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The semiclassical theory of electronic excitation of an atom in a strong nonresonant laser field due to a
collision with another atom is presented. It is shown that in the presence of asymptotic degeneracy of the
excited state the Landau-Zener two-state model is inaccurate, the exact solution of a two-state model is
inaccurate, and both differ qualitatively from the accurate solutions of the equations when all (four) states
are included. With parameters chosen to model the process Sr('S) + Ar+ lite~Sr('P) +Ar, cross sections
on the order of 10 ' cm are obtained for R{ao —coo) —17 cm ' over a large range of the Rabi frequency.
Depolarization predominates at high field strengths.

I. INTRODUCTION

In recent years a variety of gas-phase processes
occurring in intense laser fields have been studied
experimentally and theoretically. These include
coll, isionless multiphoton absorption, collision-
induced absorption, and radiative collisions. ' "
The latter type of processes have been analyzed
previously usually in a quasi-two-state approxi-
mation in which the collision induces a transition
between the two nearly resonant "dressed" states
of the atom in the laser field. ' Due to the dipole
selection rules, it is common for either the initial
or final states of a dipole-allowed transition to be
degenerate, and, due to the collision, one might
expect significant couplirg between the asymptot-
ically degenerate states.

A preliminary analysis" of the experimental re-
sults for the process

Sr(tS)+ Ar+ R&o —Sr('P) e Ar

indicated that a two-state mode1 was not completely
consistent with the experimental results. In the
two-state model (for appropriate laser intensity
and fretluency), a single "avoided crossing" of the
dressed potential-energy curves appears, with a
splitting at the avoided crossing proportional to
the field strength. The Landau-Zener (LZ) ap-
proximation applied to this situation is accurate
only for impact parameters for which the radial
turning point is well inside the avoided crossing,
i.e., where the avoided crossing is well localized.
Since the. LZ approximation has been widely used
for such processes, we demonstrate explicitly
here the hazards associated with such simple
models. In addition the two-state model itself,
though attractive because of its simplicity, does
not contain all the relevant physics of the problem

when more than one upper state interacts.
Consequently, in this paper we investigate the

above process in both a two-state and four-state
approximation. We present the inadequate two-
state model for two reasons. First, the formalism
and definitions are simpler to introduce. Second,
since it has been the most widely used model for
such processes, a demonstration of its inade-
quacies seems in order." In Sec. H, we define.
the two-state approximation and present the ex-
citation cross sections determined from the LZ
approximation, the adiabatic-perturbation ap-
proximation, and the numerical solution of the
time-dependent Schrodinger equation for this mod-
el. We show that even in this case the LZ formula,
which is qualitatively correct, may lead to signif-
icant numerical errors. In Sec. III the more ade-
quate four-state model is defined and the results
of the numerical solution are presented and ana-
lyzed in Sec. IV. The results are strikingly dif-
ferent from the two-state model in the high-field
region, and the reasons for&his are discussed.
Final. ly, in Sec. V the implications of these results
are discussed.

H. TYCHO-STATE MODEL

In the system (1.1) the Sr('P, ) is triply degen-
erate (rrtt =0, al) in the absence of both collisions
and the laser field. As a first approximation in a
strong linearly polarized nearly resonant laser
field one can consider the radiative interaction of
the Sr('S) with the Sr('P, (m,. = 0)) state only since
they are coupled by a dipole-allowed transition
matrix element proportional to the fieM strength.
In the absence of collisions, of course, this is a
good model of the system. In addition, as will be
shown in Sec. GI, this would also be a good model
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4[x R(f},t]=& (f}4,(x)+&,(t)4.(x), (2.1}

where 8 is the internuclear separation, X repre-
sents the electron coordinates, and the wave
functions P are the approximate eigenfunctions of

/

the collisional Hamiltonian

(y, l~.(x) v(x, R) le, &=[,.v, (R)16„,
i j=12 (2.2}

Asymptotically V, (R - ~) -0. The atom-radiation-
field matrix elements are

(y, ~ X
~ E

~ yz) = ( p E, cosset) 5, &„. (2.3)

The matrix representation of the time-dependent
Schrodinger equation in this basis is then

1ga=—I
(t, + v[R((N gE cosw, t )

a=a a. .
p 8'0 cos(o t c,+ V,[R(t)]

(2.4)

if the 'g and 'll "molecular" interaction potentials
between the Sr('P, ) and Ar('S) atoms were degen-
erate at all internuclear separations of impor-
tance.

We shall assume the following: (a) A linearly
polarized laser radiation field

E = e,E,cosset.

(b) spherically symmetric Van der Waals inter-
action potentials between the Sr and Ar atoms:
'V, (R) for Sr('S)+Ar('S) and V, (R) for Sr('P, )
+Ar('S) of the form V, (R) = —C,"'/R'. Also we de-
note C =—C,"'—C,"'. (c)No coupling terms between the
Sr('S) and Sr('Po) states due to the Sr-Ar nuclear
motion. (d) The transition dipole matrix element
is independent of R; i.e., the atomic basis is not
strongly perturbed by the collision. This approx-
imation is quite good since the transition is allow-
ed. (e) The translational-electronic energy
transfer (laser energy defect) is small compared
with the average translational energy such that the
collision trajectory can be considered to be clas-
sical (and, as a further assumption, rectilinear).
(f) Tbe laser field is nearly resonant with tbe
atomic transition and the rotating-wave approxi-
mation" (HWA) is valid. (g) The field (E,) is
constant during a collision and the laser frequen-
cy, co is far enough off resonance such that one is
in the single-collision regime, i.e,

I
1/f~ —[(e.—~.)/~]] I

«&
T being the time between collisions.

Given these assumptions we can quantize the
Sr('P) orbitals about the space fixed z axis, and
write the wave function as the linear combination

The assumption (e) of rectilinear trajectories al-
lows R to be expressed as a function of t:

R'(f) = b'+ v'f ', (2.6)

where b is the impact parameter and v the rela-
tive speed of the collision.

We now make a sequence of transformations on
Eq. (2.4) to make it more amenable to solution.
We shall (see the Appendix for details) (a) make
the rotating-wave approximation, (b) remove the
trace, and (c) diagonalize asymptotically (t-+~).

We then find

& Vssng

& Vsin6} 1-A. + ~ Vcos

where d is related to a by unitary transformations
and gives the coefficients of the "dressed" states
and with n = ~ —(z, —a,)/h and V = (V., —V,)/h,

P Eo '~2 PEo1+—. ——' tan~ =—— —' .
2 8's2 ' As (2 'f)

E E pE~
(d = -2A. + (d = — 1+—5's'

+ co 1 — 1+

We also note that, as desired, Eq. (2.6) becomes
diagonal as f- +~ (V'-0), and all rapidly varying
terms have been elimina, ted.

Def ining the dimensionless quantities

Z= ht,

R,'= ~C/uS ~, (=v/m„
a=&/R„
r = (R/Ro) = B""+A@2

,The problem is parametrized as

(2.6)

Equation (2.6) is the appropriate equation to
solve to determine the time evolution of the dress-
ed-state populations due to a collision. Jf the field
is turned on adiabaticaLly and the Sr atom was
initially in the ground state, then the appropriate
boundary conditions for (2.6) are ~d, (—~) ~'= 1,
~d, (-~) ~'=0. Equation (2.6) contains no loss
term (imaginary diagonal component for state 2)
due to fluorescence since we assume the collision
time is much less than the fluorescence lifetime.
If the fluorescence is emitted after the collision
but during the laser pulse, it will be centered at
the ac Stark-shifted frequency
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1 cos8
2cos8 2y

gd

sin8
2~6

cos8
2cos8 2r6

Again, assuming no phase correlation of the in-
coming and outgoing trajectories, we have

Paz T
——P„~T(,0)P»T(0, — ),

(2.9)

where the sign depends on the sign of C/I, . We
note from Eq. (2.10) that when C is positive cor-
responding to a more attractive excited-state in-
teraction and when 6 is negative, corresponding to
a laser frequency less than the fluorescence fre-
quency, then C/b, &0, the upper sign is taken in
(2.14), and a "crossing point" will occur for im-
pact parameters such that

)( cos'g(a, b) sin'q(a, b) l
APT( p I

I 2.13( sin'Q(a, b) cos'Q(a, b})

b
' z

Q(ab) =- , dd exp (-mi2

Thus

z
1(Z')dz')

[P»T($, 8 B)j»=2sin2Q cos'Q = —,'sin2(2q) .
(2.14)

r &cos'8 or B'&cos' '8 (C/a&0) . (2.10)

The problem is now parameterized by three quan-
tities: 8 (depending on E,4), B, and $ (depending
on t),b). R, is a scale factor and does not directly
enter Eq. (2.14). This two-state problem may be
solved by a number of approximate or exact nu-
merical techniques. The cross sections are de-
fined as

0.5—

0.4—

o'= 4g R'
0 BdBP(B) . (2.11)

0.5—

In the I Z'4" case we have

P„E(B)= 2e "(1—e ')

5 = 0 8'& cos'~'8

5 =+B /(cos 8 —B ) B &cos2 8

A = tan'8/(12)cos '8) .

(2.12}

0.2—

O. I—
X X

0.5

X

Mx—
1.0

The cross section in this case has a maximum for
A. = 0.425, and is zero if no curve crossing occurs,
i.e., C/6&0.

It was recently shown' that adiabatic-perturba-
tion (APT) solutions of equations such as (2.9) are
quite accurate over the entire range of parame-
ters, including the case of no curve crossing.

0.5 —X—X-X—. X—X

o o
0

0

200—

I 00

20

0.5 I.O
pc E/%h

l.5 2.0

FIG. 1. Cross section for excitation vs pE/@&,
curve-crossing case (C/6& 0). ( = ).exact; (&& &&) APT;
(Oo) Landau-Zener.

X

I

FIG. 2. P(b) vs b, two-state model. ——exact;
(&& g adiabatic perturbation approximation; (OO) Landau-
Zener approximation: C/4& 0. (a) p E/8'&= 0.1; (b)
pE/5 4= 1.0.
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FIG. 3. Cross section
for excitation vs pE/5 6,
no cgrve crossing (C/4
& 0). (— ) exact; (x x)
APT.
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The integrals were evaluated numerically.
Finally, Eqs. (2.9) were solved numerically by

the exponential method, '"' again with the assump-
tion of no phase correlation for 2 ~ 0.

The LZ approximation, the APT approximation,
and the exact transition probabilities are shown
for the case )=0.3 and 8,= 8 x 10 ' cm for C/6&0
(curve crossing) as a function of tan8= iJEO/fly in
Fig. 1. Note that the APT result is relatively
accurate while the LZ result consistently under-
estimates the cross section, by a large factor at
low and high e. The reason for this is illustrated
in Fig. 2 where the transition probability is plotted
versus the impact parameter. It is well known'4'"
that the LZ approximation fails for long range (or
flat) curve crossings. Thus the LZ result is ac-
curate for small 8 where the curves "cross" with
significant slope, it underestimates P for B' = cos'&8
where the curve crossing is disappearing and, of
course, gives zero for B'&cos' 'e. We note, how-
ever, that for very low laser intensity, the LZ
cross section and that from the exact numerical
integration must both go to zero as E'.

In Fig. 3 the APT and exact results are given for
the case C/6&0, with all other parameters as
above. Note that the magnitude of the cross sec-
tion is about 10"2 of that in the curve-crossing
case (Fig. 1). Thus the model correctly" predicts
that the cross section for detuning to the red (C
&0, 6 &0) will be much larger than that for de-
tuning to the blue. However, all models predict
(for C/6&0) that the cross section should have a
relatively sharp maximum for fixed 4 as E is
increased. This is not consistent with preliminary
experimental results" and prorated us to exam-

ine the more realistic four-state mocfel, including
the I& degeneracy of the 'I', state of Sr.

+8 + +A ++c 11++f1 1d & (3.1)

where the first three terms define the atomic
states and the collisional interaction and the last
is the interaction with the radiation field. In the

III. FOUR-STATE MODEL

In this section we take account explicitly of the
degenerate nature of the Sr('P, ) upper state for
the system (1.1). Although the treatment is
specifically for a 'S-'I' transition, the general-
izations to treat other systems are straightfor-
ward. We will proceed as follows. In the mole-
cular frame (body fixed) the interaction of the Sr
and Ar atoms splits the m& degeneracy of the
Sr('P, ) states and, in the Born-Oppenheimer ap-
proximation, we have only diagonal potential
matrix elements in this frame. However, due to
the presence of the space-fixed polarized laser
field which couples the ground state and the m~=0
component of the excited 'P, state in the space-
fixed frame, it is easiest to transform the mole-
cular Hamiltonian to the space-fixed frame. We
then diagonalize the asymptotic Hamiltonian to
obtain the atomic "dressed" states and use the
RWA to eliminate the time dependence due to the
field. Again, assuming a rectilinear trajectory,
the time-dependent coupled equations are inte-
grated to obtain the probability matrix for excita-
tion. Integration of the probabilities over the tra-
jectory parameters yields the cross sections.

The Hamiltonian for the system (1.1) is
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space-fixed atomic basis (for convenience we use
the x and y basis rather than the m& = +1 basis)

y, =
~

Sr('S)Ar('S) &,

(,= ~Sr('P„)Ar('S)),

g, = ~Sr('P„)Ar('S)),

y = ~Sr('P,)Ar('S)),

(3.2)

the matrix representation of

s, + JIg.+ 0«ad
is easily evaluated as

(3.3)

0 0 p,S,cos~t

@GOO 0
(3.4)

0 h~o

pE, cos(dt 0 0

0

where kz, =E('P, ) -E('S) is the energy difference
of the Sr excited and ground states, p. is the di-
pole matrix element, and we have chosen the laser
polarization along the space-fixed z axis. E, and
v are the laser field strength and frequency,
respectively.

In the molecula~ frame, with the z' axis aIong
the internuclear direction, the matrix representa-
tion of H„» is also diagonal in the molecular
rotated basis:

I

0 cos8cosp sinpcos8 -sin8
, (3.10)

0 —sing cosQ

second relation is obtained2, ' by assuming the ra-
dial portions of the Sr('P, ) states are not signifi-
cantly distorted due to the Ar, i.e., no strong
chemical binding. This assumption also permits
us to use the dipole matrix element associated
with the free Sr atom. Equations (3.V) and (3.8),
of course, completely neglect the true variation
of the potentials for relatively small R. We do
this for two reasons: first, they are unknown and
not easily calculated. Although more reasonable
guesses than (3.V) could easily be made, the large
cross sections found must be dominated by the
long-range potentials which are adequately re-
presented by (3.V) and (3.8). In addition, thi. s as
sumption 18 consistent with the straight-line tra-
jectories assumed. Thus this model, while sim-
ple, should yield the dominant behavior correctly.

Since the matrix representation of the Schro-
dinger equation must be with respect to a single
basis, we will transform the collisional portion of
the Hamiltonian from the molecular frame to the
space-fixed frame. To do this we operate with the
appropriate rotation matrix M

H „(space fixed) =MrH'„»M, (3.9)

where2x

g', = iSr('P„, )Ar('S)),

f3= iSr('P, , )Ar('S)),

g4 =
i
Sr('P, ,)Ar('S) ),

(3.5)

0 cospsin8 sinpsin8 cose

OLL

V, 0 0 0

0 Pg 0 0

0 0 &„0
0 0 0 V,

(3.6)

where the diagonal molecular potentials for the
upper state are now split into a doubly degenerate
II state and a Z state.

Again we assume the long-range Van der %aals
potentials predominate, and we take

R (t)

V, = -C(/Rs.

For these potentials we take'0

C, «C„y=2,3,4

(3.V)

(3.8)
CI =C3=&C~.

These are based on the fact that the ground-state
interaction potentials should be small, and the

FIG. 4. Geometrical parameters of trajectory (rec-
tilinear).
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where we have chosen the y' axis perpendicular to
both s and z'.

If the overall wave function is written as

(3.11)

in terms of the dimensionless variables previously
defined.

= +Lb+ TrH „p)——,'Tr(TrH„„T) Ib

(3.13)

the time-dependent 3chrodinger equation has the
matrix representation

i a= (H, +H„„)a. (3.12)

We now make the rotating-wave approximation,
diagonalize the asymptotic Hamiltonian to obtain
"dressed" states, and remove the trace of the
interaction matrix to obtain an equation analogous
to (2.9). For the coefficients of the dressed states

where the diagonal matrix X has elements

])., = --,'(1+ tanaq)'~a -—,'4 = —1/2cosq ——,'4,
1L =La= dt],

][4 = —,'(1+ tanaq)'~a ——,'a = 1/2cosq ——,'a,
tanq= p,E,/5 id',

and the transformed collision matrix is

(3.14)

Hcoi I T Tr(T Hcol I T)I
-V4, -2p21cosq+ 4V42sin'-2' q cos 8

1
4

symmetric

2V42sin —„.
'

qcosftl sin20

V„-V42+ 4V42cos2ysjn2e

2~42s ln2 q s in/ sln2 g

2V42SIQ2fI5 sjQ g

~21 —&42+ 4V42»Q'y Sin'8

(~4,-&42S»2 ~)2Sin q

2V42cos2 q cosft]s jn2 I[II

2V42cos2 q' s ines jn2g

V41+ 2V21cos q+ 4V42cos'ecos2-2 q

V~, = -7/4a', s = 4t,

Va, = -I/r ', $ = v/Bob, ,

V4a=- ——,a" =B+$s, Ro =a a a a a (~a

and 8 and p are the polar angles of the internu-
clear axis with respect to the space-fixed axis.
(We note that since H„» commutes with the diag-
onal matrices used to transform to the rotating-
wave representation, it is unchanged by this
transformation. )

Equation (3.13) is now in a form amenable to
numerical solution. It is asymptotically (s- +~)
diagonal and the only time- (or s-) dependent
terms are due to the collision. We also note that
if the upper Z and 0 states are degenerate, V~,
=0, and the problem becomes block diagonal with
only the states 1 and 4 coupled. Thus in this case
it reduces exactly to the two-state model consid-
ered previously. The time dependence is due to

R(t), the internuclear vector during the collision.
The trajectory is specified by the velocity (t), the
impact parameter (B), and two angles specifying
the dlrectlon of the trajectory at tile distance of
closest approach, n an.d P. These angles are shown.

in Fig. 4. As is apparent from the figure 0 & p +)T,

0 ~ a &2m, with the weight function sinPd)8dn.
From the symmetry of the field and time reversal
invariance, the probabilities are symmetric about

P = 2 m and n = 2 m and v.
Gne solves, therefore, for the transition proba-

bUity matrix for Z in the range (0, -~) and (~, 0),
then, as before, sets

Note, however, that although the magnitude a (t) is
symmetric about t =0 (defined as the distance of
closest approach), the angles 8 and [t) are not.
Therefore the equations must be integrated over
the entire range of s for a given trajectory. The
cross section is then defined as

[tdd, d)];I d ,fd dd df =si""nddd f da[P(addd, d)],~) . , , ,
0 0 0

(3.17)
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Since the cross sections for excitation to each
state are obtained, the polarization of the final
excitation (or fluorescence) can be obtained. We
define the depolarization ratio, R, in the labora-
tory frame as

I.Or

lQ 0.5—
Q.

8 =—(0„+o„)/o, .

IV. FOUR-STATE RESULTS

(3.13)

I I I

0.6 0.7 0.8
8

0.2—
O. I—

0 I W~l
0.2 0.3 0.4 0.5 09 I.O I. I l.2 I 5

In order to determine the cross sections in Eq.
(3.1V), the coupled equations (3.14) must be inte-
grated numerically for enough initial values of B,
n, and P (for each value of pE/Sh) to evaluate the
triple integral in (3.1V). This proved to be rather
lengthy computationally, requiring about 240 solu-
tions of (3.14) to obtain the cross sections for one
Value of p,E/RA even on what appeared to be a
reasonable, if minimal, grid I 12 values of B,
0.2—1.3; 5 values of n (0,—,'.

Tr) and 5valuesof P(0, —,'v)].
Upon investigation, it was determined that the re-
sults were not very sensitive to the value of e
(see Fig. 5). The value of u = 4v only was used
subsequently since it preserves the independent
and correct average coupling between the p„and
p, orbitals and the initial state. This approxima-
tion was checked against the fuG cross section at
p,E/hh = 0.4, and agreed reasonably well (&15/0
deviation of the excitation cross section and &2%%uo

0.7

8 =0.9

B=O

FIG. 5. Variation of P~~ and 8 = (P22+P33)/P44 vs Q

for B=0.8, 0.9.

FIG. 6. Probability vs impac t parameter, four-state
model. (-- —) Pff ( )P44,' (——)P22. Q=O, p=-31

(For this &, P33=0.)

deviation of the polarization ratio). In addition, the
integrations for small 8 (&0.3) took inordinate
amounts of time and contributed relatively small
amounts to the cross section. Thus trapezoidal-
rule integrations over B, B=0-1.3, was carried
out with B=0.5 the first nonzero point. Checks at
one additional value of pE/Kh corroborated the
above results, and it is conservatively estimated
that the results reported are within +20%% of the
exact results for the model. (The model itself is,
of course, only a crude but qualitatively correct
approximation. )

The values of the parameters used were the
following:

Bo=V.Vx10 ' cm, ~b
~

=1V cm ' )=0 3. (4.1)

These correspond to the parameters used for the
two-state model problem, and thus the results can
be compared directly.

In Fig. 6 the variation of the excitation-proba-
bility matrix elements versus B are shown. For
this relatively weak field strength the excitation
is dominated by the z component. For n =0 there
is (by symmetry) no excitation to the y component.
As in the two-state case the excitation probability
falls rapidly for 8 &1. It should be noted that the
total probability of excitation in the four-state
case can exceed 0.5 in contrast to the two-state
model.

In Fig. 7 we plot the total cross section for ex-
citation of the Sr('P, ) for &o &u&, (curve-crossing
case). For comparison purposes the two-state
results are plotted on the same graph. As can
easily be seen, the cross sections for small values
of pE/kh are very similar, but for values greater
than 2, the results are qualitatively different, with
the excitation cross section remaining high to
large field strengths. From Fig. 8, in which the
depolarlzatlon ratio 18 plotted one can easily see
that this is almost entirely attributable to excita-
tion to the P„and I', states, with the P, excitation
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240 (a)

l80
N

b l50

20

0 I 2 5
pE/5(hl

IO

0—

FIG. 7. Total excitation cross section vs pE/8 4,
four-state model, curve crossings. (—) exact;
(-e-e) exact two state; (----) LZ two state.

1

0.7 0.8
I

0.9
I

I.O
I

l.2
I

I.3

cross section o,4 behaving much like the two-state
excitation cross section.

We now look for a qualitative explanation for
this behavior. The diagonal elements of Eq. (3.13)
as a function of r for two values of pE/hh are
shown in Fig. 9 for 8=/=-, m. Note that for low-
field strength the "crossings" between states 1
and 2 (or 3) and 1 and 4 occur at large values.
For high field strengths the ac Stark splitting of
the "dressed" states 1 and 4 is so large that the
curve crossing occurs at a small value of x,
whereas the Stark-shifted ground state still
crosses states 2 and 3 at a relatively large r
value. These changes in crossing points, however,
are not in themselves sufficient to cause the very
large depolarization ratio found at high-field
strengths.

A more plausible explanation lies in the Landau-
Zener parameters for each crossing (at fixed

0.5

/
I

I
I

0.6 0.7'

I

cos q

I I I I I I I

0,8 0.9 I.O I. I l.2 I.3 l,4
I'

FIG. 9. Diagonal matrix elements of 8" vs x. 8
= fI5 = 4 m . (a) pE/5 6 = 0.5 (b) pE/5 6 = 5.

angle). We define the LZ parameters

2I ~), I

I dldz(W„. —W&,.) I

(4.2)

where r, &
is the crossing point for curves i, j. For

8= p = —,'m we find, from (3.14 and 3.15)

2
0 I

p, E/%D

FIG. 8. Depolarization ratio: R = (g +0 ~)/0'

I

IO

r„=('-'cos'q)' ',14 8

11 1 tan q 8'
1 —

296$ r, cosy, r, )
(4.3)
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TABLE I. Adiabaticity parameters and crossing points
(=0.3, B=0, 8=/=444'

i4 z5f4(B = 0) n-6„{B= 0)

0.5 0.6195 1.0086 0.001 111.016

0.9395 2.318 0.9669 0.043 1

0.7698 0.574 60.6127 354.4

and for the 1,2 (or 1,3) crossing

cos q[1+('-„') cos q]
(1+cos q)

3 sin qq
64)' [1+(~)cosq] r'„

1

[l (B2/r2 )]1/2 ~

(4.4)

].8—

O.5 -i

Values of r, &
and m5„. are listed in Table I for

various values of pE/Sn. and B= 0, $ = 0.3. The
cross section in a two-state LZ problem has a
maximum for m6(B = 0) = 0,424. It is clear that the
(1,4) transition becomes quite adiabatic for
pE/@A)1, but the(1, 2) and(1„3) transitions do not.
Thus for larger values of pE/Kd the excitation is
primarily to the 'P„and 'E, states.

When the laser is detuned to the blue, the lower
signs in Eg. (3.13) must be used and no curve
crossings will occur. In this case, as in the two-
state model, the cross sections for excitation are
roughly two orders of magnitude smaller (-1 A')
and are shown in Fig. 10.

V. DISCUSSION

We have presented calculations for two models
of the laser-collision-induced transition (radiative
collision) in the Sr('S)+Ar+hv system. This sys-
tem has been studied experimentally by t arlsten
et l. '2 who concluded that the cross section for
excitation remained large for large pE/54&2
when the laser was detuned to the red and that ex-
citation is reduced by about one order of magnitude
for equal detuning to the blue.

We have shown that the naive two-state model
does not explain the first experimental conclusion
and is qualitatively different from the four-state
model for which the cross section for excitation
remains large for large pE/hh. , The qualitative
features of the dynamics of the excitation can be
understood in terms of the "curve crossings" of
the diagonal elements of the effective molecular
potentials (rotated to the fixed frame) of the
"dressed" states of the atom in the laser field.

Of the assumptions underlying the models, two
are seriously open to question. For close colli-
sions (R s 3 A), the true potentials are clearly
going to deviate significantly from the assumed
attractive R ' form. Curve crossings between the
upper Z and H curves may occur, and both curves
will become repulsive for small R. In addition,
for close collisions such as these, the assumed
straight-line trajectories will not be correct. For
large cross sections (detuning to the red) these
two assumptions should be quite good —the most
effective impact parameters are 6-9 A. Thus the
model should be adequate for this process.

For the laser detuned to the blue, however,
there are no long-range curve crossings, the
cross sections are small, and the accuracy of the
results is more questionable. It is likely in this
case that the role of short-range forces will be
pronounced, and, in addition, the Boltzmann av-
erage over velocities will be important.

Finally, it has been shown that for the curve-
crossing case (laser detuned to the red), the prop-
er treatment of the degenerate levels is required
to obtain qualitatively correct results, and the use
of a two-state model is inadequate. Using the
four-state model specific predictions about the
polarization of the fluorescence were obtained.
It would be interesting to compare them with ex-
periment when data are avaQable.

I I t I i & i I & I

0 I 2
E/+ I~I

8 Io

FIG. 10. Excitation cross sections, four-state model,
no curve crossings. ( ) total excitation; (———) a44.
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APPENDIX

The rotating-wave approximation is obtained by
transforming (2.4) with a diagonal unitary trans-
formation such that the new off-diagonal elements
contain a nonoscillatory portion, and dropping the
remaining oscillatory portion.

I et

b= e'" a

we have

+'g I'
2 pEOic= c,

g pEO -'g g

where

(A4)

( &iqt) ekq~t6tj fj&
j. 1

q, = -2e, q, =+—,(d.

Then, in the rotating-wave approximation,

ib=-qb+e'" We '"b

(Al)
rl(f) = V, -V,

2 I
&

(
v, -v,

) (A5)

z, +V,2' .z. )
b.

e, +V22' A

Since this representation is not diagonal before
and after the collision due to the presence of the
laser field, we apply the time-independent trans-
formation to the basis of "dressed" states:

Removing the trace by the diagonal transforma-
tion

c = e"~.~""'Ib
(A3)

d= L'"c,

cos—,8 sin —8

—sln2 8 cos~28)

(A6)

T„(t)-=c,t+ c,t+ (V, + V, )dt, The substitution of (A6) into (A4) yields Eq. (2.6).
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