matrix of the system and the classical ensemble
averaging with respect to the temporal distribu-
tion of the phase ¢.

As discussed earlier our extended set of vari-
ables undergoes Markovian motion and hence all
the correlation functions can be calculated by using
quantum regression theorem.*** Tet us define
Laplace transforms of the correlation functions by

(3.40)

f(t,z)=f dre *T It +71,t). (3.41)
0

We will indicate the use of quantum regression
theorem in the case of T{¥). Using the solution
of (3.3) we find

S e TS @4 = —A)S O+ —A)IS OH N+ =TI D (1] 7

+@ =A)TK( 20 (2 D) +2p (2 +y, )Mz ~A) 7K D)) .

Using quantum regression theorem we then get for the correlation function

LMt 2)= (2 - AR KS (S O)+ (& -

+(z A 2X2| et DS (1)) +2p(2 +7,) (2
=(z2 =AY + (2 = A)1a(z + 7, ) (2 + ¥, + 2p X, (2)) -

)28 (1) IS + (2
—A) et s (1))

- AV (2|05 )

(3.42)
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Using similar methods, we find for the antinormal-
ly ordered correlation function the expression

P, 2) = (2 - A K, (0)
+[z=-A)L+2p(z+7,) (2 - AN
X, (2N (3.43)

and for the intensity correlation function the form
LM, 2) =, (2 ~ B)31e™ (2 + 2p)]
=@, (ONP5(2))

where ¥4 represents the value of ¢, if at £=0 the
atom is assumed to be in the ground state. Note
that even in presence of the laser fluctuations the
intensity correlations have the time factorization
property of Ref. 45. In what follows we quote ex-
plicit expressions only for the steady-state corre-
lation functions.

(3.44)

1. Intensity correlations—photon antibunching effects

For the sake of simplicity we also restrict the
discussion to the Torrey type of relaxation equa-

J

tions. Using (3.19) in (3.44), we find that the nor-
malized intensity correlation function has the
structure

@) =T{M (o, 1)/8*SH )"
=% _§

=1+(z, - 2.y (z e — z,e7%-t)
(0)

Z‘,Z_rz (e-z,t - e-z..t)
Z,—Z,
1 w1
X [a2 + F;"’(vc- + _,_)] , (3.452)
T,
where z, are the roots of
(z+1/T )z +7,+1/T,)+4a%=0. (3.45b)

For large fields (3.45) shows that the envelope of
the oscillation decays at the rate 3(y,+1/T,+1/
T,) showing that the laser linewidth adds simply
to the linewidths associated with T, and T,.

2. Normally ordered amplitude correlations—spectrum
of the scattered radiation

The amplitude correlation is similarly obtained
by using (3:12)~(3.16) in (3.42). The final result is

LM (0, 2) = 4pP7 (2)P; (0)((2 + 7,) ™ (2 + 7, + 2PN + 7, = iA)(T, = T{) (2 + T +iA +4y,)(z +7, + 2T, - 2T'{)

{030 +7,) + TO[A% 4 (T 47, P20 (e + 7, + T, + Ty~ IO = TE)

+(z+T +4y,+i8)[ (2 +7,+ 2T ) (2 + 7, + 2T,) = 4Ty |

(3.46)

which for the Torrey type of relaxation mechanism reduces to

T{" (w0, 2)=2p P7(0)(z+v,+ 2) P3(2) ¥(2)

¥(2)= {201” (z+vc+ i)(z+47’c+ 1 +iA) ] {2&2(7c+
T, T,

. 1 2E 1 . ~2E _
X(z+4'yc+zA+ f)(Z'l—Tc'— 7,‘;"’)(')’3'!' —T: —1A)(—i,l—>, E—-(S‘)eq.

1\ E+3 [2 ( 1\? 2 -
T, >+ T, A%y + —T—z—) ] +a¥(z+v,)

(3.47)

In the special cases of the radiative and collisional relaxations, (3.47) reduces to

Y(2)=202(y + ¥ )20+ (2 + 7+ 2¥) (2 + 4y + v+ 3A)]

+20%(2+Y) Mz + 4y, + i+ Y) (2 + Y, + 2Y) (7, + ¥ = iA)Y,

(3.48)

Y(2)= 02(z+ 7)) M2+ 47, + 1A+ K)(2+ Y, — 2EK) (Yo + K = iA)(=2E k) + {20%(y ,+ 1) + k(E + 3) [A%+ (v, + ©)2]}

x[202+ (2+ Y+ K)(z+ 4y, + k+iA)], E=Bf-3.

The power spectrum of the radiation scattered
from such a two-level atom is obtained from

S(w)=Re TM (w0, jw) . (3.50)

For the case of incident laser fields at resonance
several features of the spectrum are to be noted:
(i) the spectrum is symmetric; (ii) the coherent
part of the spectrum present in the theory with

(3.49)

r

the nonfluctuating beam is now broadened by the
amount of the laser linewidth; (iii) in the limit
of strong laser fields a>1/T,, 1/T,, v., one
finds the three-peak spectrum. Let us introduce
the parameter

Y. +35(1/T,+1/T,) .

x = 5.+ 1/T, ; (3.51)
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then one gets the following results for the ratios
of peak heights and widths: (i) center peak height
per side peak height is 3x; (ii) center peak width
per side peak width is 2/3x; Note further that in
the special cases of (iii) radiative relaxation,
x=(y,+7v)/(2y,+7); (iv) collisional relaxation,

x= (¥, + 5 K)/(2y .+ k).

In the limit when phase fluctuations are dom-
inant over 1/7,, 1/7, then x ~%, which should be
compared with the value ¥1+7,/T,) in the absence
of laser phase fluctuations. In the absence of
laser phase fluctuations and the two special cases
of radiative and collisional relaxations, the above
results agree with those of Mollow.*:3! In the pre-
sence of laser phase fluctuations the results for
the widths and peak heights are in agreement
with those of Eberly?® and the author’s® as well
as Avan and Cohen-Tannoudji’s®? results on the
radiative relaxation case.*®

We show in Figs. 1 and 2 the shape of the spec-
trum for different values of @ and y,. Figure 2
clearly shows the three-peak spectrum-—the widths
and peak heights are in agreement with the ratios
2/3x, 3x. Figure 1 shows the behavior of the
spectrum for field strengths less than the thresh-
old value. The broadening of the spectrum due to
laser phase fluctuations is to be noted. The very
sharp peak in Fig. 2 corresponds to v,=0.01 and
in the limit v, -0, this peak transforms into the
6 function. Finally when v, = a then the three-
peak spectrum disappears and one finds a single

NORMALIZED FLUORESCENCE SPECTRUM —s

W

FIG. 1. Normalized fluorescence spectrum as a function
of w. v has been set equal to 1. The curves correspond
to (i) solid v,= 2, o= 2, (ii) Dashed v,= 2, @= 0.5 (iii)
Dashed-~dotted v,= 0.2, @ = 0.5. For the dashed and
dashed-dotted curves one unit on x axis is equal to
0.4.

NORMALIZED FLUORESCENCE SPECTRUM ——p

FIG. 2. Normalized fluorescence spectrum as a
function of w for o= 10 and for (1) v,=2 (2) v,= 0.01.
The behavior of the peak arising entirely due to laser
fluctuations is shown by curve (3) for the case v,= 0.01
o =10.

broad peak. For the off-resonant case A#0, the
spectrum S(w) has the property S(4, w)=S(-4, ~w).
The explicit form of the spectrum is obtained
from (3.48). For the case of radiative relaxation
1/2T,=v, 1/T,=v,(5%),,=-%, the result obtained
from (3.48) coincides with that of Kimble and
Mandel.*” Kimble and Mandel have studied the
detuned spectrum in detail and have discussed
many of the asymmetry properties of the spec-
trum. [t should be remembered that the method
leading to Eq. (3.48) is exact whereas the method
of Kimble and Mandel*” is seemingly an approxi-
mate one obtained by using a suitable decorre-
lation. The reasons for the coincidence of the
results obtained by the two -methods are given in
Appendix B.

3. Linear response to an applied weak field—absorption spectrum

It is well known that the power absorbed from
a weak field by a system is proportional to the
imaginary part of the appropriate linear sus-
ceptibility whichis related the correlation function®®
of the form ([S*(#), $7(0)]). Hence the absorption
spectrum is essentially proportional to Re [f‘{"(w,
iw) = TM (w0, jw)]. Using (3.41), (3.42), and (3.12)-
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(3.21), one finds that the absorption spectrum
has the form
S(w)=Re[ T{4)(, iw) - TM(x, jw)]

=4p(T+7,)(T, ~ T) PIH0) Re(z + v, + 2p) P3'(z)

(oo Berre 2 )
ardver 7 \a+ver 7 )\ve T,

203z + 376)] s (3.52)

where we have specialized to Torrey type of
relaxation mechanism. Thus the absorption spec-
trum is determined by

x(w)=(A,A,+B,B,) (A3+ B3
with '

1 1 1 2] .
A1=(7’c+ T_z)[(?'c"” 7‘_1" (47c+ 'I'w';)_w "'670‘1 ’

(3.53)

(3.54)

o
o
1

=)

(ARBITRARY UNITS)

-0.5

x{w)

FIG. 3. Absorption spectrum as a function of w -w,
for the radiative relaxation of the atom.

—_—

(ARBITRARY UNITS)

x{w)

FIG. 4. Same as in Fig. 3 but for the collisional
relaxation of the atom.

Note that the spectrum x(w) is symmetric. In the
special case when y,=0, the result (3.53) is equiv-
alent to that of Mollow.?® We have plotted (3.53)
for two special cases 1/T,=1/T,=1 (collisional
relaxation) and 1/T,=2, 1/T,=1 (radiative re-
laxation) in Figs. 3 and 4 for the case of strong
fields and for y,< @. It is seen that the laser
fluctuations reduce considerably the strength

of attenuation and amplification of the external
weak field. The spectrum changes very slowly
from the negative values to positive values com-
pared to the case when the nonfluctuating laser
beam is used to drive the two-level atom. Note
also that the spectrum x(w) is independent of
temperature which is in contrast to the case of
scattered field spectrum, given by Eq. (3.49),
which depends in an important way on temperature

®).

IV. INTERACTION OF A MULTILEVEL SYSTEM
WITH FLUCTUATING LASER FIELDS-HANLE RESONANCES

Multilevel systems show a variety of interesting
optical effects'® 1% with laser fields. Such op-
tical effects include optical double resonance ex-
periments and Hanle resonances. It would be
interesting to study how the laser fluctuations
affect the spectrum of optical double resonance
as well as the intensity of level-crossing signals.
It should be noted that the problem of resonance
fluorescence from a collection of atoms is also
an exercise in the interaction of a multilevel
system with a resonance field. It will be clear
from the treatment given in Sec. III that the laser
fluctuations can be incorporated in the theory.
One has to find the set of variables such that the
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set satisfies equations of multiplicative stochastic
processes. For example let us discuss briefly the
resonance fluorescence from a collective atomic
system. The master equation describing the
atomic dynamics'*?'® ig

b= —y(S*S p=25"pS*+pS*S”)
+ia[S*e??c.c., ], (4.1)

where ¢(¢) is the fluctuating phase variable (2.7).
It is clear from (4.1) that if we introduce variables

Prm = Pam exp[i(n —m) @ (1)], (4.2)
then
ﬁ (1) —‘)/(S'S- p(l) - 28 p(l)st_‘_ p(1)S+S-)
+3a[S*+S7, pM +ip @) S%, 0], (4.3)
and hence the ensemble average of p''’ satisfies
(P = —y(8* S (p™) - 257(p") §* +(p*") §*S7)
+ia[§*+8",(p™)] -7 [S% [ %)), (4.9)
It is clear that the ensemble average of p'*
enables one to calculate the ensemble average
of the diagonal elements of p. The ensemble
average of the correlation functions involving
the atomic operators diagonal in ]n) representation
can be calculated from (4.4) and the quantum
regression theorem. In order to calculate the

dipole moment and the dipole moment correlation
functions, one can introduce the variables

P =Pumexplite - m+1) @ (t)], (4.5)
since
<S*(t)> = Z pnms;m:Z pn,n+1<n +1 |S+ln>
=Tr[p®@#)s*], : (4.6)

and thus {S*(#)) can be calculated from the en-
semble average of p®*, The ensemble average
of p» satisfies the exact master equation

(B = —/(S*S(p™) - 25 () 8 4(p) 5*5")
via[§* 45, (0@)]—y, L[5 [5% (p™)]]
+p® +2[ S%(p®)]}.

(4.7)

It is thus clear that in the presence of laser
fluctuations one has to solve different types of
master equations [ef. analogous relations (3.3)
and (3.6)]. Of course, master equations like
(4.4) and (4.7) have to be solved on a computer
(cf. calculations in Refs. 15 and 50).

A similar analysis can be carried out for optical
double resonance'® experiments—one has to solve
numerically 9 X9 matrices. As this becomes a
problem in computational physics, we do not

discuss it here. We will however present the
analysis of Hanle resonances for J=0to J=1
transition excited by a fluctuating laser field.
This system has been analyzed quite recently
by Avan and Cohen-Tannoudji.!” We will show
how the theory of the multiplicative stochastic
processes can be applied to obtain exact results.
The analysis is rather simple as the following
statement will show. The model for the Hanle
resonance is same as that of Avan and Cohen-
Tannoudji. In the equivant spin-1 space the density
matrix p obeys the equation

p =~i[H, p]+Lypenp, 4.8)
where
10 0 0 @ O
H=Q [00 0|+ [a 0 af|,
00 -1 (0 & 0 (4.9)

a, Zqetiv @) s
and L, .. p represents the damping part
LineonPliy==T py;+T 8405, +3 T py5,  (4.10)

where I'' is a symmetric matrix and its only
nonvanishing elements are I'',=T},=1 and 2Q
represents the splitting between the two Zeeman
levels. As is well known the level-crossing signal
is determined by the steady-state behavior of

P, + P33 Rep;;. We now introduce the set of
variables

1=Piss V=95, ¢'3=p236'i“’, =03,
Zp5=ew Pizs Vs=0¥ V,=pyy, Vg=Pgs.
It is easily seen that the set (4.11) satisfies equa

tions of multiplicative stochastic processes;
Y,= -(r +2in)¢1 - ia(‘l’:;l‘ d’s) ’

z»57 == F¢7 - ia(zl)s - 1,[)5) ’

bo==Tg~tal;-1,), (4.12) |

o= =(T/2+iQ0; — i P, — i), + 20, — 1 +9,)

¢5=—(r/2+i9)¢5+i¢¢5—ia(1 -21117—2!)3—%):

which can be written in matrix form ( a column
matrix having eight components)

J =AY —ip() ) +ia 8,

Iz=-1,=~I;,=I,=1, B;=1for everyi,

(4.11)

(4.13)

the remaining elements of I being zero. Hence the
ensemble average of ¢ satisfies the exact equa-
tions
(i) =A<¢> +ialf - YcA<¢>’ Aii =1fori= 3, 4, 5,6,

‘ (4.14)
and where the remaining elements of A are zero.
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Eq. (4.14) and the regression theorem leads to the
complete dynamics of the system. In the steady
state one will have

Wy=ialy. A-A)'IB.

Note that one need not invert the 8 X 8 matrix
(voA -A). Equations (4.14) can be solved directly
for the steady-state values. A simple analysis
shows that

<¢7>=<¢8>’ (Z/)5>=_<Zl)3>’ <Z/)6>=—<([J4>, (4-16)
() =D (3y +iQ)[1+ Gy - Q) G T -iQ)™],

(4.15)

(4.17)
W)= (piy) =D G T2+ ) (32 + 09
X[1-Q%2+5Ty —3i(T+y)], (4.18)
) = (pra) =D (37 + @) T2 27
X[1+6/T)@%+3T?)], (4.19)
where
y=T+2y,,
D=1+ (3y/T)@+ 57214 @245 T2
X (Q2+51y2) (4 +59T - 202), (4.20)
Note that in the limit of @ > T,y one gets
Re{p;s )~ 292_94?24__1(3792/1,) . (4.21)

In this limit the results are in agreement with
Avan and Cohen-Tannoudji.!” Since the curves
giving the behavior for different values are

given in Ref. 17, we do not pursue this topic any
further. We would like to emphasize that our
results (4.16)—(4.19) are valid for arbitrary values
of the field strength and y,, 2, T', etc., whereas
Avan and Cohen-Tannoudji have presented only

the limiting results (4.21). The simplicity of

our method should also be noted.

V. QUANTUM ELECTRODYNAMIC TREATMENT
OF THE EFFECT OF LASER PHASE FLUCTUATIONS

We have so far treated the external laser field
as either a classical field or a coherent field with
a fluctuating amplitude and phase. In this section
we present a treatment which makes the second-
quantized nature of the field explicit. We assume
that the initial state of the field is a Fock state.
The phase fluctuations appear in a dynamic form
in equations. For simplicity of the analysis, we
ignore the terms arising from the relaxation of
the atomic system. It is well known that the phase-
diffusion model of the laser is described by the in-
teraction Hamiltonian:

H=wya Ta+u(t)a"a, (5.1)

where p(f) has the properties given by (2.8). The
total interaction can now be written

H=wpa'a+pt)a’a+wS*—g(S*a+S-al). (5.2)

Thus the density operator in a frame rotating with
the frequency w, satisfies the equation

p==i(w-w)[S% pl+ig[S*a+S~a, p)
-ip®a’e, p]. (5.3)

We now eliminate the stochastic element from
(5.3). This can be done by using again the thebry
of the multiplicative stochastic processes (see
Appendix B) and the exact result is

(B) ==ia[S%, (p)] +ig[S*a +S7a",(p)]

- vla'a, [a'a, {p] | (5.4)

The solutions of (5.4) describe the time-dependent
behavior of the states of the field as well as the
atom. The solutions of (5.4) can be obtained by
using Fock space representation of the radiation
field. Let us assume an initial state of the form

p(0) =) (x|,
X =a,|n,1)+a,ln2). (5.5)

Note that for the system (5.4) (a'a +S%) is a con-
stant of motion and hence the density matrix at
time ¢ will be of the form

=2, P |8, KB, |, (5.6)
Ho=1
where
@)=In1, B)=[n+1,2),
(5.7)
) =122, [@)=In-11.

The reduced density operators for the atomic sys-
tem and the radiation field will be

<pA>=(p(1,1) +p(4,4))l1><1|+(p(2,2) +P(3’3))|2X2l
#0912 +pV 2)(1], (5.8)

<PR> - (p(m) +p(3'3)) l n)(nl

+0%2 ln 4 1Xn +1[+p%9 = 1){n~1|

+{p )(n = 1] +p@3) [+ 1)(n| +H.c.}. (5.9)
Equation (5.8) clearly shows the relation of
o) to the atomic expectation values such as di-

pole moments. Equations for p‘*”) follow from
(5.4). On defining

(x =p =(S7), (x)=p'**,
‘ (5.10)
(X3> =p(1,4) , <X4> =‘0(2,3) ,

we find the equations
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—iA 0 —ig¥n igVm+i We thus see that the mean value of the dipole mo-
] ] ) ment satisfies the same equation (3.3) provided we
(D= 0 iA—4y, igVn+l —igin (0. assume that the number of photons in the field is
X —ig¥n  igin+1 -y, 0 large enough so as to justify the replacement # +1
) ) =n. We next show that a similar result holds for
igdn+1  —ig¥n 0 =Y the population distribution in the lower and upper
levels for example, we obtain for the atomic den-
(5.11) sity matrix the equation
<p21> A=Y, 0 ig¥n+1 —ig¥n+1 (P21>
d |{p,y 0 ~-iA-y, =igVn+1l igyn+1 Py
= = ’ . (5.12
at (pry) ig¥n+1 —igVn+1 0 0 (pyy) ( ) :
| |-igm+1  igvn+d 0 0 (py2)

which compares very well with Eq. (3.6). We have
thus established the equivalence of the results of
Sec. II with the results of the present section pro-
vided > 1. Since in Sec. IIIl one has assumed the
excitation of the field in a coherent state whereas
in the present section in the Fock state, one ex-
pects the equivalence on the basis of the corre-
spondence principle, i.e., in the limit of large'n
and that is what we have explicitly shown. For an
initial Fock state in which 7 is of the order of 1,
then the equations like (5.11) and (5.12) are to be
used. In the case y,—0, the solutions of (5.11)
and (5.12) are equivalent to the Cummings and
Jaynes’®! solutions.

We have considered so far only the phase fluc-
tuations of the laser beam. Inprinciple the amplitude
also fluctuates. In many cases, for a laser oper-
ating well above threshold, the amplitude can be
written as

80) =8,+68,0),

where the part §,(¢) is fluctuating and is much
smaller compared to §,. Since (62) < &, the effect
of 8,(f) can be incorporated in the theory by doing a
second-order perturbation calculation with respect
to &, in a way analogous to the one in Appendix A.
The results on the effect of laser amplitude fluc-
tuations will be discussed in a future publication.
In this paper we have treated exactly the effect
of the laser phase fluctuations on the outcome of a

(S*(t+ 7))y =€/ TI(S*(t)) +det' etV <’%~<s*>w+ {ig8(t+t)[(S*(t +t)etott+t_ c.c.]}>,

1 X
'f; -i4A

(S*(t+7)) =e*2Te ™/ T2(S*(t)) +’/-T dt’ exp [ - (

Using (A1) and (A2) in (2.5) we obtain

number of optical-resonance experiments such as
resonance fluorescence, energy absorption from a
weak field, optical double resonance, Hanle re-
sonances, free-induction decay, etc. The laser
field can be either a semiclassical field or a full
quantized field having excitation in coherent state
or Fock state. In future publications, we will
study the effect of the laser fluctuations on the ex-
periments involving two-photon®? type of processes,
on the nonlinear susceptibilities®® of a two-level
atom in the presence of a strong laser field, co-
herent and incoherent pulse propagation, etc.

APPENDIX A: ATOMIC CORRELATION FUNCTIONS
TO SECOND ORDER IN APPLIED FIELD
AND THE SPECTRUM OF THE SCATTERED LIGHT

In this appendix we assume that the applied laser
field strength is much less than the saturation
field. In this case a perturbative solution®* in pow-
ers of & can be obtained. From the perturbative
solutions the correlation functions involving the
ensemble averages over the distribution of the las-
er field can be calculated easily. Such approxi-
mate results involve, to lowest order in field
strengths, only the second-order correlation func-
tions of the field and hence are model independent.

In order to keep the analysis simple, we do only
the case when the relaxation mechanisms are of the
Torrey type. On integrating (2.5) once, we get

(A1)

)(T' - t")] 2ig<s‘(t+tl)>g(t+tl)eiw(t+ ) (A2)
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ad? S*t+7)=- (Tt- - z‘A) (S*(t+ 7))+ 2ig8 (¢ + THSH(t)ye® Ve Tr i 2ig 8 (t + T)et 0 44T
| xfofdt'e'“"”/Tl(%(s'>2q+{ig£(t+t')[<s*(t+t')>e'*w<~t'>—c.c.]}) , (A3)
o ST~ (ST = 5,0+ i(g8 (s mertetee 1) srperratsmama

+—[;Tdt/ e/ Tz"A)(T't')Zig(S’(t+t'))é’(t+t')ew”* t) _ c.c.) . (A4)
The equations for the correlation functions can be obtained from (A3) and quantum regression theorem:
d—d7 S*t+1)S"(1t) = —< %2— - z'A><S“(t +T)S™ (1)) + 2ig 8 (¢ + T)ete (T
X [(8%)eq = ((S%)eq+ 3)e™™/ TIKS™ (1)) — 2826 (¢4 T)e0*+ T
><det'e"""”Tl8(t+t')[(S*(t+t')S'(t))e"'“’”" £ (ST (E+27)S"(E)et e 0], (A5)
)
Equation (A5) involves the correlation function (S”(f +¢/)S(¢)), which satisfies a similar equation
d—‘i— S @E+7)SE))=- <7,1;+ z'A)(S'(t} T)S™(t)) — 2ig8(t+7)e 0+
X [(S%)gq = ((S%)oq+3)e™™/ T1IS™ (1)) — 2 28 (¢ + 7)™t 04+
xffdt'e“’"””xg(taht’)[<S'(t+t’)S'(t)>e‘“’”*"’—(S*(t+t')S'(t))e"“’“”"]- (A6)
o

Note that the above equations for correlation functions involves terms like §(t+7)e #°(¢+™(S"(¢)). These can
be simplified by using (A2), i.e.,

¢ ) .
<S-(t)) =g 1/ Tp+ M”(S'(O))-i—f dtte-(ll T2+iA)(t-t')[__2igé’(t/)e-iw(t’)<sz(tr)>]’ (A7)
0
and hence
8(t+T)et (S (1)) = 8(t + T)et v (#+ 1"/ T2+ i8)KS™(0))
, .
+f db? e Tpr 88D (L 240) 8 (1) & (¢ + T)(SA(E!))em 10t +0(teT) (A8)
0
On substituting (A8) in (A5) we find that we have iterated in a manner so that § appears as second power in
(A5) and (A6). Equations (A5) and (A6) are exact equations, i.e., we have not made any approximations

concerning the strength of the laser field. If the fields are less than the saturation fields, then one can do
a second-order calculation in §. From (A5) and (A8) it is clear that to second order in § we have

eSO = (- 18) 7 IO 4 g5 (59 e/ ]
Xf‘dtle-(llT2+iA)(t-t')é’(tl)g(t+T)(sz(t'»(o)e-iw(t')+£w(t+1)

T
_Zng At &(t+T)E(t+11)et o =TtV (St 4 $1)57 (1)) Dm0ttt
[\]

—(S(t+1)S(t)y ettt (A9)

Note that
(S*(t+t’)S'(t))(°) e~/ Tz““"(S"(t)S'(t))W) s (A10)
(S™(E+E)S™ (@) = g1/ T2+ i8I (G=(1)S™ () ) = 0. (A11)

We now assume that the correlation functions of the field are given by
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<é"(t+ T)g(t+T/)eiw(t+f)-w(t+r')> - gze-‘/cl'r--rl s

<é’ (t)g(.,-)ew(t)+w(f)> =0.

On using (A10)-(A12) in (A9) we get for the ensemble averaged correlations

L (s O = - (—Tl- - z'A) US*(E+T)S" () D + 4g 287(S™) 1 = ((S¥)g g+ )™/ T1]

x [ " a7 (SN exp[—(1/Ty 4 iB)(t = 1) — vt + 7~ £1)]

Hence the Laplace transform of the correlation function defined by

f-;zv)<2)(t,z)=-/wd-r (STt +T)ST MNP

is given by

[+ (77 ) [P s os on® - 22 05 N0 e+ rer 7 ) (ev - 18)

2

Note that (A4) shows that to second order in §, (S%) satisfies

(A12)
_Zgngdet'(<s+(t)S- )@ exp[_ ('Yc+ T—11>(T —t) - (7‘];2-— zA)t'] (A13)
(A14)
T,
2 02 z =1 _ £ 3 —_]:‘ N

+4g2%8 [(s DeaB+ %) = (S >N+z)(z”c+ Tl) ]
x [ aur (S W expl-1/T, wid 47~ )] (A1)
(Al6)

LS ON® = = (SHTIND ~2878 [ a1 (S N {expl — (1 Ty vy, — i8)7 = 1)] +e.c.).

Equations (A15) and (A16) give the transient spectrum of the scattered light which is proportional to the
real part of I'™®@\¢ jw). In the steady state one has from (A16)

(S = ~226%(S%), T\ [(1/T,+7, —ia) " +c.c.]

-1
(z + Tl - iA) TN, 2) = ((5%))%), - 22282 (z + Y+ —1—) (z +

T,
1

+4g282 ( T rias Yc) 5% g [(S‘)W(z ARSI (S’>eq)<z Vet ‘1‘}:_)-1] y

In the special case of radiative relaxation (S‘)eq
=~3, (A18) reduces to ‘

T (N)(z)(w, z2)=o®[V* = (v, +i8)*] Mz +7,) !
+ (1, 02/P)[72 = (v —ia)]
X(@+y=1A)7" . (A19)

If one further specializes to the case of resonance,
then (A19) leads to the well-known form of the
spectrum

T WG, 2) = a2(y,/7) (2 =12 "Mz + )"

+ (P =-)"Hz+v)™, (A20)

or
ReT W®(w0 jw) = a?y,[y2+w?] [P +w?]™t . (A21)

Equation (A21) leads to the standard result.’® If
Y. <7, then the spectrum of resonance fluorescence

(A17)

A -ia) (5 (590

(A18)

t
will be determined by the spectrum of laser radi-
ation and hence the linewidth of the scattered radi-
ation is much less than the natural width. Gibbs
and Venkatesan®® have measured linewidths much
less than the natural widths. In the other extreme
case 7, >7, the spectrum is same as that of sponta-
eously emitted radiation.

In this appendix we thus have obtained the most
general forms of the transient and steady-state
spectrum when the two-level atom is relaxing with
relaxation parameters T, and T,. The results are
valid up to second order in fields, but for arbitrary
values of v,, T, T3, A, and the initial state of the
atom. The iteration has been done self-consis-
tently, i.e., we made a priori no ad hoc assump-
tions like linearization of the first two Bloch equa-
tions by substituting some form for (S*(¢)) such as
{S%)¢e- For arbitrary field strengths one has to
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solve the exact equations like (A5) and (A6). It is

clear that if the ensemble average of both sides is

taken, then (A5) still involves the unknowns like

the ensemble average of

(S*@+t")S~(t)) -
Xexpliopt+7) —i@@t+t)]E¢+T)EE +¢')

A closed set of equations can be obtained by de-
coupling the hierarchy suitably. However, it is
difficult to assert in this case the region of validity
of the approximation. In the main text we obtain
an exact solution for the phase-diffusion model of
the laser. The exact result reduces to (A18) when
one expands to second order in . We finally also
note that the structure of (A5) and (A6) is similar
to the equations obtained by Eberly.2

APPENDIX B: MULTIPLICATIVE STOCHASTIC PROCESSES

Our exact results, in Secs. III-V are derived us-
ing the theory of multiplicative stochastic pro-
cesses. For the sake of completeness we review
the main results on such processes and also pres-
ent a rather simplified derivation of such results.
Fox has given a detailed derivation of the impor-
tant results on multiplicative stochastic processes.
He also has generalized many of the earlier re-
sults of Kubo.>” Consider the Langevin equations
of the form -

K= jZM“x,+;F‘j(t)x, , - (B1)

where F;; are 6-correlated Gaussian random pro-
cesses satisfying

Fi()=0,
(Fi;(t)Fm(tl» = 2Q““5(t - tl) . ' (Bz)

One wants to study the behavior of the mean values
of x and the correlations between x;(¢). The sys-
tem of variables has the Markovian property and
hence it is sufficient to know the Fokker-Planck.
equation for the conditional distribution function.
The Fokker-Planck equation can be obtained by us-
ing the general results of Lax®® and Stratonivich.5®
For a more general Langevin equation of the form

% =B, + ; o, f,(8)
=0, (B3)

(fi (t)f;(tl» = 25;15“ - tl) ’

the associated Fokker-Planck equation has the
form

aP ) o2
- Z‘:—;,;T[AsP]w“ ;W[DuP] »  (BY)

90im
Ai=Bi+Z_——ax Oem »
me &

‘ (B5)
Dy;= Z"im"m .
m

The derivation (B4) does not involve any approxi-
mation. Thus for the system of Langevin equations
(B1) one will get (B4) with the drift and diffusion
coefficients given by

A= ; M %, + § Qirua¥s 5

. (B6)

Dy;= IZ:QiUmxlxm .
! p ,

Fox has obtained (B6) through a laborious method
using the moment theorem for Gaussian random
processes.?® Note that we have simple equations
for the mean values

(X = Z <Mu + Z in) ) . (B7)
7 3

The classical equations like (B1) are applicable
to quantum-mechanical systems. The density ma-
trix p satisfies equations of the form

Py;= ;{Lom;l)m +[L,(O)iuiPuit (B8)

where the random forces (6 correlated and Gaus-
sian) appear in the part L,(¢):

L= F (L
¢ (B9
(Fo(O)F (1)) = 2Dp0(t - t1) .

The result (B7) when applied to (B8) implies that

t
(B)=Lo(p)+ [ (L, (OL(D)p(E))

= Ly(p) + EBDasLi“’LS%(t ) . (B10)

Equation (B10) is the master equation for the en-
semble average of the density matrix interacting
with stochastic perturbations. In the derivation of
(B10) no approximation has been made and (B10) is
exact. Note also that because of the 6-correlated
nature of F, the term in (B10) arising due to the
interaction with the fluctuating forces does not de-
pend on L,. Note also that the dynamics of the
random forces is prescribed. The master equa-
tions which we have discussed in Secs. III-V fol-
low from a straightforward application of (B10).
Many other master equations, such as the Redfield
equation,® Haken-Strobl-Reineker®® equations,
which have been derived in the literature by using
very complicated methods, follow from a simple
application of (B10). We illustrate the method for
Haken-Strobl-Reineker equation describing the
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problem of exciton diffusion

f)z -i[H 1 p] "i[Hz(t),p] ’ (B11)
where

Hy(0)= 23 OS5 Sty =0 (B12)

<hnn'(t)hn"n"’(t,)> = 2Ann'n"n"'5(t -t). (B13)

On applying (B10) to (B11) we immediately get the
exact master equation

(By=~i[H,, (p)]

E T Q=
— . A"’llnnnm [S".S"f, [6"”Sn’" s <p>] ’
nn'n"'n""'

(B14)

which is the desired equation. It has been obtained
in Ref. 30 by infinite-order perburbation
theory.5® We close this appendix with some re-
marks on the exact master equation (B10). If one
uses the Born approximation (cf. Refs. 35-41) then
(B8) leads to

G = Lo+ | HL O DL (D) p(har . (B1S)

On substituting the 6-correlated nature of the ran-

dom forces in (B15), we find that (B15) reduces to
(B10). We have thus shown that when the vandom
forces acting on the system characterized by the
Langevin equation (B1) are Gaussian 6 covrelated,
then the exact master equation is same as the one
obtained by using the Bovn approximation. We
have mentioned in Sec. III that our results on res-
onance fluorescence are in agreement with those
obtained by Mandel and Kimble*” and by Eberly?®
on the laser phase fluctuations even though these
authors employed a decorrelation technique, which
is equivalent to the Born approximation. The
above agreement, though at first sight mysterious,
can be understood from the italic result cited
above.

The results of this appendix can also be used to
calculate the fluctuations in various dynamical
variables for example, population inversion, dipole
moment, etc., i.e., if one wants to calculate quan-
tities like ((S%)%)-({(S%)))? then the Fokker-Planck
equation (B4) can be used. This equation for ex-,
ample, leads to

<xkxl> = (Akxz> + <A1xk>+ %: Qk{lj<x{xj> s (B16)

where A,’s are defined by (B6). An analysis of
these fluctuations and their experimental implica-
tions will be presented elsewhere.

*A previous account of this work was presented by
G. 8. Agarwal [Phys. Rev. Lett. 37, 1383 (1976)].
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