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New variation-perturbation principle for tw~particle interactions
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A revised formulation of the variation-perturbation method is given for two-particle interactions.
Calculations with this technique require an amount of labor comparable to the traditional one, but appear to
converge more rapidly, For ground states, the procedure generates a lower bound to the second-order energy,
complementing the upper bound supplied by the usual method.

where E,. and E~ are the unperturbed energies of
~i) and ~k), H,'~ is the matrix element of H' con-
necting them, and the summation spans all bound
and continuum states. A number of procedures
are, at least in principle, avaalable to evaluate
E, . One may simply compute the indicated matrix
elements and explicitly carry out the addition.
This is the simplest method, and is most effec-
tive when the summation converges rapidly. A
much more elegant procedure is to solve an in-
homogeneous Schr5dinger equation' ' to calculate
g„ the correction to the wave function of ~i )
linear in the strength of H'.

or

(H, —E,)y, =- (H'- E,)y, , (2a)

$, =GH'P,

E, = (P,*H'g,),
where E„E,are the first- and second-order
corrections to the energy of

~
i), $, the unper-

turbed wave function of the state, and G the
Green's function (E, —H, ) ' for the unperturbed
Hamiltonian, with g, projected out. Similar in-
homogeneous Schrodinger equations apply when the
left-hand side is frequency dependent. We will
make the assumption that E, vanishes in the fol-
lowing, although it is not difficult to correct the

In the perturbation-theoretic approach to the
problem of calculating bound states, the exact
Hamiltonian is partitioned into H, +H, where the
corresponding problem for H, is assumed to be
exactly solvable, and corrections are made for
the presence of the perturbation H'. For cor-
rections higher than first order in the strength
of H', summations over off-diagonal matrix ele-
ments of H' are prescribed. In particular, the
second-order correction to the energy is given
by

~H„2Z E -E

G = 2Gr+ Gr(Ho —E;)Gr+ 0(b,G)', (4)

where G=(E, —Ho) ', Gr a trial Green's function,
and 4G the difference between them.

For future reference, we review the derivation
of Eg. (4). Using the definition of G, G=G
+GQH, —E,)G+Gr. Manipulating the operators,

G = 2Gr+ b G+ Gr(HO —E;}Gr+ Gr(Ho —E;)&G

=2Gr+ GQH, —E;)Gr+ EG

+ G(H z)nG —n.G(H ——z )n.G

=2Gr+Gr(H, —E,)Gr b, G(Ho- E,)rh-G .
If E,. is the ground-state energy, then

AG(H, —E,)nG is a positive semidefinite opera-
tor, so that 2Gr+Gr(H, -E,)Gr is an upper bound
on G. (We apply terms like "positive semi-
definite" for operators in the sense that all ex-
pectation values are &0. Thus it is meaningful
to speak of bounds for operators. }

results for cases where this is not so. This also
implies that we may treat operators of the form
H, —W, where S' is an unspecified number, as
though they may be inverted, although it is ob-
viously possible to correct for those cases where
W is an eigenvalue of H, . 'The assumption of in-
vertibility makes the discussion less awkward.

For cases where Eq. (2a) cannot be solved di-
rectly, or where one wishes to avoid doing so, a
variational approach may be utilized. ' Let Pr be
a trial function. Then E, is given approximately
by E», where

E~„=2(/AH'Po)+ (P~r(HO —E;)gr) .

If one should guess a Pr that turns out to be the
exact („E,„=E,. If i) is the giound state of
the system, Eg. (3) yields an upper bound for E,.
One may derive Eq. (3) directly from the Ray-
leigh-Ritz principle by assuming that P, is known
exactly, expanding in a power series in the in-
teraction and retaining terms through second-
order in the perturbation, or directly through the
variational principle for the Green's function
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We assume now that H, is an independent-par-
ticle Hamiltonian for a system of two or more
bodies. For simplicity of discussion, assume a
two-body system, with H, = h, + h„where h, is a
Hamiltonian for particle i. Clearly; h, commutes
with h, . We will use Latin letters to denote many-
body energies, and greek letters for single-par-
ticle energies. If H' is a single-particle opera-
tor for atoms, then Eq. (2a) is readily solvable
in closed form for certain simple operators
(typically multipole potentials) and hydrogenic
unperturbed functions, ' and by numerical tech-
niques otherwise. The problem is much more
difficult for perturbations in the form of two-
particle operators, although considerable pro-
gress has been made, both by variational meth-
ods"', and by direct solutions. "

A popular way of reducing the two-particle
problem to an integral over single-particle solu-
tions is via the identity'

(a+5} ' =2(w) ' f ab dv'

(a'+ v')(b'+ v')

G=(E, —H, ) '=[(e, —h, )+(c,—h, )] ', (6)

Variational procedures are particularly attrac-
tive here, "even when the appropriate differential
equations may be solved in closed form since the
latter typically are expressed in terms of hyper-
geometric functions, "making the integrals diffi-
cult to evaluate.

As we have commented, the direct application
of Eq. (3) yields an upper bound on E, if ~i ) is the
ground state of the system. It would be very
desirable to complement this with a lower bound
of comparable accuracy and utility, and we pro-
ceed to do so.

The fundamental difficulty in solving Eq. (2) for
a two-particle operator is that one cannot, even
by resolving the problem into angular momentum
components, reduce the problem to a finite set of
ordinary differential equations. Reduction to
ordinary differential equations comes at the price
of the extra integration mandated by Eq. (5).

To ease the impact of this lack of separability
forms part of the motivation for the present work.
We proceeed by partitioning the problem into
separable and nonseparable segments, with the
former solved exactly and the latter treated by
variational approximations similar to those used
in earlier work. "" The details of the construc-
tion of the method lead to the bound opposite to
that customarily obtained.

We will start with the Green's function, with
E; =E +&2, where &„&, are the single-particle
energies of state ~f) . The Green's function for
two particles (noninteracting in the unperturbed
problem) may be written

where

E) = &~+ E2, Ho = h~ + h2 .
6 satisfies the identity

G = —,
' j(c, —h, ) '+ (c, —h, )- '

—[(e,—h, ) '-(e, —h, ) ']'
x [(e, —h, } '+(c, -h, )-']-'],

where we have implicity assumed that one may
also invert the single-particle Green's functions.
Equation (7) is a consequence of the identity

(a+b) ' =-,'[a-'+b ' —(a-'+b-')+4(a+b) ']
Thus

(a+ b) ' = «( a'+ b-' - [(a+ b) /ab —4(a+ b) ']]
=-«'(a '+b '- [(a+b)'-'4ab] /ab(a+b)]

= «[a '+ b ' —(a —b)~/ ab(a+ b) j
= «[ a '+ b ' —ab(a —b)'/a'b'(a+ b)]
=-,'[a '+b ' —(1/a- 1/b)'/(1/a+1/b)] .

While Eq. (7) looks substantially more formi-
dable than the original Green's function, it proves
to be no more difficult to use in a variational
principle than Eq. (4), and simple expressions,
entirely analogous to those obtained from Eq. (3},
result.

The first term in Eq. (7) is a sum of one-par-
ticle Green's functions, which may be evaluated
exactly in hydrogenic problems, ""and nu-
merically elsewhere. [It generally proves un-
necessary to actually compute these one-particle
Green's functions anyway —one usually needs only
to solve single-particle forms of Eq. (2a).] In
the second term, the factor involving [(e, —h, ) '
—(ca —h, ) ']~ may be similarly calculated. The
difficulty lies with the factor [(e, —h, ) '
+ (a, —h, ) '] ', and it is here that we resort to
approximation, variational or otherwise. The
variational approximations which one makes are
not more difficult to apply than in the standard
problem of Eq. (3), and are of comparable ac-
curacy.

We note that if c„&,are the single-particle
ground-state energies, the term

G„=—,'[(e, —h, ) '+ (c, —h, ) ']
is itself a lower bound on the two-particle Green's
function G, since

is negative semidefinite. An improved Lower
bound may be immediately written, without doing
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H' = [(«, —h, ) ' —(«, —h, ) ']H'. (13)

. much additional work, by replacing h„h, in the fac-
tor [(«, - h, ) '+(«, —h, ) '] ' in Eq. (V) by c num-
bers n„n„which are the single-particle ener-
gies of the lowest excited states contributing to
G~. (Note that not all excited states contribute to
6&. By construction, levels in which the excita-
tion energy is shared equally between the par-
ticles have a null effect on this term. ) A system-
atic improvement results when we construct a
variationalprinciplefor G=[(«,-h, ) '+(«, —h, ) '] ',
entirely analogous to Eq. (4). Thus

G =G„=2G,+G, [(h, «,)-'+(h, —«,)-']G, . (9)

Again, if the &, refer to single-particle ground
states, G„ is an upper bound on G.

The second-order correction to the energy be-
comes E, =E —E~, where

E„=—,'((1),*H'[(«, —h, ) '+(«, —h, ) ']H'g, ) (10)

is calculated without approximation, and where

E =-,' (ggH'[(«, —h, )-' —(«, —h, )-']

x[(«, —h, )-'+(«, —h, )-'] '

x [(«, —h, ) ' —(«, —h, ) ']H'g, )
is determined approximately from the vagiational
principle

E E~„=2($—~~8'$,)

+ (g~~[(h, —«, )-'+ (h, —«,) '] fr!,
(12)

which is analogous in form to Eq. (3). The varia-
tional principle for G, Eq. (9), is used to con-
struct Eq. (12), where the effective operator H' is
gi.ven by

For the ground state, Eq. (12) gives an upper
bound for E~, so that what we have obtained is a
lower bound for E,.

No approximations were made in obtaining the pre-
ceding result, so that we have a rigorous lower bound
for E,. The real question is how useful the proce-
dure is. To the end of determining this, we have
applied the method to a simple physical problem
that has been much studied in the literature, the
calculation of C„ the coefficient of 1/8' in the Pan
der %aals interaction between two hydrogen atoms
in their 1s states. In this case, using atomic un-
its,

H' = [r, ~ r, —3(r, ~ N)(r, n)]/ft',

where r, is the radius vector for an electron with
respect to its "own" nucleus, H is the internuclear
radius vector, and n a unit vector along R. C, is
given in second-order perturbation theory, and
since both unperturbed atoms are spherically sym-
metric, the expression for C, reduces to |-",=6K„
where E, is to be calculated for a perturbation

One may write explicit expressions for all
the functions that are needed to solve the problem.

(() =e-'"~'"'/))
0

H'go=r, r, cos8, cos8, e l'&'"&!/)T,

H' P, =rp, (r, —r, ) cos8, cos8, e l"'"2!/2)) . (16)

We choose a trial function for Eq. (12) of the form

lI')r = cos 8, cos 8, e a (rr r'( r''(rr()—

where a; is an adjustable parameter. To evaluate
the termer(h, —«,) '+(h, —«,) 'gr)) we require

g)+1 J$+

[(h, -e) '+(h, -s) ']()„=(4e) '
oso, !)oosee! '! g e; P ('"e, e, ' —e, e, ')(eee;+ g (e, 'e, -e, e, ')),

g L=]. L=y

(13)
where the &» are coefficients determined from

r~e & cos8q =(h~ —«~)(pqcos8) )

with Q, = p~",'b~, r, e "& Here bz,,+,.=(@+1) ', b~ =[p(p+1) —.2]/2pb~„. Integrating over angles and
combining terms, we reduce to sums of products of I' functions:

(& +2)l(@+2)l(& -Z~)
Ep —Ep„=— 8 a; '

—
— ' ' +2 ~~a;a~

m

(I +If;)t (Z„+Z)l - (Z, +I)!(Z,+Z„)!
L Id~ 2 I"&]'~a'4 +2L-2

(»ge» )!(Ji+Zs)!-(Le»,)!(Z;e» )!
)I

1 t

~+m 2g;+E' +J.,+ J,'+2
=2

(19)
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Lower bounds

-e.ooo'

-6.482

-6.498 4

(V-1)(V-o)-6.75

-e.5e"

—e.515'

-e.5ogb

{V-3)

(V-6)(V-2)

—6.499 002 5 (V-10)

—6.499 023 0 (V-11)

-e.499 o252' (V-12)

—6.499O26 O' (V-13}

(V-3)

-e.499 15o' {7-4)

-e.499 137' (v-5)

-e.499o56' (v-6)

—6.499035 (V-7) (PA-[1, o]}

{PA-[2,1])

(PA-[3, 2])

(PA-[4, 3])

(PA-[5, 4])

(pA-[e, 5])

(PA-[7, 6])

{IA-[2, 1])

6.78Od (pA-[1, 1]) —6.470"

-6.542' (PA-[2, 2])

-e.517' {PA-[3,3])

-6.499' (PA-[4, 4]) —6.498

—6.49gd (PA-[5, 5]) -6.499

6.49gd (PA-[e, 6]) -6.499d

6.4ggd (PA-[7, 7]) -6.486'

-6.5og' (PA-[2, 2])

~ This work, E~ only.
b This work.
~ Reference 16.
d Reference 15.
e Reference 9.

To evaluate E, we must solve the equation

[(&,—e,) '+(h, —e,) ']z,z, g, = y.

Using the recursion relations following Eq. (18),
this yields the result C =6E =-6.75 a.u. , already
a rea, sonable approximation for the accepted value,
'which, to three significant figures, is -6.50.
Using Eq. (9), with o.„n, corresponding to an ex-
citation of one atom to the 2P and the other to the
3P state, we obtain a lower bound C, = -6.5V,
which. is close to the -6.56 which results from a
one-parameter trial function in Eq. (18). The var-
iational lower bound may be systematically im-
proved by enlarging the number of adjustable para-
meters. We summarize our results in Table I, which
also includes the results of other authors. "~""

Our results should be compared to the accurate
variational upper bound computed by Hirschfelder
and Lowdin' (HL),"who used up to 13 parameters
in a trial function drawn from a single-particle

TABLE I. Bounds on Ce for H —H. V denotes varia-
tional, PA denotes Pade approximant, Number {s) in pa-
rentheses indicate number(s) of parameters that charac-
terize calculation.

basis set similar to ours. It apped, ra that the ac-
curacy which we achieve with 6 or 7 parameters
is comparable to that achieved in their calculation
with 18 parameters. (Furthermore, they experi-
mented with different choices of basis functions,
while we merely systematically extended our set
as the number of parameters was increased. ) This
stems in part from the fact that HL are calculating
the entire perturbation enexgy, while our varia-
tional approximation provides an estimate of E'~,
which is only 4%%uo of the full value. Hence we may
tolerate a fractional error 25 times larger for a
given overall accuracy.

That E alone is already quite a good approxima-
tion may be peculiar to the present problem, but
physical considerations lead one to believe that it
is of much greater generality. E includes excita-
tions to all states of the system. The contributions
to F-, from levels where the excitation energy is
shared equally between the two particles are in-
cluded exactly in the E term; the contribution of
Ep to F-, vanishes for these states. Thus ~ over-
estimates the absolute value of the contribution of
E, arising only from levels where the excitation
energy is shared unequally between the electrons,
and the role of E~ is to correct for this. The vari-
ational procedure underestimates the magnitude of
this correction. Since the dominant contributions
to E, tend to arise from the equal and nearly equal
excitation states, the error is restricted to terms
which are a prkn i of lesser importance.

Had we chosen to do so, I"-~ could have been eval-
uated by a convolution method similar to Eq. (5)
sine e (1/a + 1/0) i = a 0/(a +5).

The technique of Pade approximants has been
used to determine upper and lower bounds on C69,is

In a number of cases, very close correspondence
exists between a Pade lower bound and our lower
bound for a comparable number of adjustable para-
meters or the Pade equivalent. This may reflect
the use in the latter case of exact values of scalar
sum rules S(k), several of which may be generated
exactly in a. variational calculation'8 with the sin-
gle-particle functions that characterize our basis
set.

To summarize, we have discovered a new varia™
tional principle for two-particle perturbation ener-
gies, which is neither more difficult to apply than
older methods nor does it appear to converge
more slowly. In addition, for calculations involving
the ground state, it supplies a rigorous (and ap-
parently accurate) lower bound for E, in contrast
to the existing principle of variational perturba-
tion theory, which gives an upper bound.

This work was partially supported by the Re-
seal ch Corporation.
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