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The Hartree (mean-field) approximation to the description of the scattering of two heavy bound states is
studied in a model consisting of bosons with attractive 5-function interactions. The approximation is derived
from matrix elements of the Heisenberg equations of motion of the system and requires careful enumeration
of all necessary approximations. The arguments made are verified by comparison of exact and approximate
scattering amplitudes. The derivation also yields the physical significance of the amplitude which satisfies the
Hartree approximation; it is a Fourier sum over amplitudes for different channels, which can in prinicple be
recovered individually. The approach is not restricted to the model studied.

I. INTRODUCTION

The present note is a byproduct of the authors'
investigation of the quantization of solitons. ' ' It
was stimulated by a recent note by Yoon and
Negele' who studied the validity of the time-de-
pendent Hartree-Fock approximation (TDHF)' for
an exactly soluble one-dimensional model of in-
teracting bosons. " In the language of second
quantization, this model is summarized by its
Ham iltonian

a=— dx —y (x)—g(x)
1 d g d
2 Qx dx

—pK dx x x x x,
where we have chosen@ =m (mass of particle) =1
and P, P satisfy the commutation relations

[g(x), 0'(X)1 = &(x —X).

Any interest which the questions to be discussed
here may have relates to the application of TDHF
to the nuclear many-body problem, in particular
to the study of heavy-ion collisions. " " Since the
growth of technology in this area outstrips the
growth of fundamental understanding, even a mod-
est additional effort to redress the balance may
have some value.

For the model under investigation, for which
only elastic scattering occurs as an energy-con-
serving process, it was shown by Yoon and Negelee
that the phase shift emerging from a Hartree ap-
proximation for the scattering of two composite
particles each with n bosons agrees with the exact
phase shift as n,-~. In addition to this criterion
for validity of the approximation, an auxiliary
standard discussion of the effect of quantum-me-
chanical spreading of the incident wave packets
suggests that a second criterion for validity is
that the relative velocity must be high. This con-

dition failed to emerge clearly from the detailed
considerations, however, and was thus left as an
open question.

A second open question in this model (and in gen-
eral) concerns initial conditions. In the product
wave function describing the collision, when the
two composites are far removed from each other,
should one choose single-particle fun'tions local-
ized in one place or the other, or functions which
are with equal probability at either location?
Phenomenologically, it is found that only the latter
choice yields a simple equation with known solu-
tion. Comparison with the exact solution referred
to above was made for this choice.

To these questions, raised by the previous au-
thors' we add two more: It is well understood'
that TDHF, in general, describes a superposition
of amplitudes for elastic and inelastic processes.
What is this superposition and how can individual
amplitudes be disentangled, if desired? Finally,
how can the leading corrections to TDHF be chosen
and possibly added to the calculation?

We shall address in detail all questions raised
except the last, to which we allude briefly at the
end of the introduction, giving references to the
(scant) literature. The technical details of this
aspect are not germaine to the aims of the present
work; we are, in any event planning a systematic
account of this subject as part of the problem of
quantization of soliton solutions.

To address the remaining questions, we shall
approach the theory in a manner different from the
current mode in nuclear physics. Conventionally,
one derives a mean-field approximation by the ap-
plication of the variational principle for the time-
dependent Schrddinger equation to a dynamically
uncorrelated wave function. One has guessed the
wave function and therefore the only basis for er-
ror estimation in general is to add complications
to the trial function and see what it gives. (A con-
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eeivable alternative, which has been studied for
the present model, "is to develop diagram expan-
sions for the collision problem. )

In the line we shall follow, one studies suitably
chosen matrix elements of the "fieM equations"

It is known that the classica/ partial differential
equation which has the same form as (1.3), the so-
ealled nonlinear Schrodinger-equation, has an in-
finite number of soliton '2' solutions representing,
in order of analytic complexity, the motion of a
single lump of field, and the collision of two or
more such lumps. Since these should be the clas-
sical limits of the quantum theory defined by (1.1)
and (1.2), the common equation they satisfy should
emerge from the application of suitable forms of
theoretical surgery to the matrix elements of (1.3).
Our main thrust is that even though a common dif-
ferential equation wiD ultimately emerge, it makes
sense to consider each physical problem (bound
state or collision) separately since conditions for
the validity of the equati. on may not be the same for
each problem. Furthermore these conditions
emerge quite independently of the specific form of
the solution (but are, of course, verified by it) and
some of the arguments carry over to more general
theories.

It is convenient to. begin our discussion in Sec. II
by presenting the one- and two-soliton solution and
some of their properties in a form which is suit-
Rble for 1Rter comparison ~

In Sec. QI we apply the basic technique of stndy-
ing the matrix element of (1.3) to the bound state
of n particles. This problem has been well studied
previously""'2' and a technique for expanding the
binding energy in powers of n and for interpret-
ing the single-particle amplitude has been esta, b-
lished. %'e do not repeat these developments. %e
do point out that in contrast to the classical wave
which propagates without dispersion, the asso-
ciated quantmm amplitude spreads in time, and
thus we find that the classical description is
vRlid only for times tsensibly smaller thannt, fbjt,
where t„b;t is the period of a bound orbit. Because
t„b;,- n ' in this unusual model, t becomes shorter
as n increases. This is in contrast with a satur-
ating system, where t„b;t-const and the classical
description is valid over increasing time intervals
as n increases. '4

In Sec. IV we study Eq. (1.3) for the collision of
two bound states. For the validity of the classical
limit, we find, in addition to the previous restric-
tions, a further condition that the momentum
transfer in the coOision be small compared to the
relative momentum of the collision. This is seen,
however, to be equivalent to the condition of no

sensible spreading of the wave packets over the
time interval between preparation of the initial
wave packet and detection of the final wave packet.

In Sec. 7 we compare the knoWQ eXRct phase
shift or time delay with the classical approximation
to it for the collision of a bound state of n, parti-
cles with a bound state of n, particles and verify
that they agree under the conditions derived.

Two of the other problems raised are settled in
Sec. IV. By identifying R quantum scattering func-
tion with the two-soliton solution, we may take the
asymptotic structure of the latter —containing a
one-solltoQ Rmplltude 1Q eReh colllslon pRrtQer
to be decisive for yieLding the correct initial con-
ditions for TDHF. Furthermore, we demonstrate
that the two-soliton solution generates a double
Fourier series in time, each coefficient describing
a different scattering channel (in the semiclassical
approximation). It is pointed out that by solving
the TDHF for a suitably dense set of initialPhases
for the individual solitons, one can, in effect, per-
form the inverse transformation to obtain individu-
al reaction amplitudes. Both resolutions of this
paragraph are not confined to the special model
cons ide red.

Finally within the model considered, one can
generate quantum corrections in a systematic way.
This has in effect been described in previous
work. " For the first correction, one is instructed
to study the random-phase approximation. Though
quite similar considerations should obtain in more
realistic problems, the strong excitation in such
cases of collective modes has no counterpart in
the present model, and therefore the consider-
ation of more realistic models becomes necessary.
This is planned for future work within a purely nu-
clear context.

It has been customary to extract the time delay,
which is the energy derivative of the phase shift,
from the classical solution. In the Appendix, we
show that the classical solution also contains the
derivative of the phase shift with respect to parti-
cle number.

H. NONLINEAR SCHRODINGER EQUATION:

CLASSICAL SOLUTIONS

The classical nonlinear Schrodinger equation
(NLSE), which we study in the form

z&,+(x, t) + s„„e(x,t) +K~ e(x, t) ~'y(x, t) = O,

(2.1)

has an infinite number of "soliton" solutions which
have been given in convenient form by Hirota. "
The most elementary solution, the solitary wave,
describing the propagation of a single lump or am-
plitude with velocity u, has the form
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4,(x, t) = N(x, t)/D(x, t),
where

N(x, t) = exp [if(x, t) + «z],

D(x, t) = 1+a(11*)exp[2«z],

with

g =ux- 2u t+ pK t+8 q

z =x —ut+6,

a(ll*) =K/(2ii) .

(2 2)

(2.3)

(2,4)

(2.5)

(2.6)

(2.7)

a(ij*)=K[(«; +«~) +i(u; —ui)] ',
a(ij) =K '[(«, - «, )+i(u; - u, )] =a(i*j*)*,

(2, 12)

(2.13)

a(ijk ~) = a(ij) a( ik *)a(j k *), (2.14

a(121*2*)= a(12) a(11*)a(12*)a(21*)a(22*)a(1*2*)

D»=1+a(11*)IN&In+a(22*)l N. l'

+ [ N ) [ N [ a(121*2*)

+a(12*)N,*N, +a(21*)N,*N~. (2.11)

Here N, and N, are each of the form (2.3) but the
quantities K, u, 0 carry identifying subscripts. Also

exp [ig(x, t)l
2 [a(11*)]'"cosh«(x —ut) ' (2.8)

if we eliminate 5 by the condition [a(ll*)]'i'
=exp(-5}, as is convenient.

We shall also wish to study the two-soliton so-
lution

412(xt t) N12/D12 I

where

Nim
= N, (x, t) + N2(x, t)

+a(121*)N~(x~ t) I N, (x, t) I

+a(122*)N, (x, t) ~ N2(x, t)~',

(2.9)

(2.10)

In addition to the velocity u, the solution depends
on the real constants K, 0, and 6. This can be
rewritten as

=
~
a(12)~'~ a(12*)(' a(11*)a(22*) . (2.15)

The physical significance of 4» is clarified by
considering the two limits t-+™.Let u, &0,
u, &0 and

u2 ~

From (2.9)-(2.15), we then find

( t )
exp [tg, (x, t) + «, (x —u t)]
1+a(11*)exp[2«,(x —u, t)]

exp[i&, (x, t) +«, (x —u2t)]
1+a(22*)exp[2«, (x —u, t)] '

(2.16)

which represents two nonoverlapping solitary waves
approaching each other from afar. For t-+~, we
find

exp(ig&+«, [x-u&(t —bt, )] )exp[2i(o. , —am)] exp/i&2+«2[x-um(t —&tm)] jexp[2i(o i+az)]
1+a(11*}exp(2«, [x—u, (t —at, )]} 1 +a(22 *)exp[2«, [x —u, (t —o, t,)]].

(2.18)

where

(«i + «2) +u
K1u16 t1 —K2u24t2 —-ln I .2 (2.19)

We take due note of one further property of
C»(x, t) which will interest us in the sequel. If
we introduce the forms of N, and N, into (2.10) and
(2.11), we notice that the latter can be rewritten as

~, =tan '(—,o' =tan ') — ~. (2.20)
«i —«2 («i+«g j

The expression (2.18) represents two nonoverlap-
ping solitary waves, receding from one another.
Each has been shifted in phase compared to its
incident form and, as well, has suffered a time
delay. In Sec. V we shall compare the time delay
At, with the exact value for the associated quantum
many-body problem. The reason for the shifts in
phase and their significance is discussed in the
Appendix, where it will emerge that these quanti-
ties contain physical information equivalent to that
in the time-delay function.

Z =me" +Z2e'",

+ ++ e~(C, —K2)+~pe~(62- 61)
12 0 1 1

(2.21)

(2.22}

(x t) 5 pi(vi g i+ v2 g2)
12 & ~ ~ &1+&2-1

1 2

(2.23}

where the coefficients are functions of K„K„u„
u„x -u, t, and x —u2t. Thus if formally we expand
D 12 about &, ', we obtain the structure
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which has the form of a double Fourier series in
the variables g» &,. We shall see in Sec. IV that
the coefficients C contain information about quan-
tum scattering iri individual channels.

III. N-PARTICLE BOUND STATE AS SOLITARY WAVE

We next show how the classical results of the
previous section can be derived as limiting cases
of a quantum theory and constitute Hartree approx-
imations to the latter. This is simplest to do for
the solitary wave, which we therefore take as ini-
tial example. "

We start from the quantum field equation of the
NLSE, Eq. (1.3). This field theory describes bo-
sons interacting on the line with an attractive 5-
function potential. It possesses for each value n
of the number of bosons exactly one bound state
with energy

E„=- 2~/C(n" -n) . (3.1)

Furthermore, all S-matrix elements are known
and will be quoted as needed in Sec. V.

The bound state of n particles moving with mo-
mentum P, velocity u= P/-n, designated I n(P)), has
energy E„+p'/2n W. e study the matrix element

X",e(x, e)= J& ((x —1)(( —)')l((x, e))x(p)), (32)dk

and seek conditions under which (1.3) becomes ap-
proximately an equation for the amplitude (3.2).
We first consider the limit t =0.

This procedure entails a series of approxima-
tions. in the present instance every one of these
aPProximations can be justified. Of these the most
difficult to justify for more elaborate models is the
dynamical assumption'

& (x, &) =
2 ( n —1(p-k) II p(x, &) I' r/r(x, t) I n( p) &

dk

dk' dp' dp"'
(n —1(p —k) I 0 (» f) I

n —2(p-p'-p")) (n —2(p —p'-p")
I g(x) i)

x
I
n —1(p —p')) ( n —1(p —p')

I $(x, t) I n( p)) . (3.3)

Here we have omitted all intermediate states in-
volving virtual breakup into two or more particles.
As shown previously, ' the most important omis-
sion, for large n are the intermediate states
I
n'(P'), k) describing the scattering of a single

particle by the bound state n'(=n —1 or n —2 de-
pending on the term involved); for large n these
yield contributions which are O(n ') compared to
the terms retained. For the present model these
corrections are known in detail.

Further evaluation of (3.3) is relatively straight-
forward and will be seen again to involve errors
which are relatively O(n '), but here because of

(n'(p')
I y(x, o) In(p))

. )'n-n i,t', n
=exp il Iqx n'I p'- —q In ) . i n &

~y(x, o) In(p —q}&. (3.4)

Several applications of (3.4) plus displacements of
the variables of integration yield the form

kinematical rather than dynamical approximations.
We first replace n- n+ I in the first two factors of
C. We subsequently utilize the translational and
Galilean invariance of the present model to write,

('(x, 0)= — exp(i().' e0')x/xl(e(p)
) () (x, 0). (x —1) p+k —

I
— )

dk dp' &k+p' &

e

&(n —1(p-p') I j(x, O) I n(p)&e„(x, O) -=I y„(x,O) I'e„(x,O).

The final approximation consisted in observing that because the curly bracket can be written as

(3.6)

&k+p'{~ ~ ~ }=e"'(n(p)
I y (0, 0) (n —1) p+k-I

I
=e"*(n(p) lg (0, 0) I(n-1)(p+k)&n

=(n(p) I y'(x. 0)1(n-1)(p+k) &, (3.6)
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E„-E„,=- "=&u(n}.
dE„
dn

(3.8)

Combined with (3.5), it follows that 4"»(x, 0) sat-
sifies the time-independent equation,

[(d (n) +-,'9„„]C"„(x,0) +K i 0 "„(x,0) i'4 "„(x,0) =0.
(3 8)

This has as solution the function (2.8) for t =u =0
if we identify the real parameter z as

x'=2I~(n) I. (3.10)

Finally we are ready to consider the full ampli-
tude (3.2) and ask for the conditions under which it
has the form (2.8). From the definition, utilizing
time- and space-translation invariance followed by
Qailiean invariance, we find straightforwardly

»",«(», t)=e-»«" f q. ex(«[ ()«(» »t)I--
xe xy[i kt /(n-1)]

x(n - 1(k) ~ )t)(0, 0) ~ n(0)),

(3.11)

only in the combination shown is it permissible to
carry out the expansion in powers of n '.

To proceed to the required case tW 0, we could
start all over and carry through the discussion
using the appropriate generabzation of (3.4). R is
more instructive to proceed as follows: For t =0
let us also set P =0. Replacing i~, by the commu-
tation with the Hamiltonian II we have

—((n —1)(-k) ~ is, (tI(x, 0)
~ n(0))f dk

= (Z„-E„,)@"„(x,0) =—(d(n)e"„(x, 0), (3.7)

where we set

g =ux - (d(n) t ', -u'-t. (3.12)

t & ~torb&g p (3.14)

where t „««-
~ «)(n) ~

' is the characteristic "orbit-
ing time" for a particle in the bound state.

In summary, the propagating bound state may be
described by a solitary wave [whose quantum sig-
nificance is given by (3.2)], which is the solution
of the Hartree approximation for n sufficiently
large and for times sufficiently small. The latter
condition turns into a restriction on permissible
relative momenta when we consider the collision
of two such bound states, since for the corre-
sponding Hartree approximation to obtain, we
must restrict permissible collision times to sat-
sify the condition (3.14).

IV. COLLISION OF COMPOSITES AS TVfO-SOLITON
SOLUTION

%e next seek the quantum analog of the two-
soliton solution C»(x, t). The obvious first candi-
date for a quantum amplitude with this classical
limit is, by analogy with (3.2),

Comparison with (2.5) and (3.10) shows that this is
the phase factor sought. Under the condition that
we may ignore the second exponential factor under
the integral, i.e., for times such that kmt/n«1,
we have therefore

e",~(x, t) = e+t"~4",0(x ut,-0), (3.13)

which is indeed the solution of (2.1}given in (2.8).
The factor we have ignored leads to the quantum-

mechanical spreading of the wave~acket. Since
from (2.8) and (3.10) km-

~ «)(n) ~, our condition
becomes

»"„"„„(»,t) =f 2
' ~z'((», —«)()', . -)',), (». —«)((, )'«) I((», t) I»(),), » ()'.)—). (4.1)

This cannot be correct, however, since besides the dependence of 4 on n„n„u, P,/n„and u, =P,/n„ the
latter suppressed in the notation, there is a dependence on the two integers ~, and v2 which satisfy the con-
straint v, + v, =1. The comparison with (2.23) is suggestive, and let us therefore begin with the analysis
corresponding to (3.11)-(3.13), though here we must proceed a bit more cautiously.

By the application of time- and space-translation invariance and the approximation (3.8), we obtain

4»)"' (x, t) =exp(- itv, [«)(n, ) ——,'u', ] —itv, [(d(n, ) — u', ])I 2

exp i k, +k, x-it u,k, +u,k, exp it 1 2n, k', + 1 2n, k,'

x((n, —v )(p, —k, )(n, —v, )(p2 —k, ) ( $(0, 0) ( n, (p,), n, (p,))

We enforce the condition (3.14) by immediately dropping the second exponential under the integ»1.

(4.2)
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then define

((n v )(p k ) (n v, )(p, k ) I ttt(0 0) I n (p ) n (p~))

The stimulus for this particular definition is that
in the absence of interaction between the compos-
ites and consequently also for large separations,
4 becomes independent of Qy and u„ in conse-
quence of Galilean invariance.

Because we have ignored the quantum-mechani-
cal spreading of the wave packet (4.2) becomes
with the help of (4.3),
4"„'",', (x, t) =exp(iv, g, +iv, g, )

x 4,','(u„u» x —u, t, x —u, t), (4.4)
1 2

where g, and g, are expressions of type (3.12). To
obtain (2.23) it suggests itself that we multiply
(4.4) by exp(iv, 8, + i v, 8,) and sum, subject to the
restriction imposed by particle conservation, over
v„v2. The quantity

@ ' ~(x, t, 8» 8,) = g exp [iv,8, + i v~8~]
IJ~,U2

xg"„'"', , (x, t) (4.5)

is a candidate for solution of the Hartree or mean-
fieM approximation.

Let us for the moment accept this result, which
will be established below. The structure found
does not in fact depend on the special, soluble
model under study. It illustrates, moreover, a
feature of mean-field approximations for scatter-
ing which has received considerable attention in
the corresponding nuclear case, namely, that the
solution does not describe a single reaction: This
has been termed the problem of "spurious cross-
channel correlations. "" The solution to the prob-
lem of disentangling the various amplitudes is im-
plicit in (4.5}. In a numerical situation, where one
integrates from some starting t (t = -~), the phases
8, and 02 must be specified as part of the initial
conditions. (Actually only one nontrivial phase is
needed in the present case. } If the solutions are
computed for a sufficiently dense set of initial
phases, it is thus possible to reconstruct the indi-
vidual amplitudes as Fourier expansion coefficients
using 9, and 82 as "times. "

We turn then to the problem of proving that (4.5)
satisfies the classical field equation. We study
the quantity"

c, , (x, t)= 2' 2' ((n, -v, )(p, -k, ), (n, -v, )(p, -k, )I I q(x, t) I'y(x, t) In, (p, ), n, (p, ))dk, dk2

1/

n, p, -k, , n2 p2-k2 x, t n, +v, —v,'- v,
'

p, -p,'-p", , 1 2

x(., v;'(P, -P;-P,"), (1-2) I C(x, t)1.,(P, -P;), (1-2)&

x ( n, —v,'(p, —p,'), (1 —2) I g(x, t) I n, (p, )n, (p, ) ) . (4.6)

I p,
'

I
&

I ~(n, ) I (4.7)

Here we have already carried out a first essential
step of shifting the "n values, " which entails er-
rors of relative order n, ' and n, '. For the further
simplification, imagine that we are in the center
of mass system P, = -P,. Taking a clue from the
structure of the classical solutions displayed in
Sec. II, we can be certain that the form factors
will not support momentum transfers any larger
than, e.g. ,

Therefore if we require

I ~(n, ) I
-

I ~(n.) I
«p'„ (4.6)

we can decoup/e the various momentum integrals
in (4.6) by replacing p, -p, +p,', p, -p, +p,' in the
second factor and by making analogous but slightly
more complex shifts in the first factor. We there-
by obtain the result
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C„(x,t) —= g q *")"2 „, , (x, t)
vl vl-vl', v2-v2-v2

xe"'"2„(x,t)e "~"2(x t)

from (5.1)-(5.5)

( )
2

muK ~ (u/K)2+~'(pter
r=n

(4.9)
(u/K}'+r') ' (5.6)

Forming the sum (4.5), we see in consequence of
(4.9) that the latter does indeed satisfy Eq. (2.1)
and is indeed the two-soliton solution.

We summarize the conditions for the validity
of this result: (i) n„n, »1; (ii) t.,))(»» «nt„b;, ,
(iii) [~ (d(n)]'~'«P. In fact (ii) and (iii) are equiva-
lent conditions, - as we see from the relations

2 (K'n', +u' l
muK ~(K'n~ +u2&~

(5.7)

If we can approximate to the sums by integrals,
we obtain

2 "' 2xdx'" - =--.K „.="(./K)

t«(b»o» 1/(I (u I)'"u = n/(I co I)' 'p (4.10) It is easily shown that this agrees with (2.19) for
4t, if we utilize the formulas

t.,b;
- I/ I

~
I (4.11} i=1 2

x)u, =-,'Kn, u, = am uK/2.

(5.8)

(5.9)

V. COMPARISON PATH EXACT TIME DELAY

S„„(u)= exp [2i5„,„,(u)]

[u+in, Ki] [u+in Ki]
[u -in, Ki] [u - in Ki]

"'-" [u+rKi]'
[u- rKi]'r=n +1

Having established that the solitary wave de-
scribed the bound state in the large ri limit, it
was a foregone conclusion that the leading term
in the binding energy could be obtained from it,
and this was indeed the case. Having further es-
tablished that the two-soliton solution describes
the collision of two bound states in the limit of
large n and large relative momentum, it should
again be a foregone conclusion that the phase shift
or time delay is properly given by the classical
function in this limit. In this section we shall
carry out this verification. "

The exact S-matrix element"'" for the scatter-
ing of a composite n, by a composite n, (n, & n,
e.g. ) with relative velocity u is given by the formu-
la, applicable to the center-of-mass system

The examination of a standard approximation
formula such as

~ f(~) Jf(~)~*+'(f(~ )=+f("'))
r=n n.

where prime means derivative, shows that if we
assume that n remains of order unity as n,-~,
that a finite error remains in the replacement of
the sums in (5.6} by the integral in (5.7) unless
I-~. This is in accord with expectations, since
what occurs in the expressions is the ratio

u/K -P/[(d (n)]'", (5.11)

required to be large compared to unity. Thus we
require both conditions derived in Sec. IV.

In the present model, P can be as large as we
wish, but it is precisely here where one fails most
clearly to mirror reality. For in nature, we must
expect considerations such as those given in this
paper to break down when a condition such

P/n ) [(d(n)]'" (5.12)
n++ 1

= exp [2i(5„,+ 5„+ g 25„)],
r=n +1

5„=tan '(rK/u),

n, =-,'(n, +n,).
The time delay is defined by the relation

~t =—25(Z),

where

(5.1)

(5.2)

(5.3)

(5 4)

obtains, i.e., when we pass thresholds for particle
knockout by individual particle collisions. For
then the collective picture inherent in the TDHF
approach must certainly prove inadequate.
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APPENDIX

E = ~ mu, m = n, n~/(n, +n~), (5.5)

(m is the reduced mass). We thereby compute
In this Appendix we shall derive the asymptotic

structure found in Eqs. (2.18)-(2.20) for the two-
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soliton solution from purely quantum-mechanical
considerations. We shall thereby establish that
the phases n, and e, may also be used to recon-
struct the phase shift. We shall in fact show that

().,(u, n ) —o.,(u, n,) —= 5„,„,(u)-5„, , „,(u)

5„„(u).
A corresponding derivation would show that

From (A1} and (A2}, we can reconstruct 5„„(u)at

the semiclassical level.
We shall outline the computation of the quantity

=lim dk, , dk2 n, —v, P, —k, , n2 —v~ P~ —k2

(AS)

In fact, for the model under study, the only non-
vanishing elements occur for v, =1, v, =0 and
v, =0, v, =1. We consider the former. We utilize
the form

In (p ), n (p )) =e'II 'I I*f pt(x, vx) pt(x„ex) p (v, ex) pt(tt„ex)lvee) exp[ipx(n)etpx(n )]
I

x@„,((, ~ . t„, , )C „,()), z).. .) E"„"z[2X(,n) -X(n,};t„z),], (A4)

X(n, ) =n, '[x, + ~ ~ +x„],
x(n, ) =n, '[y, + ~ ~ ~ +y„],
$;=x, -x;, z=2l. ..kn, e

g&
—~1~7) p i 2y o ~ 0 p n2 ~

(A5)

C „and 4„, are the unique bound-state wave func-
tions and I' is the wave function of relative mo-
tion, normalized so that

lim [X(n,) —X(n,)-—~]E = 1,
lim [X(n,) —X(n, )- +~] E = exp[(2i5„„(u}].

(A6}

We then proceed to the calculation of (AS). We
first replace P(x, t) by

where x is an arbitrary point; the coordinates are
defined as follows:

]1](x,t) = e'"'y(x)e

—exp(ztl &.,(P,) +E.,(p, )

-@.,- (P —tz ) -E.,(p, —&,)]]g(x).

(A7)

We next commute p(x) through to the right to an-
nihilate [vac). With the result, we then compute
the overlap of the basis vectors of initial and final
state. Of the numerous contributions which oc-
cur, the only set that interests us is the one in
which (()(x) annihilates a particle in the complex n,
and in the overlap the remaining n, —1 particles
are required to coincide with the n, -1 complex
in the final state, the complexes n, in initial and
final state also coinciding. These are clearly the
terms of interest. At this stage the calculation
takes the form (up to overall factors, which we
incorporate into the bound-state wave functions)

t(x, t)= ltm fdk, dk e nipt[[(E) P(eE)-PE( , - P)- k(E, - P)])k

dx, dx„,dy, ~ dy„, exp ik,x+ik, Xn, +i k, -P, n, x, + ~ ~ ~ +x„, n, —1

xc„,(x, —x, ..., x —x„,)C„,(-x„... , —x„,) i C„,(17;) P

xE(*,"','),"(„',), (], , ),„[x+X(n,- 1)—X(n, ); (; )))"„E&)[ x /xn +(Xn-, ) -X(n, ); -x, ~ ~ ~ -x„;z)].

(A8)
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The integrations over y, . y„,k, become trivialtl2P

as soon as we put in the limit (A6}. With the de-
finition

1(x, t) = Q(x -u, (t -t).t})exp[if(x, t, u, )]

xexp(2i[5„„(u) —5„,„(u)]], (A12)

n-).(x2 3) ' ' ' ) x2 xn )@n ( x2 xn )

= 4(~, —P,/n, ), (A9)

and a semiclassical evaluation of the energy dif-
ference factor in (A8), ignoring, as in the text,
the spreading of the wave packet, we obtain at the
next stage'

where

2 d5ngn2(u)At=
~p, du

(A18)

This is of the form of the first term of (2.18) (up
to a pha, se), as it should be. This allows us to
make the identification (A1), which we proceed to
check by utilizing the results quoted in Sec. V.

For this purpose E(l. (5.1) may be approximated
in the semiclassical limit as

i(x, i) = fd) exp[i'i(x —x,i) —ii(x ——.'x', )] () (& p, le,)-
xexp 2i5„„u

u- ~k ——'~( p, &

(n, -l) ( np

p(x) = fd). e"*((k), (A11)

we find

(A10)

To do the integral over k we expand (5„,„about
5„,„(u}, keeping only first-order terms. With
the final definition

n+

&„,„,(n) =— dx 25(x),
n

5(x) = tan-'(xK/u).

Thus

5„„(u)=5(n,) -5(n )

as required.

=Q -Q2~1

=tan '(n, K/u)-tan '(n K/u)

=tan '(u/n K)-tan '(u/n, K)

(A14)

(A15)
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