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Transitions among discrete and continuum electronic states of diatomics,induced by atom-atom collisions
and leading to ionization, are described by rigorously making the continuous electron energies € discrete. An
expansion in functions of € leads to a set of coupled-channel scattering equations which may be solved to
obtain differential and integral cross sections per unit of electron energies. This procedure is applied to
Penning ionization in He*(152s,3S) + Ar collisions by choosing a suitable expansion basis and numerically
integrating a selected set of coupled equations. Results confirm the Franck-Condon nature of electron
emission used in previous theoretical analyses. They were obtained with a parametrized exponential coupling
potential between the states of HeAr* and HeAr*+e ~. The calculations include total integral cross sections
per unit electron energies and the contribution of individual partial waves at a given final energy. These
cross sections show prominent features that may be related to the potential of the product heavy particles.

1. INTRODUCTION

In this paper we address the problem of dis-
crete and continuum electronic states in collision
processes such as Penning and associative ioniza-
tion (PI and AI) of an atom or molecule B due to
energy transfer from an excited (metastable)
atom A*, Penning ionization and AI have been the
focus of considerable experimental and theoretical
interest.'=® An important feature distinguishing
PI and AI from other chemi-ionization processes
is that the excitation energy of A* exceeds the ion-
ization potential of B. This means that the internal
electronic state of the quasimolecule formed dur-
ing collision consists of a discrete state embedded
in the continuum of electronic states associated
with the free emitted electron in the presence of
the bound electrons of the molecular ion after
ionization. As a consequence, in quantum-me-
chanical investigations of the collision dynamics
in PI and Al, the role played by such resonant
electronic states and the related continuum elec-
tronic states becomes a matter of prime concern.

For the most part, quantum-mechanical treat-
ments of PI and AI®!° have been cast in terms of
well-known resonant-state formalisms.** These
treatments focus on the width I'(R) which deter-
mines the rate of decay of a discrete state into the
continuum at internuclear separation R. Within
the context of such formalisms, various semi-
classical and semiempirical approaches have been
introduced, leading to theoretical results for total
PI and AI cross sections,”® ™ angular distributions
for elastic scattering,®**° and energy'*%%*"° and
angular®“3? distributions of emitted electrons.
Reasonably good agreement with experimental
measurements is usually obtained, at least within
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limited ranges of the collision energy E.

Owing to the very limited information available
in the majority of cases regarding the R behavior
of the A*+B and A +B" interaction potentials, as
well as I'(R), these quantities have of necessity
been represented in terms of parametrized func-
tional forms in most theoretical treatments. Key
parameters specifying the behaviors of the func-
tions are determined by trying to bring calculated
results into agreement with experimental re-
sults.’®73% Such determinations are not always
unique,® however, and often have been successful
only by using potentials whose behaviors are de-
scribed by piecing together several functional
forms, each valid over a specific range of
R .1%:22,24-2% Ag hagbeen emphasizedby Berryina
recent assessment of the theory,® there is a need
for theoretical approaches which can successfully
calculate measurable quantities, such as energy
distributions of emitted electrons, to further con-
strain the potential parameters.

In keeping with this point of view, we have ap-
proached PI and AI within the framework of for-
mal discretization procedures applied to the con-
tinuum of internal electronic states associated
with these processes. The usefulness of such dis-
cretization techniques has been advanced previous-
ly by Bloch, who applied them to continua en-
countered in nuclear reactions,® and by Wolken,
who applied them to gas-solid energy-transfer
phenomena®* and to collisional dissociation of dia-
tomic molecules by atoms.3®

In a previous report,*® we outlined some of the
main features of our present approach. In this
paper it is our intention to make a more thorough
presentation of our application of discretization
theory to PI and AI. In Sec. II we review our
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earlier theoretical considerations, and establish
the formal framework provided by discretization
of the continuum of internal electronic states. In
Sec. III we discuss in detail physically reasonable
approximations which were made within this
framework, leading to the treatment of PI and AI
in terms of a number of two-state coupled equa-
tions. Each set of two-state coupled equations
describes the heavy-particle dynamics for ioniza-
tion in which the emitted electron has kinetic ener-
gy € within a given incremental range in the con-
tinuum of kinetic energies that it may carry away.

In Secs. IV-VI we expand the specific case of
PI in He* (1s2s, 3S) +Ar collisions. In Sec. IV we
consider in detail the He*(1s2s,3S) +Ar and He
+Ar*(3p°®, 2P) interaction potentials, and discuss a
convenient functional form for atom-atom poten-
tials which represents them over the entire range
of internuclear separations. In Sec. V the connec-
tion between the decay width I'(R) and the coupling
matrix elements between discrete and continuum
electronic states is used to make reasonable esti-
mates of the latter based on semiempirical para-
meterizations of I'(R).

In Sec. VI we report new results from calcula-
tions for PI of Ar by He*(1s2s,°S), and describe
some computational details. Refined calculations of
partial ionization cross sections per unit energy €
of the emitted electron confirm our previously re-
ported results, showing an € dependence in good
agreement with experimentally measured energy
distributions of emitted electrons, and further
showing more structural detail of the distributions.
Partial cross-section contributions for the heavy
particles in specific angular momentum states are
alseo singled out. Their behavior as a function of
€, or of the angular-momentum partial wave num-
ber, shows structure which reflects regions of
high density of states in the continuum of final
relative motion of the heavy particles.

II. THEORETICAL FRAMEWORK

The continuum electronic states in PI and Al can
be characterized as those associated with an elec-
tron escaping the region of the molecule along a
direction specified by the unit vector & [in body-
fixed (BF), center of mass of the nuclei frame].
The electrons escape with an amount of kinetic
energy € which is constrained by conservation of
total energy during the collision. The continuum
state of the emitted electron can be well repre-
sented outside the atomic cores by an appropriate
linear combination of Coulomb wave functions.
Designating the continuum state of the emitted
electron by ¢¢;(T), one can write

$Ss(F) = gﬂ) Y3 (8) 9% (F), o))

where ¢¢,,(F) is a Coulomb wave function of ener-
gy € with angular momentum quantum numbers A
and u in the BF frame. That is,®

¢S>\p(F) =Re\(7) Y)\u(';’) ) (2)

where the asymptotic behavior of the radial func-
tion R \(7) is

") ( 2 )1/2
R H\7) ~ \—
€N e Tk

sin[kr +06 ) +0y = 227 +(1/k) In(2k7)]
- .

3)

In this expression 2=+ 2€ is the wave number of
the emitted electron in atomic units, o, is the Cou-
lomb phase shift of the Ath Coulomb partial wave,
and 6, is the phase shift arising from the remaining
potential. The continuum orbitals of Eq. (1) are
normalized to unity on the energy scale, meaning

(¢85 |92 =6(e - €)5(é- &), @

where the brackets indicate integration over the
electronic coordinates.

In a many-electron description of the interaction
between a discrete electronic state and the con-
tinuum of electronic states in which it is embedded,
the primary mechanism for transition to the con-
tinuum is configuration interaction among the
states.'® In an earlier paper®® we discussed PI and
AT on the basis of molecular-orbital correlation
diagrams and showed that these processes are of
the Auger-type,®® involving two-electron transitions
mediated by Coulomb interactions. Born-Oppen-
heimer couplings, due to the influence of the
heavy-particle motions on the electronic struc-
ture, need not be considered except at very short
internuclear distances. Hence, it appears appro-
priate to describe PI and AI by means of diabatic
discrete and continuum electronic states, which
couple through the electronic Hamiltonian. Fur-
thermore, it has been found®:3%3% that rela-
tively few A-partial waves contribute to the states
of emitted electrons, with A =0 dominating in the
case of He* +Ar. Electronic angular momenta can
in this case be neglected compared to nuclear an-
gular momenta.

We turn next to the heavy-particle dynamics,
and expand the total wave function of electrons
and nuclei at each R in terms of a complete
set containing both discrete and continuum
electronic states {®,} and {®.}, respectively.

If n; is the discrete-state label of the incident
channel, then the wave function with outgoing



18 COUPLING OF DISCRETE AND CONTINUUM ELECTRONIC... 1437

waves may accordingly be expressed as
YOED = L 3 vuB
' R Tu
x ( PILACR ALY
+ f " e, (8, i)@eﬁ;‘(R)). (5)
(]

Here X indicates all of the electronic coordinates
and the sum over (LM) results from a partial
wave decomposition associated with the angular
momentum states of the nuclei. In the usual fash-
ion, Eq. (5) is substituted into the Schrddinger
equation H'Ilf,:') =E\Il,(,‘i‘), where E is the total energy
(i.e., collision energy) for the colliding atoms,
and H=-(1/2m)V% +H, is the Hamiltonian com-
prised of the nuclear kinetic energy —(1/2m)V3
and the electronic Hamiltonian H, . Here atomic
units are used, m is the reduced mass of the nu-
clei, and H, includes the nuclear-nuclear electro-
static repulsion. The Schrddinger equation results
in the following continuously infinite set of coupled
equations (independent of the superscript M),

1 d? L(L+1
(2_m Rz ~ éng) +E>‘I’"L"’(R)
(6a)

=Y ValREE AR+ [ de Ve (RVEAR),
b o

1 42 (L +1)
(’z'n'q Ty +E>‘I’5L’"'(R)

(8b)
= z Ver,, (R)‘I’,,L,,:(R) + f de Ve’e(R)\IleLn '(R) ’

where, for example, V,. =(&,|Hqa [®¢ is a Cou-
lomb coupling matrix element. These sets of
coupled equations determine (with the proper
boundary conditions for scattering) the expansion
coefficients ¥ 5 /(R) and ¥ 7,.(R) associated, re-
spectively, with n+~#’ and € ~»' transitions during
collision.

In order for these coupled equations to be of any
practical use, not only must the set of electronic
states (which in principle is infinite) be kept
small, but also the terms of Eq. (6) involving in-
tegration over the energy € of the emitted electron
must be suitably reduced to a tractable form.

This we have accomplished by means of discreti-
zation of the continuum, whereby the heavy-par-
ticle wave functions associated with transitions
into the continuum are formally expanded in a
complete set {a;(€)} of discrete functions of the
continuum variable €:

v (R)= ; a; (¥ (R). (1)

The set of functions {a; (€)} are taken to obey the

completeness relations,

,2.3“'*( ay (') =6(e - €), (82)
r deap()a,(€) =5y, . (8b)

The use of Eq. (7) in Eq. (6) leads to the follow-
ing modified set of (discretized) coupled equations:

1 d? L(L+1
(EnTZR—* -**—émRz)*E)‘“n”n*R’

= fs‘, Vel BYEfor(R) + 2 Ver (R (R) ,  (9)

1 d®* L(L+1
('2;;;,;1?————‘2(,”1?2)+E> ¥i,(R)

= Vi (RVE(R) + D Vil RTE,(R), (9D)
b J

where
Vu®)= [ de ViR (e), (102)
inlB) = Vi (), (100)

VidR) = j;wde’fmdea,*(e’)VEIG(R)a‘,(e). (10c)

Equations (9a) and (9b) may be combined into a
single set of coupled equations corresponding to
scattering in a set of effective electronic states
which span both discrete and continuum parts of
electronic configuration space. We simply intro-
duce a label a which ranges over the combined
discrete labels 7 and I. Then Eqgs. (9a) and (9b)
can be written as a single matrix equation,

DEYHR) =V(RZXR), (11)

where the matrices are defined as follows:

2 1
Df =[(‘2":7 a"iie’z' - Lz(f;lzz ) +E) Gaa'] ’ (12a)
Z(R) = [V(xa'(R)] ’ (12b)
THR) =[¥Ga(R). (12¢)

The desired physical solutions of Eq. (11) must
fulfill scattering boundary conditions. In what
follows, only so-called open channels of the heavy-
particle motion are considered, with wave number
k, given by

(1/2m)R%,= lim {E = V,(R)}> 0.

The séattering boundary conditions may be ex-
pressed interms of the;Ricatti-Bessel and -Neu-
mann functions p;(x) and v (x), respectively, as
well as w(},"(x) =yp(x) +2uy(x). The boundary con-
ditions are then written
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V5o (R) ~ o, (13a)
-0
lI’ga'(R) 1;\’ “’L(kaR)Gaot'
k., 1/3
+w(}:)(kaR)<k—°‘) TL . (13b)
o

The asymptotic conditions can be summarized by
introducing the matrices

IQ(R) =[00qrk3! 2 1y (RoR)), (14a)

I9(R) =[0 40k 3 2v (kR (14b)

IP(R)=IP(R) +iP(R), (14c)
so that Eq. (13b) corresponds to

YHR) ~ P r) +1P (R T k2, (15)
where

T*=(Tgy), (16a)

k=(0qqk,) . (16b)

In practice the physical solution to Eq. (11) [sat-
isfying the boundary conditions of Eq. (13)] can be
obtained as a linear combination of linearly inde-
pendent (column vector) solutions, Y7, YZ,...
which satisfy Eq. (11) with the boundary condition
of Eq. (13a). Upon integrating the full matrix
Y% of these linearly independent solutions into the
asymptotic region we obtain matrices _éL and B*
according to the scattering-boundary conditions,

YHR) ~ I(RA®-IP(R)B". (17)
R->
The R matrix of coupled-channel theory can be
calculated as

RE=BYAH™, (18)

from which S and T matrices are obtained in the
form

SE=(1+iR*)(1-iRH)™, (19a)

Ir=-3i(S*-1). (19b)
The S- and T-matrix elements for our physical
process are determined as the appropriate linear
combinations, based on Eq. (7), of the S- and
T-matrix elements for transition from a discrete
state to a discretized continuum state.’® That is,

Sk = ZI: SEa,(e), (202)

TL= Zt; TEa, (€). (20b)

Finally, cross sections (per unit energy) for
transition from a discrete state to a continuum
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state are given by the expression,
een(E, €) _ (4_2” S @L+1)|TE P. (21)
de Ry A

In concluding this summary of the discretization
formalism, we would like to emphasize that it con-
stitutes a rigorous approach applicable in general
to collisions involving coupling between discrete
and continuum electronic states, of which PI and
AT are just representative examples.

III. DISCRETIZATION IN PI AND AI PROCESSES

The basic features of PI and AI can be studied
in terms of a single discrete diatomic potential
labeled by 7}, embedded in an energy continuum
associated with a potential V, for the diatomic
ion plus an emitted electron with energy €. This
is illustrated in Fig. 1, which shows the actual
interaction potentials we used for He*(1s2s,3S)

+Ar. V,, is the coupling potential, and E(R) the

final relative energy of the heavy particles when
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FIG. 1. Potentials and coupling for PI and AI of Ar
by H*(ls2s, 3s). V, and V, label, respectively, the
potentials for He*(Ls2s, 35) + Ar and He + Ar* (357, %P).
Vi, labels a typical coupling matrix element (referred
to the left scale shifted by 10”3 a.u.). E; labels a
typical (thermal) collision energy, and the lower dotted
curve shows Eg(R) for Franck-Condon transitions, as
discussed in the text. E,, the energy difference between
the separated limits of V; and V,, is indicated.
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the electron emission is of the Franck-Condon
type and the initial relative energy is E;. A sim-
ple, but physically reasonable, set of discrete

functions of the continuum variable € is introduced.

Namely, the. set of functions {a; (€)} used in the
expansion of Eq. (7) is taken to be a set of step
functions in € as follows:

-1/2 —lae<ex LA,
a}(e)z{(Ae) for ¢ —3Aese€<¢€; +3A€, (22)

0 otherwise.

This choice of basis functions divides the € scale
into increments of size Ae, where the Ith such
increment is centered about €; =(I — )Ae. The
basis set of step functions only partially satisfies
the completeness relations of Eq. (8). That is,

i " deap(a o) =0y (23)

and
1/A€ for € and €’ both in the
same increment J,

Zaf (€)a; (€)=
! 0 otherwise. (24)
In terms of this step-function basis set the modi-

fied coupling terms of Eq. (10) (with d now label-
ing the discrete state) are expressed as

er+Ae/2
Va®=(a7 [ " dels,|Hal®),  (250)
€r—Ae/2
Via(R) =V (R) , (25b)
€ +Ae/2 €+ he/2 |
V”(R)=(Ae)"f de’ f de
€y —A¢/2 ~Jeg-Ae/2

X (@ N|Hy B . (25¢)

These coupling-matrix elements may be obtained,
if the increment A€ is made small enough, from,

e.g.,

-/ €+ Ae/2
@)/ [ de@,|Ha @)
€

r —Ae/ 2

= (A€)'/%®,|Ha |®,). (26)

As has been mentioned, the continuum electronic
states here are those of an emitted electron in the
presence of a single bound state of the molecular
ion. If ¥, locates the continuum electron, then, for
7.~ ©, one may make the following approximation:

Hel (R) SE)4)5(1%’ SEN-l ’ Tc - °°)
=[V*(R) +€]@ (R, Kyy, 7. =), (27)

or

<q>e’IHel I¢€>5[V+(R)+€']§(€— €'). (28)

Here V*(R) is the interaction potential of the mole-
cular ion (designated by V; in Fig. 1), and Xy_, de-
notes the coordinates of the N-1 remaining elec-
trons. This approximation amounts to neglecting
coupling between continuum electronic states.
In view of the fact that the continuum electronic
states in PI and AI describe very energetic
emitted electrons®*°~*? egcaping the region of
the molecular ion quickly, the approximation of
Eq. (28) is a reasonable one. On the basis of Eq.
(28), and for Ae small, the matrix elements
Vi; in Eq. (25¢) can be expressed as

€p +Ae/2

ViAR) = (Ae)™? de’
er -Ae/2

ey +Ae/2
xf de[V*(R) +€’]0(e’ =€)
€y-Nel2

=[V*(R) +¢€]0;. (29)

With these approximations, the coupled equations
of Eq. (9) reduce to

L(L +1)

S+ B = ValR) | ViR

1 a2
("2%(132 -
= ; (A%, |0, [®.,) ¥F(R),  (30a)

(s i~ o B = VR - € e (®)

=(8e) /%@, |t o) ¥ER) . (30b)

In Eq. (30a) V;4(R) =(®,|H4 |®, and is the interac-
tion potential of the discrete state which we men-
tioned previously and labeled V| in Fig. 1. The
present coupled-channels approach makes no as-
sumptions about Franck-Condon transitions, and
therefore includes no a priori restrictions on the
range of € values. Rather, the coupled-channels
calculations themselves assess the range of dy-
namically important € values.

Equation (30) is analogous to the coupled-chan-
nel equations of scattering for discrete target
states, a consequence of having introduced a dis-
cretization before writing down transition ampli-
tudes, instead of afterwards as is customary. A
succession of increasingly approximate procedures
may now be followed. For the I ~d transition we
can keep only two coupled equations from the set
(the standard two-state approximation of coupled-
channels theory), which accounts for the (Id) coup-
ling to all orders. In this way the collision dynam-
ics of PI and AI is treated in terms of N setsof
two-channel coupled equations. Each set of two-
channel coupled equations results from Eq. (30)
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by including only the J=I term in the sum of Eq.
(30a), and corresponds to transition into some
Ith discretized continuum state. Such a set of
coupled equations can be solved for the solutions
which satisfy scattering-boundary.conditions, ex-
actly as described in Sec. II. As a result, R, S,
and T matrices are found for each /-d transition
according to Eqs. (18) and (19), and € - d cross
~sections are calculated from Eqgs. (20) and (21)
specialized to the step-tfunction basis of Eq. (22).
Distorted-wave approximations'®?” could also be
obtained in our approach by further uncoupling our
two-channel equations. In this connection it is
worth pointing out that our equations do not contain
the imaginary term —-3iI" added to V;,;, because
transitions of the type d~I~d (which the imagin-
ary term would represent) are already included in
our two coupled equations, insofar as the (/d)
coupling is included to all orders. The present
approach is in fact-an-alternative to the use of
complex potentials.

IV. INTERACTION POTENTIALS FOR He*(1s2s,3S)
+ Ar PI AND AI COLLISIONS

A primary consideration in representing an in-
teraction potential is that of joining the short-
range repulsion to the long-range van der Waals
attraction in a way which adequately describes
the region of the potential minimum. As men-
tioned in the Introduction, the approach often
taken is to splice together, from one region to
the next, potential functions appropriate for each
region.'#?%2¢729 A gingle potential function valid
over the entire range of R, however, is both con-
venient and desirable. In this connection, Len-
nard-Jones (12-6) potentials have been used for
the interaction potential of the metastable state.*®
From studies of collisional ionization of Ar by
Ne*,'” however, it appears that the Lennard-Jones
(12-6) potential is too repulsive, which would be
of steadily worsening consequence as the collision
energy increases. The same has been found for a
Lennard-Jones (12-6) potential in the case of He*
+Ar collisions.” On the other hand, Morse poten-
tials which yield suitable potential well depths and
positions tend to produce repulsions which are too
soft.’®?%%" Ag a result, in a recent study of He*
(1s2s,3S) +Ar collisions,* several repulsive be- .
haviors were spliced together to obtain good agree-
ment with angular distributions for elastic scat-
tering over a fairly wide range of collision ener-
gies.

In view of these results, it appears that a major -
problem in representing interaction potentials for
PI and AI centers around describing the repulsive
behavior. In the cases of He* +Ar and He +Ar",

we have carried out non-spin-polarized MSXa
calculations of the electronic structure as a func-
tion of R.%® The MSXa total energies as a function
of R for these calculations show the typical Born-
Mayer (BM) repulsion dependence Ae'R/”, for
2.3a, s R <10.0q, in the case of He* +Ar, and for
2.0a, <R <6.0a, in the case of He +Ar*. Such

BM repulsion was also found in our earlier MSX«a
calculations of some rare-gas diatoms in their
ground states,** where total energies were over-
estimated, but where the b parameters were of
reasonable magnitude. So, on the basis of our
MSXa calculations,®® it appears that a BM repul-
sion is quite adequate for both He* +Ar and He
+Ar* interaction potentials. Therefore, we have
determined BM b parameters from our calcula-
tions for He* +Ar and He +Ar* *® according to the
same procedure described for the ground-state
rare-gas diatom results.*

Toennies has found that a reasonable potential
function for atoms is one obtained simply by add-
ing together a BM repulsion and a van der Waals
attraction potential.** In our work, we introduced
a similar potential function, but one in which the
long-range van der Waals attractive potential
(which has, for instance, R™, R™, R?, etc.,
behavior) is smoothly suppressed at small R.

A function well suited for such a suppression is
the one studied by Eckart*® to simulate potential-
energy barriers

fa(R; Ry, B, B) =(1 + e~ (RRo)/B)=1
X [1+p(1 +e(B-Ro/By-1]  (37)

As can be seen, fp—~1, for R> R,, fz =0 exponen-
tially for R < R,, and f; exhibits a local maximum
at Rmax for 8> 0 given by

(Rmax _Ro)/B =1n[(ﬁ + 1)/(B - 1)] . (32)

Denoting by V,, (R) the long-range van der Waals
attractive potential, we introduced the followmg
potential function:

V(R)=Ae™*/* + V, (R)fs(R; R,,B, B) . (33)

This function can be applied to both the He*
(1s2s,3S) +Ar and He +Ar*(3p°®, ®P) potentials. We
choose the position Rp. of the local maximum of
f& to coincide with R,,, the position of the minimum
of V(R). We can thus determine R, by Eq. (32).
The BM b parameter in Eq. (33) is taken from our
MSXa caleulations, carried out for Z states of
HeAr* and HeAr*. Since-the BM b parameter re-
flects the “softness” or “hardness” of the repul-
sion,** we use it also to determine the exponential
behavior of the Eckart function. That is, we take
B=b. Finally, the BM A parameter and the Eckart
B parameter are determined by the potential-well
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conditions,
V(Rm) =—€n, (343')
dV(R)/dR lzem =0, (34Db)

where ¢, is the well depth.

For He*(1s2s, %S) +Ar, the values for R, and ¢,,
we use are those found by Chen, Haberland, and
Lee' in an analysis of their measured angular
distributions for elastic He* +Ar collisions. Their
He* +Ar potential has been the one most reliably
determined until the recent work of Wang, Hick-
man, Shobatake, and Lee.?* The He* +Ar potential
of Wang ef al., however, has about the same well
depth as reported by Chen et al., with an R,,
shifted to somewhat larger R. So both sets of
(R, €,) parameters can be considered to be rea-
sonably valid for the purpose of testing our theore-
tical approach. The C; coefficient we use for He*
+Ar is the one reported by Bell, Dalgarno, and
Kingston.? ’

Potentials for He +Ar* have been determined
from data on the ratio of AI to PI cross sections,
together with considerations of energy balance
based on Franck-Condon transitions.'®2° Recently
Nakamura has reanalyzed the experimental data
within a semiempirical framework, and proposed
a new He +Ar”* potential.’> We use the R,, and ¢,
values for Nakamura’s He +Ar* potential as well
as his value for the C; coefficient based on the
Slater-Kirkwood formula in terms of the polariza-
bilities of He and Ar*. The He +Ar* C, coefficient
we use is the accurate (experimental) value quoted
by Dalgarno.*®

Table I summarizes the parameters we use for
the He*(1s2s,%S) +Ar and He +Ar*(3p°, 2P) inter-
action potentials. The potentials themselves are
the ones shown in Fig. 1. Regarding the BM b
parameters we point out that our value for He*
+Ar is nearly twice that reported for Li and Ar,*°
which was the value used by Olson’® as a guideline
for the He* +Ar repulsion. For He +Ar*, our value
of b (0.532a)) is quite close to the one we calcu-
lated for He +Ar (0.54354,),** which supports the
idea that He +Ar and He +Ar* share similar re-
pulsive behavior.

Figure 2 displays the interaction potential for
He*(1s2s,3S) +Ar represented by Eq. (33) with the
parameters of Table I. The various contributing
terms of Eq. (33) are shown explicitly. We draw
attention in particular to the deviation from R~
behavior of the long-range portion of the potential
modulated by the Eckart function, as well as to
the Eckart function itself. For clarity, the Eckart
function has been plotted against an arbitrary
scale. As can be seen, comparison with the
Morse-Spline~van der Waals potential of Chen

TABLE 1. Parameters for the interaction potentials
of He*(1s2s,3s)+ Ar and He + Ar* (3%, 2P) as given by Eq.

" (33), where B=b and R, is given by Eq. (32) with Rpya

=R,. B and B are determined by Eq. (34). The b param-
eters are from MSX« calculations (Ref. 38).

He*+Ar He+Ar®
A (a.u.) 4.39678 44.6527
ba,) 0.9675 0.532
€ (@) 0.1583x10 32 0.945x10 3¢
Rn@p) 9.4488% 5.936°
Cg (au.)@y)® 226.0° 7.94°
Cy (@u)@ap)t .en 0.6904¢
B 2.81505 6.42317

2Chen et al. (Ref. 19).
® Bell et al. (Ref. 47).

¢Nakamura (Ref. 22).
dpalgarno (Ref. 48).

et al.’® is quite good. The Eckart form matches
their well-depth parameters with slightly stronger
repulsion than provided by the Morse potential,
and slightly less attraction in the region just be-
yond the potential minimum.

Figure 3 is a similar plot for He +Ar*, con-
trasting our potential, according to Eq. (33) and
Table I, with the one proposed by Nakamura.??
Nakamura’s potential joins two functional forms
describing different regions of R. Again, the
comparison is good, the Eckart form showing .
slightly weaker repulsion, and first less and then
more attraction for R beyond the potential mini-
mum.>°

0.3
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0.1
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x

jiO.C
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>
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-0.2+
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FIG. 2. V(R) of Eq. (33) for He*(Ls2s, 35) + Ar with
the parameters of Table I. The various contributions
to V(R) are indicated. Vg (R) labels the correspond-
ing potential proposed by Chen, Haberland, and Lee
(Ref. 19), shown for comparison. The Eckart function
fe(R) is plotted against an arbitrary scale for clarity.
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FIG. 3. V(R) of Eq. (33) for He+Ar* (355, %P) with the
parameters of Table I. The various contributions to
V(R) are indicated. V (R) labels the corresponding
potential proposed by Nakamura (Ref. 22), shown for
comparison. The Eckart function f (R) is plotted
against an arbitrary scale for clarity.

V. PARAMETRIZATION OF THE COUPLING

The potentials we have just proposed provided
suitably parametrized expressions for V,,(R) and
V*(R) appearing in Eq. (30). The remaining ex-
pressions required to solve these coupled equa-
tions are the Coulomb coupling matrix elements
(ae) % ,|Hy [®¢,). We will rely on functional
forms which have been used in semiempirical and
other quantum-mechanical approaches to repre-
sent the decay width I'(R).

The decay width can be expressed as**°

I(R) =27 (&, |Ha [® P, (35)

where ®, is a discrete state and &, is a continuum
state degenerate with ®,. In other theoretical ap-
proaches to PI and Al in He*(*S) +Ar collisions,
parameterizations for I'(R) have been pro-
posed'®20722:242527 haged on a simple exponential
representation,

I(R) =Ape~®fr (36)

This functional form appears to represent I'(R)
quite well based on both experimental and theore-
tical analysis.®

Equations (35) and (36) suggest that the coupling-
matrix element itself may be expressed in simple
exponential form. In addition, the range of para-
meters Ar and ar determined in various semiem-
pirical analyses should provide good guidelines
for choosing reasonable parameters for an expo-
nential form of the coupling matrix element.

Now the matrix element (&, |H |[®.) has € as well
as R dependence. In most treatments of I'(R),

however, a lack of information prevents explicit
consideration of the € dependence. Thus, when
Arandarare adjustedtogive semiempirical results
in agreement with experiment, they reflect pri-
marily the behavior of I'(R) at an energy €, near
the most probable energy of the emitted electron
(i.e., the peak of the electron-energy distribution).
Clearly, since each set of two-channel coupled
equations holds for a particular incremental range
of the € scale, it would be desirable to have coup-
ling matrix elements reflecting appropriate € de-
pendence.

We assess this € dependence in terms of the €
dependence of the continuum orbital describing
the emitted electron. Reference to Eq. (3) shows
that a continuum orbital of energy €, described
according to Eq. (1), has dominant asymptotic €
dependence in the factor v3/7k=v2/1 / (V2€)1/2
associated with the density of Coulomb states. Its
other € dependence, appearing in the argument of
the sine function, should be weak since the sine
function remains bound by +1 regardless of its
argument. Although the region of configuration
space near the molecule (where the emitted elec-
trons see more than simply a Coulomb field) con-
tributes to (®4|H, |®.), because the emitted elec-
trons are energetic, and their state oscillates
rapidly at short distances, we expect the € depen-
dence of {(®,|Hq |®.) to be well described on the
basis of Eq. (3).

Therefore, for each continuum state ®. we intro-
duce a state &, given by

o =[V2/T/(VZE) /2], . - (37)
We further write
(@4Hq @)

=[Va/7 /(VZE) 2| (@4 |H | ,), (38)

and expect the matrix element on the right-hand
side of the equation to have only weak € depen-
dence. It is the R dependence of this matrix ele-
ment we express in exponential form:

(@4 |Hy |3:) =A e/, (39)

Relying on Egs. (35), (36), (38), and (39), and us-
ing a value €, near the peak of the emitted elec-

tron-energy distribution, we arrive at the appro -

priate expressionrelatingA  and a,, to Ar and ar:
Are~®or =(4/V2€,)A% e™2F/*m (40)

Recalling that A,e"®%m expresses the weak e-de-
pendent part of a coupling matrix element, we
write the couplings of Eq. (30):

(A %@ ,4|H, |2.,)
~ (A VT /(TG ) /2] A e R m . (41)
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For PI and AI in He*(1s2s, 3S) +Ar collisions,
typical values of the emitted electron energy are
around 0.1505 a.u..”'®%! This is the value we use
for €, in Eq. (40) to compute A, and a,, values
based on Ar and ar as determined in several semi-
empirical analyses. As the results in Table II
show, there is a wide range of A, and a,, values
indicated by semiempirical calculations. The val-
ues based on Olson’s work!® deviate markedly
from the others. Olson, however, chose to vary
only the exponential factor ar in his work, leaving
Ar=1.0 a.u. Basically the trends set by semiem-
pirical work indicate an a,, value of about 0.7a,
and A, values in the range 20-100 a.u.

VI. RESULTS FROM COUPLED-CHANNELS CALCULATIONS
FOR PI OF Ar BY He* (1s2s, 35)

The potentials and couplings of Secs. IV and
V provided us the necessary quantities for applying
the treatment of PI presented in Secs. II and III
to the case of PI in He*(1s2s, 3S) +Ar collisions.
From now on we refer to the He*(1s2s, 3S) +Ar
potential as V;, and the He + Ar*(3p°, 2P) potential
as V,, as shown in Fig. 1. Accordingly, for some
Ith increment of the € scale, the two-channel cou-
pled equations are solved, as discussed in Sec. II,
by integrating two linearly independent solutions
into the asymptotic region. We carried out such
calculations by implementing a coupled-channels
computer program which performs the numerical
integration using the de Vogelaere algorithm.5?

In the asymptotic region R-, S-, and T-matrix
elements were calculated for I - d transitions by
matching to scattering boundary conditions accord-
ing to Eqs. (18) and (19). Then, for € in the Ith
increment, the S- and T-matrix elements for

€-d transitions were calculated according to Eq.
(20), and the partial ionization cross section per
unit energy of the emitted electron according to
Eq. (21).

We introduced a convenient criterion for deter-
mining both integration starting points R and ini-
tial solution derivatives D simultaneously,** by esti-
mating the starting solutions in terms of JWKB
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functions. Upon inspecting Fig. 1, one sees that
the repulsive wall of V, is probed roughly in the
range 5.6a,-8.0a, for typical initial-collision ener-
gies, whereas the repulsive wall of V, is probed
roughly in the range 4.5a¢,~5.5a,for corresponding
final-collision energies. Consequently, an R
appropriate for V, will nearly always be too deep
inside the repulsive wall of V. Whether R and D
values were determined by our criterion, or some
other suitable means, the integration over the
several extra Bohr radii in the classically forbid-
den region of V| led to numerically excessive in-
creases of the corresponding solution components.
We found that a successful way to circumvent these
numerical difficulties is to suppress the proble-
matic solution components governed by V, deep in-
side its nonclassical region."®

At the time of our earlier report®® we had per-
formed calculations for Ae=2x 107 a.u. with
coupling parameters A,,=50.0 a.u. and a,,=0.7a,.,
As Table II shows, these coupling parameters are
roughly midway in the range of values extracted
from semiempirical work. With these same A,,
and a,, parameters we have extended our earlier
calculations by a refinement of the increment to
Ae=1x107* a.u. over a portion of the € scale.

Figure 4displaystheresults of calculations of
4o 4(E,€)/de as a function of €, As before,* a
smooth curve has been drawn through the
do._4(E,€)/de values at the midpoints of the in-
crements along the € scale. The bottom scale
shows the final collision energy E;=E +E - € of
the heavy-particle motion corresponding to each
energy € of the emitted electrons, and the top
scale shows € referenced to E, (see Fig. 1). The
limit for PI lies at the right-hand edge of Fig. 4.
The plot would be continued further to the right for
the AI distribution. Since we have so far treated
just the open-channel boundary conditions of Sec.
II, our calculations are for PI only, and extend to
thelast increment before entering the AI region.
An extension of the calculations to the AI region,
where closed-channel boundary conditions are re-
quired, is presently being implemented. For the

TABLE II. Ap and a values of Eq. (36) reported in several semiempirical analyses as in-
dicated and the 4, and a,,values of Eq. (41) calculated by Eq. (40) with €,=0.1505 a.u.

Semiempirical
analysis Ar(a.u.) ar@) A, (au.) a,@g)
Pesnelle etal .2 4000.0 0.36 23.41 0.72
Hlenberger and Niehaus® 7400.0 0.357 31.85 0.714
Nakamura® 73000.0 0.34 100.00 0.68
0.667 1.0 1.334

Olson? 1.0

2 From Ref. 20.
® From Ref. 21.

¢ From Ref. 22.
d4From Ref. 18.
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(e-EMauX10%) —>

do 4(E,€)/de (02/au)X 107

o | 1 1 1 1 1
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< EflouX10%

FIG. 4. Partial ionization cross section per unit
energy of the emitted electron calculated for PI of Ar
by He*(1s2s, %S) at an incident collision energy E
=23.89%10"4 a.u. (~ 65 meV), and plotted as described
in the text. For these calculations, Ae=2x10"%a.u.
for Ef>10x10"% a.u. and 1x10"4 a.u. for E; <10x10"*
a.u.

results of Fig. 4, Ae=2x107* a.u. for E;> 10
X 107" a.u. and Ae=1x107* a.u. for E; <10x 10™*
a.u.

From Fig. 4 we see some of the important fea-
tures of our coupled-channels approach to the
collision dynamics. In particular, cross-section
contributions from incremental regions for €< E;
diminish abruptly, as they should on the basis of
purely qualitative considerations in terms of
Franck-Condon transitions. The distribution we
calculate is indeed confined to the very narrow
range of € found experimentally.®”®! In addition,
although we make no Franck-Condon assumptions
in our approach, we calculate a distribution which
peaks for €> E,, in keeping with the predominance
of Franck-Condon-type transitions.

As we pointed out before,*® an interesting com-
parison can be made with experimental PI electron-
energy distributions reported by Hotop.” He shows
distributions measured at collision energies of 36,
95, and 125 meV. The peaks of these three dis-
tributions, in order of increasing collision energy,
shift in roughly linear fashion to higher €, being
located at (€ - E,) values of about 35, 55, and 70
meV, respectively. Our results are for E =65
meV, which is nearly midway between 36 and 95
meV. So, based on the trends shown by the experi-
mental results of Hotop,” the peak of our distribu-
tion should fall approximately between the peaks
at 36 and 95 meV. Along the top edge of Fig. 4
we have indicated by the left dashed arrow the
experimental peak for E =36 meV, and by the
right dashed arrow the experimental peak for

E=95 meV. The solid arrow is drawn midway be-
tween the two dashed arrows. The calculated dis-
tribution does peak roughly between the two ex-
perimental peaks, as expected, though it tends to
favor € values to the right of the solid arrow.

This behavior is more evident now than before,*®
since, by refinement of Ae to 1x 107 a.u. for

E;< 10X 107 a.u., we have resolved the sharp
peak of the distribution located at E;~5x 107 g.u.
Preliminary calculations made in the region of
the pronounced peak using even more refined A€
values®* indicate that its sharp structure persists
and additional smaller structure becomes re-
solved. It remains to be seen whether these fea-
tures of electron distributions are smoothed out by
thermal averaging in the experiments, or whether
they would change in more refined theoretical
treatments.

Of interest in the study of the dynamics of the
heavy-particle motion are the L-partial cross
sections per unit energy of the emitted electron.
These are the terms which contribute to do._,(E,
€)/de according to Eq. (21). For the A€ interval
where the sharp peak in Fig. 4 occurs, we ana-
lyzeddo,.,(E, €)/de in terms of the L-partial cross
sections d(f,eli_,,(E, €)/de and found that more than
half (i.e., ~2.81x 10%°z}/a.u.) of do._4(E, €)/de is
contributed by the L =24 partial cross section. In-
spection of the L =24 effective potentials, V;** and
V29 together with the initial and final collision
energies, E and E;, respectively, gives useful in-
sight into the possible reasons for such a large
contribution from do?%)(E, €)/de. The situation
we discovered is shown schematically in Fig. 5.

E (initial)

E¢ (final)

R

FIG. 5. Schematic diagram, patterned after Fig. 1,
of the L =24 effective V, and V, potentials, and initial
and final collision energies of 23.89x107%4 a.u. and 5.0
x10"4 a.u., respectively.
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FIG. 6. L-partial cross section per unit energy of
the emitted electron [from Eq. (21)] for the L =20 an-
gular momentum component of the heavy particles, .cal-
culated for PI of Ar by He*(ls2s, %S) at an incident
collision energy of E=23.89x10"% a.u. (=~ 65 meV). The
details of the plot are otherwise the same as for Fig.

4.

Namely, the classical turning point of V{?% fallsin
the neighborhood of the centripetalbarrier of V{9,
andthebarrier heightis very near the final collision
energy E;=5X107* a.u., where the sharp peak of
Fig. 4 occurs. 'This, of course, could account for
such a large resonance behavior, owing to the

T T 1 T 1T 1

E; = 10X 107%a.u.

(E,e)/de (a%/au)X 10
w
I
]

(L)
do-e*—d

0 ] ] ] 1 ] ] ]
0] 5 10 IS5 20 25 30 35 40 45 50
L—

FIG. 7. L-partial cross section per unit energy of
the emitted electron [from Eq. (21)] calculated for PI
of Ar by He*(Ls2s,S) at an incident collision energy
E=23.89x10"4 a,u. (~ 65 meV), and plotted against the
partidl wave number L, for the final energy E;=E
+E - ¢ indicated in the figure.

simultaneous combination of a typically high prob-
ability for transition at the classical turning point
of the incident channel and a high likelihood of
orbiting resonances in the final channel.

Further interesting studies can be made by
looking at the behavior of dU%f,,(E, €)/de as a fune-

T I T I T ' T l T
5.0 -
He + Art
4.0 —
i FIG. 8. Effective po-
o 3.0 _ tentials V{Z’ for L-partial
'O wave components of the
>—< . heavy-particle angular
) momentum as indicated.
g 2.0 — The unlabeledcurve isV,
‘E shown in Fig. 1. The dotted
= = curve is a typical coupling
> matrix element, as shown
1.0 \ in Fig. 1.
0.0
okt N L T 1
4 5 6 7 8 9 10 Il 12 13 14 6 17 18 19

Rin a,
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tion of € for fixed L, and as a function of L for
fixed interval along the € scale. Figure 6 shows a
plot, similar in all respects to Fig. 1, of daé?P}(E,
€)/de. In our earlier report®® the L =20 partial
cross section was shown from calculations with
A€=2xX10"* a.u. In Fig. 6, as in Fig. 4, the re-
sults for E, < 10x10* a.u. are for a re-
fined A€ of 1 X10™ a.u. We see that the refined
calculations resolve the large peak of con-
tribution near E;=5X 107 a.u. more sharply. As
we pointed out earlier,® the structure of

dol29) (E, €)/de exhibited in Fig. 6 shows succes-
sive resonance peaks of cross-section contribution
which appear to reflect regions of high density of
states in the continuum of final relative motion of
the heavy particles having angular-momentum par-
tial wave L =20.

Figure 7 shows a plot of do'Z, (E, €)/de as a
function of L for an interval centered on an ¢ value
corresponding to the indicated E; value. Again,
pronounced resonance peaks of cross-section con-
tribution are observed. This structure can be in-
terpreted on the basis of Fig. 8, which dlsplays
effective potentials V&' for L = 0 5,10,..., etec.

Several final-channel energies E; are indicated by
the horizontal lines. Focusing attention on a sin-
gle final-channel energy (E;=10x 107 a.u. in the
case of Fig. 7), one can see that, as L increases
from 0, the specified channel energy will fall
near resonance peaks (of the sort seen in Fig. 6)
for some of the effective potentials Vé"’, and fall
between ‘such resonance peaks for other effective
potentials. - This would account for the resonance
structure of Fig. 7.
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