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The concept of variational collapse is based on the form of a variational trial wave function and not solely
on its energy. In particular, a variational calculation is said to suffer from variational collapse when a trial
wave function intended to represent an excited state takes on the character of one or more states of lower
energy as the energy of the trial wave function decreases. En view of this, we repeat our claims that certain
calculations published by Xicolaides and Beck suffered from variational collapse, and consequently the results
of these calculations do not represent the non-closed-shell many-electron theory of Sinanoglu.

4 = C4]

where H4,. =E,4,. and E; -E„,for i = j., 2, . . . .
The sum in Eq. (1) includes an integral over all
continuum eigenfunctions of H. In addition, we
shall define the energy (expectation value) func-
tional

E(4) =- &4 I
ff I4)l &4 I4&

and the quantities b„, e„, and a„:
b„=-P IC; for i such that E,&E„,

for i such that E, =E„

~„-=g I
'C; I' for i such that E,.&E„,

(3b)

(3c)

which represent the portions of 4 contributed by
eigenfunctions of H with eigenvalues less than,
equal to, or greater than eigenvalue E„, respec-
tively. Thus if 4 is an exact eigenfunction of H
with eigenvalue E„, then E(4) =E„, b„=0, e, =1,

The central issue in the Comment' by Nicolaides
and Beck on our recent work on variational calcu-
lations of excited-state wave functions' 4 is the
question of whether or not certain calculations
published by Nicolaides and Beck'" suffered from
variational collapse. This is closely related to the
question of whether or not these same calcula-
tions"' represent applications of the non-closed-
shell many-electron theory (NCMET) of
Sinanoglu. ' "

In order to indicate what is meant by "variational
collapse, "we must consider the expansion of an
arbitrary normalized N-electron wave function 4
in terms of the complete orthonormal set f4'„
i =1, 2, . . .j of eigenfunctions of the N-electron
Hamiltonian H. That is,

and a„=0.
In the case of the lowest eigenvalue Ey the por-

tion b, vanishes because there are no states for
which E, &E, . In this case, conventional (ground-
state) variational theory" indicates that (a) E(4)
~ E„(b)E(4) =E, if and only if e, = 1 and a, = 0,
and (c) as E(4) approaches E„ e, approaches 1 and

approaches 0 . Therefore, if 4 is a suf ficiently
flexible function of a number of variational para-
meters, then not only is the absolute minimum of
E(4) equal to E„but the corresponding form of 4
is an exact eigenfunction of H with. eigenvalue E, .

Similar methods can also be used to determine
eigenfunctions of H with eigenvalues E„greater
than E, . In such calculations, however, it is
necessary to impose constraints on the trial wave
functions 4 in order to prevent the occurence of
"variational collapse" in which 4 progressively
takes on an increasing character of one or more-
lower-lying eigenfunctions of H, and progressively
decreasing character of the eigenfunction of inter-
est, as its energy E(4} is reduced. That is, as
E(4) decreases, b„become slarge and increases,
while e„decreases.

Ultimately, in a case of total variational col- .

lapse, b„will approach unity, e„will approach
zero, and E(4) will fall below E„and approach E, .
In the initial stages of variational collapse, how-
ever, it is not necessary for E(4) to be below E„
For many-electron atoms and molecules, it ii.s of-
ten very difficult to get E(4) below E„even when 4
is intended as an approximation to C„especially if
E„ is less than about 2 eV above E, . Thus one may
easily have a situation in which E(4) is greater
than E„, but b„ is large (e.g. , roughly 0.1 to 0.5)
and rapidly increasing as E(4 }decreases. If such
a calculation is terminated at this point, it may be
said to be in a state of "partial variational col.-
lapse" in the sense that the degree of variational
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collapse, as measured by the value of b„as com-
pared to e„, would have increased much further if
the calculation had been continued.

There are several types of constraints which can
be used to prevent variational collapse. The most
effective of these is the use of symmetry restric-
tions. Thus, if 4 is restricted so as to have the
symmetry of an irreducible representation of a
symmetry group to which H belongs, then the co-
efficients C,. vanish for all eigenfunctions of H of
all other symmetries. In this way, the lowest ei-
genfuction of H of each symmetry can be treated in
the same manner as is the overall ground state.

In order to calculate variational wave functions
for excited states not lowest of their symmetry ad-
ditional constraints are required beyond symmetry
restrictions. Suitable constraints can be achieved
(a) by keeping 4 orthogonal to all of the exact ei-
genfunctions of H with eigenvalues less than that of
the state of interest, (b) by application of the
Hylleraas-Undheim-MacDonald (HUM) theorem, "
or (c) by use of the constrained variation method. "'
Each of these methods yields variational bounds
for excited-state wave functions analogous to those
given by conventional variational theory for
ground-state wave functions. That is, not only is
E(4) & E„, but 4 approaches an eigenstate of H with
energy E„as E(4) approaches E„.

Each of these methods, however, requires some
type of explicit consideration of every eigenfunc-
tion of H with an eigenvalue less than E„(and, if
symmetry restrictions are used, having the same
symmetry as the eigenfunction of interest). Such
considerations can be very bothersome, especially
if the nu~ber of such lower eigenfunctions is large
(i.e. , greater than one or two). The impact of such
considerations is even more serious for autoioniz-
ing states (electron scattering resonances) for
which the number of such lower states is infinite.
Consequently various attempts have been made to
find alternative methods for calculating wave func-
tions of such excited states which avoid these diffi-
culties. The "stabilization" method of Taylor, "
for example, has been very successful in this re-
spect.

The work of Nicolaides and Beck in question, "
represents, in part, an attempt to develop yet an-
other approach to this problem. Due to the ab-
sence of adequate constraints, however, these cal-
culations, " as indicated previously, " suf fered
from (partial) variational collapse.

The calculations in question, "' were intended to
yield configuration interaction (CI) wave functions
for certain electronic states assigned to 1s'2s"2P
intravalency (V) configurations in neutral. and sin-
gly ionized atoms. In each case, a lower-lying
state of the same symmetry assigned to a

1s'2s""2P '3s Rydberg (R) configuration was also
present. In addition to several other configura-
tions, the configurational ba, sis sets employed by
Nicolaides and Beck in these calculations each in-
cluded a configuration of the type ls'2s""2p 's(g, ),
where s(g, ) is a variatio'nal s symmetry virtual or-
bital which depends on an STO (Slater-type orbital)
exponential factor f, . 'This will be called the S
configuration.

Except for the V configuration, for which a sym-
metry-adapted single configurational wave function
was used, the basis sets used by Nicolaides and
Beck were composed of L' and S' complete sets of
Slater determinants. Consequently, some of the
eigenvectors of the resulting CI Hamiltonian ma-
trices correspond to symmetries which differ from
the symmetry of the V state of interest. In order
to simplify the following discussion, all such ei-
genvectors will be completely ignored, and only
those eigenvectors having the same symmetry
(i.e. , I, , S, and parity) will be considered. This
is equivalent to using a basis of symmetry-adapted
configurational state functions instead of Slater de-
terminants. The only influence which the addition. -
al eigenvectors have is to alter the numbering of
the eigenvectors. That is, the second eigenvector
of a given symmetry, for example, may be the
seventh eigenvector overall. (It is also assumed,
of course, that the eigenvectors are numbered in
order of increasing eigenvalues. }

The virtual orbital s(f,) and the 8 configuration
mere intended to provide variational approxima-
tions to the semi-internal orbital f, and. the semi-
internal configuration 1s'2s '2p 'f, . Because f,
is a relatively compact orbital, localized near the
2s and 2P orbitals, this approximation corresponds
to a relatively large value of f, (i.e. , f, = 1.5). For
small values of g„however, i.e. , &, =0.6, s(t;,)
approximates the diffuse Ss Rydberg. orbital and the
S configuration approximates the low-energy A
conf iguration.

The calculations of ¹icolaides and Beck'" were
initiated at a large (semi-internal-like) value of g, .
At this point the energy E,(f,) of the S configura-
tion is well above the energy E„of the V configura-
tion, and the magnitude of the coefficient C„, of the
V configura'tion in the lowest eigenvector is larger
than the magnitude of the corresponding coefficient
C„„ i & 2, in all higher eigenvectors. (Each eigen-
vector is normalized to unity. ) Therefore, based
on their interpretation of the rule "(X~X) = mini-
mum", p, 542 of Hef. 5, Nicolaides and Beck
equated the "CI energy of the V configuration, "
E„'(f,) to the lowest eigenvalue E,(f,}of the CI
Hamiltonian matrix for this value of f, .

As f, decreases from this large value, the s(t;,}
virtual orbital becomes progressively more diffuse



and Rydberg-like, and E,(f,) decreases rapidly.
Being independent of f„E„remains constant.
Thus as g, decreases, the difference E,(g,) —E„de-
creases, causing a slow decrease in E„'(f,) =E,(f,).
Nicolaides and Beck concluded that their variation-
al approximation to the wave function of the V state
was improving as P, decreased. In reality, they
were already in the initial stage of variational col-
lapse, and their trial wave function was departing
from the form of the desired V-state wave func-
tion, and beginning to take on the form of the
lower-energy '8-state wave function.

As f, decreases still further, E,(f,) continues to
decrease rapidly, and at some point g, =f„E,(f,)
crosses E„As f., approaches this point, E„'(f,)
=E,(g,) begins to decrease very rapidly, the mag-
nitude of C decreases rapidly, and the magnitude
of C„, the coefficient of the V configuration in the
second lowest eigenvector increases rapidly. This
continues until some point f, =f,' where the magni-
tude of C„, exceeds that of C„. (For a 2 x 2 CI, f,
=g,', but for an n&&n CI with n&2, g,' is usually
shifted away from f, )The. refore, based on their
interpretation of "(g ~jf) = minimum, "¹icolaides
and Beck appear to switch the assignment of the V
configuration from the lowest eigenvector to the
second lowest eigenvector. Consequently, E„'(f,),
the energy of the trail wave function for the V
state, discontinuously jumps from E„'(f,) =E,(f,)
for g, )f,' to E„'(g,) =E,(g, ) for f, & f,', where E,(f,)
is the second eigenvalue of the CI Hamiltonian ma-
trix.

At this point, E„'(g,), which had been rapidly de-
creasing, abruptly increases by a large amount,
i,e. , E,(f,') —E,(f,') Consegue. ntly, ¹colaides and
Beck conclude that they have found a minimum in
the energy of their trial wave function, and they
terminate the variation of the parameter g, at @

value slightly greater than f,'. This is the source
of the "extremely sharp minimum in the energy"
reported by Nicolaides and Beck on p. 546 of Ref.
5, and emphasized by them in a number of other
places.

Had the vari', tion of f, been continued until a true
minimum was found in either E,(g, ) or E,(g,), it is
possible that a good approximation to either the R-
or V-state wave functions, respectively, could
have been obtained. The point f, =f,', however, re-
presents nothing other than an accidental degener-
acy between E„and the energy of a nonphysical
basis configuration S. This point is of no physical
signif icance.

Furthermore, the resulting CI wave functions de-.
termined by f, & P,', which Nicolaides and Beck at-
tribute to the V state, are each in an advanced
state of variational collapse, with b„as defined
by Eq. (3a), having a value greater than 0.5 in

most, if not all, cases. This is revealed by the
magnitude and sign of the S configuration in each
of these wave functions. For example, the large
negative coefficient of the S configuration in their
nitrogen atom 4P wave function (see the fifth col-
umn of Table II in Ref. 2) indicates a large overlap
with the corresponding B-state wave function.

Consequently, each of these "wave functions" re-
ported by Nicolaides and Beck in Ref. 5 represents
an extremely poor approximation to both the V-
state wave function and the lower-energy 8-state
wave function. As such, it is not surprising that
the f values calculated using these "wave functions"
and reported in Ref. 6 differ radically from the re-
sults of other calculations, "' as well as from the
results of experimental measurements.

In their configuration- interaction calculations,
Nicolaides and Beck used sets of configurations
found in the NCMET "charge wave function" of each
state. '" Consequently they have attributed the
failure of their calculations to NCMET (rather than
to variational collapse). ' The NCMET charge wave
function is composed of a rigorously finite number
of configurations, and is well suited for CI calcula-
tions. ' " The exact NCMET charge wave function,
however, is defined as that portion of the exact
wave function contributed by a specific set of con-
figurations, ' an/ not as a result of the CI calcula-
tion based on this set. The result of a CI calcula-
tion will be a, good apprOximation to the exact
charge eave function only if the coupling between
these configurations and the remaining configura-
tions is small, ' as is.usually the case. Further-
more, because NCMET is consistent with the well-
established principles of variational theory (for
ground as well as for excited states), the fact that
one is using some aspect of NCMET does not itself
grant a license to ignore these well-established
principles. In particular, in the calculations of.
Nicolaides and Beck,'" merely selecting configura-
tions on the basis of NCMET did not provide any
protection against variational collapse. Having
suffered variational collapse, the configurational
mixing coefficients obtained in their work differ
greatly from those in the exact wave function of
each state. Consequently, the wave functions cal-
culated by Nicolaides and Beck for these states
were not good approximations to the corresponding
NCMET charge wave functions, and the resulting
inaccurate oscillator strengths calculated by
Nicolaides and Beck have nothing to do with
NC MET.

The earlier calculations of Oksuz and Sinanoglu'
on some of these same states employed the con-
straint g, =/~=/„=&g&. The resulting values of g
were determined by a local minimum dominated
by the d-symmetry virtual orbital. Consequently,
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the s-symmetry virtual orbitals found in these
calculations' are very compact, like normal f,
semi-internal orbitals, and the 3s Rydberg orbital
is essentially absent. This is reflected in the
ss&eall negafjpe coefficient of the 1s 2s 2P s config-
uration in their Is'2s2P'4P wave function. (See the
fourth column of Table II of Ref. 2.)

Because the important Ss Hydberg configurations
have been omitted, the wave functions of Qksuz and
Sinanoglu for the NI 4I' and N II II'0 are relatively
poor approximations compared to most others they
calculated. As shown by the f values calculated
with these wave functions, however, they are nev-
ertheless substantial improvements over the HHF
wave functions, as well as the wave functions sub-
sequently calculated by Nicolaides and Beck.
Thus, for the NI '8'-'I' transition at 1134 A, for
which the experimental measurements" indicate
an f va.lue of 0.08, we find RHF (length/velocity)
results" of 0.49/0. 56; Qksuz-Sinanoglu-Westhaus
results'" of 0.14/0. 19; and the subsequent
Nicolaides-Beck (length} result' of, 0.29.

In the more recent calculations of Luken and
Sinanoglu, "NCMET charge wave functions for the
states in question were calculated using the HUM
theorem to prevent variational collapse. In each
case, oscillator strengths calculated using these
new wave functions were found to be in much better
agreement with accurate experimental results,
where available than were the results of all pre-
vious calculations. For example, in the case of
the nitrogen atom 1134-A transition, length, and
velocity f values of 0.04 and 0.08 were obtained.
The difference between the length and velocity re-
sults indicates that significant room for improve-
ment remains. It is expected that these results
can be improved through the use of the "charge
supermultiplet, ""as has previously beep sug-
gested. "

Nicolaides and Beck also recently calculated'"
some of these wave functions and the associated
oscillator strengths. Lacking the wave functions

/

involved in these calculations, as well as the cor-
responding velocity f values, the accuracy of the
calculations is difficult to assess. In order to
judge the accuracy, it is interesting to note that
Table I of the accompanying Comment, ' which ac-
cording to Nicolaides and Beck summarizes the
effects of basis sets on the calculations of the os-
cillator strengths of the 1134-A transition of the
nitrogen atom, omits (a) the velocity result (0.08)
of t,uken and Sinanoglu, "' and (b} the length result
(0.29) of Nicolaides and Beck.'

Finally, we note that Nicolaides and Beck are
correct in asserting that NCMET is not a theory of
oscillator strengths. NCMET is a theory of the
electronic structure of atoms and molecules, and
the application of NCMET to the calculation of os-
cillator strengths is only one facet of NCMET.
Thus we find it very encouraging to note that, in
the examples cited by Nicolaides and Beck,' the
results of calculations based on NCMET are al-
ways at least as accurate, and usually more accu-
rate, than the more-elaborate calculations of the
specialized approach recommended by Nicolaides
and Beck."

In conclusion, we repeat our claim that certain
calculations of Nicolaides and Beck"' have suf-
fered from variational collapse. (I.e., those for
the BeI 2p"5', BI2s2p"S, CI 2s2p 'P' NII
2s2p'-'P', NI2s2p g, OII 2s2p~2P, OI 2s2p P',
and the Fli 2s2p"P' states. } Consequently the
wave functions calculated by Nicolaides and Beck
for these states were not NCMET charge wave
functions and the resulting oscillator strengths
calculated by Nicolaides and Beck have nothing to
do with NCMET. Conversely, the wave functions
calculated by Nicolaides and Beck for states which
were not subject to variational collapse represent
good approximations to the corresponding NCMET
charge wave functions, and the f values calculated
using these wave functions" represent results of
NCMET.
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